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Proof. .r; / � .r; / is obvious: r D r and � D 0 �2� . To see � is symmetric,

let .r; / � .r 0;  0/; then r D r 0 and  �  0 D n � 2� , where n 2 Z. Therefore, r 0 D r

and  0 �  D .�n/ � 2� ; that is, .r 0;  0/ � .r; /. Finally, to see � is transitive, let

.r; / � .r 0;  0/, and .r 0;  0/ � .r 00;  00/. In this case, r D r 0 D r 00, so r D r 00, and

 �  0 D m � 2�;  0 �  00 D n � 2�;

where m; n 2 Z. But then  �  00 D . �  0/ C . 0 �  00/ D .m C n/ � 2� . Hence,

.r; / D .r 00;  00/. The above steps show that � is an equivalence relation on P .

Consider an arbitrary element of P= �, say, Œ.r 0;  0/��. Since  0 2 R, there

must exist  such that  0� D n �2� , where n 2 Z. Then, there exists  2 R such

that  D  0�n �2� . Hence, we can find a zn 2 Z satisfying  0=2� �1 6 zn 6  0=2� ,

and let .r; / D .r 0;  0 � zn � 2�/. ut

2.5 Orderings

I Exercise 44 (2.5.1). a. Let R be an ordering of A, S be the corresponding

strict ordering of A, and R� be the ordering corresponding to S . Show that

R� D R.

b. Let S be a strict ordering of A, R be the corresponding ordering, and S� be

the strict ordering corresponding to R. Then S� D S .

Proof. (a) Let .a; b/ 2 R, where a; b 2 A. If a D b, then .a; b/ 2 R� because

orderings are reflexive; if a ¤ b, then .a; b/ 2 S . But then .a; b/ 2 R�. Hence,

R � R�. To see the inverse direction, let .a; b/ 2 R�. Firstly, a D b implies that

.a; b/ 2 R since R is reflexive. So we suppose a ¤ b. In this case, .a; b/ 2 S .

Because S is R’s corresponding strict ordering of A, we know .a; b/ 2 S if and

only if .a; b/ 2 R and a ¤ b. Hence, R� � R. This proves that R� D R.

(b) Let .a; b/ 2 S , then a ¤ b. Since R is S ’s corresponding ordering, we have

.a; b/ 2 R. Since .a; b/ 2 R and a ¤ b, we have .a; b/ 2 S�. The revers direction

can be proven with the same logic. ut

I Exercise 45 (2.5.2). State the definitions of incomparable elements, maximal,

minimal, greatest, and least elements and suprema and infima in terms of strict

orderings.

Solution. If .P;</ is a partially ordered set, X is a nonempty subset of P ,

and a 2 P , then:

� a and b are incomparable in < if a ¤ b and neither a < b nor b < a holds;

� a is a maximal element of X if a 2 X and .8 x 2 X/ a – x;

� a is a minimal element of X if a 2 X and .8 x 2 X/ x – a;
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� a is the greatest element of X if a 2 X and .8 x 2 X/ x 6 a;

� a is the least element of X if a 2 X and .8 x 2 X/ a 6 x;

� a is an upper bound of X if .x 2 X/ x 6 a;

� a is a lower bound of X if .8 x 2 X/ a 6 x;

� a is the supremum of X if a is the least upper bound of X ;

� a is the infimum of X if a is the greatest lower bound of X . ut

I Exercise 46 (2.5.3). Let R be an ordering of A. Prove that R�1 is also an

ordering of A, and for B � A,

a. a is the least element of B in R�1 if and only if a is the greatest element of B

in R;

b. Similarly for (minimal and maximal) and (supremum and infimum).

Proof. (a) (i) aR�1a since aRa. (ii) Suppose .a; b/ 2 R�1 and .b; a/ 2 R�1. Then

.b; a/ 2 R and .a; b/ 2 R, and so a D b since R is antisymmetric. (iii) Let aR�1b

and bR�1c. Then bRa and cRb. Hence, cRa since R is transitive. But which

means that aR�1c, i.e., R�1 is transitive.

(b) If a is the least element of B in R�1, then a 2 B and aR�1x for all x 2 B .

But then xRa for all x 2 B , i.e., a is the greatest element of B in R; if a be the

greatest element of B in R, that is, a 2 B and xRa for all x 2 B , then aR�1x for

all x 2 B , and so a is the least element of B in R�1. With the same logic as (a)

we can get (b). ut

I Exercise 47 (2.5.4). Let R be an ordering of A and let B � A. Show that

R \ B2 is an ordering of B .

Proof. (i) For every b 2 B we have .b; b/ 2 B2 and .b; b/ 2 R; hence, .b; b/ 2

R\B2; that is, R\B2 is reflexive. (ii) Let .a; b/ 2 R\B2 and .b; a/ 2 R\B2. Then

.a; b/ 2 R and .b; a/ 2 R imply that a D b. Therefore, R \ B2 is antisymmetric.

(iii) Let .a; b/ 2 R\B2 and .b; c/ 2 R\B2. Then .a; b/ 2 R and .b; c/ 2 R implies

that .a; c/ 2 R. Furthermore, since both a 2 B and c 2 B , we have .a; c/ 2 B2.

Hence, .a; c/ 2 R \ B2; that is, R \ B2 is transitive. ut

I Exercise 48 (2.5.5). Give examples of a finite ordered set .A;6/ and a subset

B of A so that

a. B has no greatest element.

b. B has no least element.

c. B has no greatest element, but B has a supremum.

d. B has no supremum.
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Proof. (a) Let A D fa; b; c; dg, B D fa; b; cg, and

6D f.a; a/; .b; b/; .c; c/; .d; d/; .a; d/; .b; d/; .c; d/g :

In this example, a is not the greatest element of B because .a; b/, .a; c/ are

incomparable; similarly, b and c are not the greatest elements of B .

(b) As the example in (a), there is no least element.

(c) As the example in (a), there is no greatest element, but d is an upper bound

of B , and it is the least upper bound of B , so d is the supremum of B .

(d) Let A D fa; b; c; cg, B D fa; b; cg, and 6D f.a; a/; .b; b/; .c; c/; .d; d/g. Then

there is no upper bound of B , and consequently, B has no supremum. ut

I Exercise 49 (2.5.6). a. Let .A;</ be a strictly ordered set and b … A. Define

a relation � in B D A [ fbg as follows:

x � y if and only if .x; y 2 A and x < y/ or .x 2 A and y D b/:

Show that � is a strict ordering of B and � \A2 D<.

b. Generalize part (a): Let .A1; <1/ and .A2; <2/ be strict orderings, A1\A2 D ¿.

Define a relation � on B D A1 [ A2 as follows:

x � y if and only if x; y 2 A1 and x <1 y

or x; y 2 A2 and x <2 y

or x 2 A1 and y 2 A2:

Show that � is a strict ordering of B and � \A21 D<1, � \A
2
2 D<2.

Proof. (a) Let x � y. Then either x; y 2 A and x < y or x 2 A and y D b. In the

first case, y ˜ x because y – x; in the later case, y ˜ x be definition. Therefore,

� is asymmetric.

Let x � y and y � z. Then y ¤ b; otherwise, y � z cannot hold. With the

same logic, x ¤ b, too. If z D b, then x � z D b by definition; if z 2 A, then

x < y and y < z implies x < z and so x � z.

To prove .� \A2/ D<, let .x; y/ 2 .� \A2/. Then x; y 2 A and .x; y/ 2�,

which means that .x; y/ 2<. Now let .x; y/ 2<. Then x; y 2 A H) .x; y/ 2 A2

and .x; y/ 2� by definition of �; hence, .x; y/ 2 .� \A2/.

(b) Let x � y. If x; y 2 A1, then x <1 y and so y ˜ x; if x; y 2 A2, then x <2 y

and so y ˜ x; if x 2 A1 and y 2 A2, then y ˜ x by definition.

Let x � y and y � z. There are four cases:

� x; y; z 2 A1. In this case, x <1 y <1 z H) x <1 z H) x � z.

� x; y; z 2 A2. In this case, x <2 y <2 z H) x <2 z H) x � z.

� x; y 2 A1 and z 2 A2. In this case, x � z by definition.
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� x 2 A1 and y; z 2 A2. In this case, x � z by definition.

To prove
�
� \A21

�
D<1, suppose .x; y/ 2

�
� \A21

�
firstly. Then .x; y/ 2� and

x; y 2 A1; hence x � y H) x <1 y. Now suppose .x; y/ 2<1. Then x � y and

x; y 2 A1; that is, .x; y/ 2
�
� \A21

�
.

The result that
�
� \A22

�
D<2 can be proved with the same logic. ut

I Exercise 50 (2.5.7). Let R be a reflexive and transitive relation in A (R is

called a preordering of A). Define E in A by

aEb if and only if aRb and bRa:

Show that E is an equivalence relation on A. Define the relation R=E in A=E by

Œa�E .R=E/Œb�E if and only if aRb:

Show that the definition does not depend on the choice of representatives for

Œa�E and Œb�E . Prove that R=E is an ordering of A=E.

Proof. We first show that E is an equivalence relation on A. (i) E is reflexive

since R is. (ii) E is symmetric: if aEb, then aRb and bRa, i.e., bRa and aRb;

therefore, bEa by the definition of E. (iii) E is transitive: if aEb and bEc, then

aRb and bRa, and bRc and cRb. Hence, aRc and cRa by the transitivity of R.

We thus have aEc.

Let Œa�E .R=E/Œb�E if and only if aRb. We show that if c 2 Œa�E and d 2 Œb�E ,

then Œa�E .R=E/Œb�E if and only if cRd . We firt focus on the “IF” part. Since

c 2 Œa�E , we have cEa, i.e., aRc and cRa; similarly, dRb and bRd . Let cRd . We

first have aRd since aRc; we also have dRb; hence aRb, i.e., cRd implies that

Œa�E .R=E/Œb�E . To prove the “ONLY IF” part, let Œa�E .R=E/Œb�E . Then aRb. Since

cRa and bRd , we have cRd .

R=E is an ordering of A=E since (i) R=E is reflexive: for any Œa�E 2 A=E,

we have a 2 Œa�E and aRa, so Œa�E .R=E/Œa�E ; (ii) R=E is antisymmetric: if

Œa�E .R=E/Œb�E and Œb�E .R=E/Œa�E , then aRb and bRa, i.e., aEb. Hence, Œa�E D

Œb�E ; (iii) R=E is transitive: if Œa�E .R=E/Œb�E and Œb�E .R=E/Œc�E , then aRb and

bRc and so aRc, that is, Œa�E .R=E/Œc�E . ut

I Exercise 51 (2.5.8). Let A D P .X/, X ¤ ¿. Prove:

a. Any S � A has a supremum in the ordering �A; supS D
S
S .

b. Any S � A has an infimum in �A; infS D
T
S if S ¤ ¿; inf¿ D X .

Proof. (a) Let U D
˚
u 2 A j s �A u; 8 s 2 S

	
, i.e., U is the set of all the upper

bounds of S according to �A. Note that U ¤ ¿ since X 2 U . Now we show that

the least element of U exists, and which is
S
S . Since s �A s �A

S
S for any

s 2 S , we have
S
S 2 U ; to see that

S
S is the least element of U , take any

u 2 U . Then s �A u for all s 2 S and so
S
S �A u; therefore, supS D

S
S .
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(b) Let L D
˚
` 2 A j ` �A s; 8 s 2 S

	
, i.e., L is the set of all the lower bounds

of S according to �A, and L ¤ ¿ since ¿ 2 L. We first consider the case that

S ¤ ¿, and show that supL D
T
S . Firstly, it is clear that

T
S 2 L; secondly,

if ` 2 L, then ` �A s for all s 2 S , so ` �A
T
S . Therefore, infS D

T
S if S ¤ ¿.

Finally, let S D ¿. Then inf¿ D X because for all B � X , B �A C , 8 C 2 ¿ D
S . Suppose it were not the case. Then there exists C 0 2 ¿ such that B ªA C 0.
However, there does not exist such a C 0 2 ¿ since there is no element in ¿.

Therefore, all subsets of X , including X itself, is a lower bound of ¿ according

to �A. Then the greatest element according to �A is X . ut

I Exercise 52 (2.5.9). Let Fn .X; Y / be the set of all functions mapping a subset

of X into Y [i.e., Fn .X; Y / D
S
Z�X Y

Z ]. Define a relation 6 in Fn .X; Y / by

f 6 g if and only if f � g:

a. Prove that 6 is an ordering of Fn .X; Y /.

b. Let F � Fn .X; Y /. Show that supF exists if and only if F is a compatible

system of functions; then supF D
S
F .

Proof. (a) The relation 6 is reflexive since f � f for any f 2 Fn .X; Y /. If

f 6 g and g 6 f , then f � g and g � f . By the Axiom of Extentionality, we

have f D g; hence, 6 is antisymmetric. Finally, let f 6 g, and g 6 h, where

f; g; h 2 Fn .X; Y /. Then f � g and g � h implies that f 6 g; that is, 6 is

transitive. Therefore, 6 is an ordering of Fn .X; Y /.

(b) Let F � Fn .X; Y /. If supF exists, there is a function supF 2 Fn .X; Y / such

that for any f; g 2 Fn
�
X; y

�
, f � supF and g � supF . Suppose .x; y/ 2 f ,

and .x; z/ 2 g. Then .x; y/ 2 supF , and .x; z/ 2 supF . Hence, it must be the

case that y D z; otherwise, supF would be not a function. This proves F is a

compatible system of functions.

Now suppose F is a compatible system of functions. Then,
S
F is a function

with DF D
S˚

Df j f 2 F
	
� X ; therefore,

S
F 2 Fn .X; Y /. It is easy to see

that
S
F is an upper bound of F since f �

S
F () f 6

S
F for any

f 2 F . Finally, let G be any upper bound of F , then f � G for any f 2 F ;

consequently, 24[F D
[
f 2F

f � G

35 H)[
F 6 G;

for any upper bound of F . This proves that supF D
S
F . ut

I Exercise 53 (2.5.10). Let A ¤ ¿; let Pt .A/ be the set of all partitions of A.

Define a relation 4 in Pt .A/ by

S1 4 S2 if and only if for every C 2 S1 there is D 2 S2 such that C � D:

(We say that the partition S1 is a refinement of the partition S2 if S1 4 S2 holds.)
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a. Show that 4 is an ordering.

b. Let S1; S2 2 Pt .A/. Show that fS1; S2g has an infimum. How is the equivalence

relation ES related to the equivalence ES1
and ES2

?

c. Let T � Pt .A/. Show that infT exists.

d. Let T � Pt .A/. Show that supT exists.

Proof. (a) It is clear that 4 is reflexive. To see 4 is antisymmetric, let S1 4 S2
and S2 4 S1, where S1; S2 2 Pt .A/. Since S1 4 S2, for every C1 2 S1 there

is D2 2 S2 such that C1 � D2. Suppose that C1 � D2. Since S2 4 S1, there

is D1 2 S1 such that D2 � D1. Then C1 � D1. But then C1 \ D1 ¤ ¿ A

contradiction. Hence, S1 � S2. Similarly, S2 � S1.

To verify that 4 is transitive, let S1 4 S2, and S2 4 S3, where S1; S2; S3 2

Pt .A/. Then for every C 2 S1, there is D 2 S2 and E 2 S3 such that C � D � E;

that is, C � E. Hence, S1 4 S3.

(b) Let S1; S2 2 Pt .A/. Let L D fS 2 Pt .A/ W S 4 S1 and S 4 S2g. Note that

L ¤ ¿ because ffag W a 2 Ag 2 L. We now show

M D fC \D W C 2 S1 and D 2 S2g

is the greatest element of L. If m 2M , then there exist C 2 S1 and D 2 S2 such

that m D C \D. Then m � C and m � D; that is, M 4 S1 and M 4 S2; that is,

M 2 L.

Pick an arbitrary N 2 L. Then for every n 2 N , there exists C 2 S1 such that

n � C , and there exists D 2 S2 such that n � D; that is, n � C \D 2M . Hence,

N 4M and so M D inf fS1; S2g.

(c) The same as (b).

(d) Let T � Pt .A/. Define U D fS 2 Pt .A/ W t 4 S 8 t 2 T g. Notice that U ¤ ¿
because A 2 U. Now we show that

supT D

8<: [
Ci2ti

Ci W ti 2 T

9=; D P:
This can be proved as follows:

� P 2 U. For any Ci 2 ti 2 T , Ci � Ci [
S
Cj2tj

Cj 2 P , where j ¤ i ; hence

ti 4 P , 8 ti 2 T .

� P is the least element of U. Suppose Q 2 U. Then ti 4 Q, 8 ti 2 T ; then,

for any Ci 2 ti , there exists q 2 Q such that Ci � q, for all ti 2 T . But which

means that
S
Ci2ti

Ci � q; 8 ti 2 T . Hence, P 4 Q, 8 Q 2 U. ut

I Exercise 54 (2.5.11). Show that if .P;</ and .Q;�/ are isomorphic strictly

ordered sets and < is a linear ordering, then � is a linear ordering.
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Proof. Let h W P ! Q be the isomorphism. Pick any q1; q2 2 Q with q1 ¤ q2.

There exist p1; p2 2 P with p1 ¤ p2 such that q1 D h.p1/ and q2 D h.p2/.

Since < is a linear ordering, p1 and p2 are comparable, say, p1 < p2. Then

h.p1/ D q1 � q2 D h.p2/. ut

I Exercise 55 (2.5.12). The identity function on P is an isomorphism between

.P;</ and .P;</.

Proof. The function IdP W P ! P is bijective, and p1 < p2 iff IdP .p1/ <

IdP .p2/. ut

I Exercise 56 (2.5.13). If h is an isomorphism between .P;</ and .Q;�/, then

h�1 is an isomorphism between .Q;�/ and .P;</.

Proof. Since Dh�1 D Rh D Q, and Rh�1 D Dh D P , the function h�1 W Q ! P

is bijective. For all q1; q2 2 Q, there exists unique p1; p2 2 P such that q1 D

h.p1/ and q2 D h.p2/; then

q1 � q2 () h.p1/ � h.p2/ () p1 < p2 () h�1.q1/ < h
�1.q2/: ut

I Exercise 57 (2.5.14). If f is an isomorphism between .P1; <1/ and .P2; <2/,

and if g is an isomorphism between .P2; <2/ and .P3; <3/, then g B f is an iso-

morphism between .P1; <1/ and .P3; <3/.

Proof. First, DgBf D Df \ f
�1ŒDg � D P1 \ f

�1 ŒP2� D P1. Next, for every

p3 2 P3, there exists p2 2 P2 such that p3 D g.p2/, and for every p2 2 P2, there

exists p1 2 P1 such that p2 D f .p1/. Therefore, for every p3 2 P3, there exists

p1 2 P1 such that p3 D g.p2/ D g.f .p1// D .g B f /.p1/. Hence, g B f W P1 ! P3

is surjective.

To see that g B f is injective, let p1 ¤ p01. Then f .p1/ ¤ f .p01/, and so

g.f .p1// ¤ g.f .p
0
1//.

Finally, to see g B f is order-preserving, notice that

p1 <1 p
0
1 () f .p1/ <2 f .p

0
1/ () .g B f /.p1/ <3 .g B f /.p

0
1/: ut





3
NATURAL NUMBERS

3.1 Introduction to Natural Numbers

I Exercise 58 (3.1.1). x � S.x/ and there is no z such that x � z � S.x/.

Proof. It is clear that x � x [ fxg D S.x/. Given x, suppose there exists a set z

such that x � z. Then there must exist some set a ¤ ¿ such that z D x [ a. If

a D fxg, then z D S.x/; if a ¤ fxg, then there must exist d 2 a such that d ¤ x.

Therefore, we have a ª fxg. Consequently, z D x [ a ª x [ fxg D S.x/.d/. ut

3.2 Properties of Natural Numbers

I Exercise 59 (3.2.1). Let n 2 N. Prove that there is no k 2 N such that n < k <

nC 1.

Proof. (Method 1) Let n 2 N. Suppose there exists k 2 N such that n < k. Then

n 2 k; that is, n � k [See Exercise 65]. If k < nC 1, then k � nC 1 D S.n/. That

is impossible by Exercise 58.

(Method 2) Suppose there exists k such that k < nC1. By Lemma 2.1, k < nC1

if and only if k < n or k D n. Therefore, it cannot be the case that n < k. ut

I Exercise 60 (3.2.2). Use Exercise 59 to prove for all m; n 2 N: if m < n, then

m C 1 6 n. Conclude that m < n implies m C 1 < n C 1 and that therefore the

successor S.n/ D nC 1 defines a one-to-one function in N.

Proof. m < m C 1 for all m 2 N. It follows from Exercise 59 that there is no

n 2 N satisfying m < n < mC 1. Since < is linear on N, it must be the case that

mC 1 6 n. Then mC 1 6 n < nC 1 implies that mC 1 < nC 1. To see S.n/ is

one-to-one, let m < n. Then S.m/ D mC1, S.n/ D nC1, and so mC1 < nC1. ut

I Exercise 61 (3.2.3). Prove that there is a one-to-one mapping of N onto a

proper subset of N.

31
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Proof. Just consider S W n 7! nC 1. By Exercise 60, S is injective. By definition,

S is defined on N, i.e., DS D N, and by the following Exercise 62, RS D NXf0g.

Therefore, S W N! N X f0g, as desired. ut

I Exercise 62 (3.2.4). For every n 2 N, n ¤ 0, there is a unique k 2 N such that

n D k C 1.

Proof. We use the induction principle in Exercise 69 to prove this claim. Let

P .x/ be “there is a unique k 2 N such that x D kC1”. It is clear that P .1/ holds

since 1 D 0C 1. The uniqueness of 0 D ¿ is from Lemma 3.1 in Chapter 1. Now

suppose that P .n/ holds and consider P .nC 1/. We have nC 1 D .k C 1/C 1 by

the induction assumption P .n/. Note that kC 1 D S.k/ 2 N. Let kC 1 D k0. The

uniqueness of k implies that k0 is unique. We thus complete the proof. ut

I Exercise 63 (3.2.5). For every n 2 N, n ¤ 0; 1, there is a unique k 2 N such

that n D .k C 1/C 1.

Proof. We know from Exercise 62 that for every nonzero n 2 N there is a

unique k0 2 N, such that n D k0 C 1. Now consider k0 2 N. If n ¤ 1, then k0 ¤ 0.

Therefore, we can impose the result of Exercise 62 on k0; that is, there is a

unique k 2 N such that k0 D kC 1. Combining these above two steps, we know

for all n 2 N, n ¤ 0; 1, there is a unique k 2 N such that n D .k C 1/C 1. ut

I Exercise 64 (3.2.6). Prove that each natural number is the set of all smaller

natural numbers; i.e., n D fm 2 N W m < ng.

Proof. Let P .x/ denote “x D fm 2 N W m < xg”. It is evident that P .0/ holds

trivially. Assume that P .n/ holds and let us consider P .nC 1/. We have

nC 1 D n [ fng D fm 2 N W m < ng [ fng D fm 2 N W m < nC 1g : ut

I Exercise 65 (3.2.7). For all m; n 2 N, m < n if and only if m � n.

Proof. Let P .x/ be the property “m < x if and only if m � x”. It is clear that

P .0/ holds trivially. Assume that P .n/ holds. Let us consider P .n C 1/. First

let m < n C 1; then m < n or m D n. If m < n, then m � n � .nC 1/ by the

induction assumption P .n/; if m D n, then m D n � .nC 1/, too. Now assume

that m � .nC 1/. Then either m D n or m � n. We get m < n C 1 in either

case. ut

I Exercise 66 (3.2.8). Prove that there is no function f W N! N such that for

all n 2 N, f .n/ > f .nC 1/. (There is no infinite decreasing sequence of natural

numbers.)

Proof. Suppose there were such a function f . Then ¿ ¤ ff .n/ 2 N W n 2 Ng �

N. Because .N; </ is well-ordered, the set ff .n/ 2 N W n 2 Ng has a least element

˛; that is, there is m 2 N such that f .m/ D ˛. But f .mC 1/ < f .m/ D ˛, which

contradicts the assumption that ˛ is the least element. ut
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I Exercise 67 (3.2.9). If X � N, then
˝
X;< \X2

˛
is well-ordered.

Proof. Let Y � X be nonempty. Y has a least element y when Y is embedded

in N. But clearly y is still a least element of Y when Y is embedded in X �

N. ut

I Exercise 68 (3.2.10). In Exercise 49, let A D N, b D N. Prove that � as

defined there is a well-ordering of B D N [ fNg. Notice that x � y if and only if

x 2 y holds for all x; y 2 B .

Proof. The relation � in B D N [ fNg is defined as

x � y () .x; y 2 N and x < y/ or .x 2 N and y D N/ () x 2 y:

Let X � B D N [ fNg be nonempty. There are two cases:

� If N … X , then X � N, and so X has a least element since .N; </ is well-

ordered.

� If N 2 X , then X D Y [ fNg, where Y � N. Hence, Y has a least element ˛.

But ˛ � N since ˛ 2 N; that is, ˛ is the least element of X . ut

I Exercise 69 (3.2.11). Let P .x/ be a property. Assume that k 2 N and

a. P .k/ holds.

b. For all n > k, if P .n/ then P .nC 1/.

Then P .n/ holds for all n > k.

Proof. If k D 0, then this is the original Induction Principle. So assume that

k > 0 and P .k/ holds. Then, by Exercise 62, there is a unique k0 2 N such that

k0 C 1 D k. Define

B D fn 2 N W n 6 k0g; and C D
˚
n 2 N W n > k and P .n/

	
:

Notice that B \ C D ¿.

We now show that A D B [ C is inductive. Obviously, 0 2 A. If n 2 B ,

then either n < k0 and so n C 1 2 B , or n D k0 and so n C 1 D k 2 C . If

n 2 C , then n C 1 2 C by assumption. Hence, N D A (since A � N), and so

fn 2 N W n > kg D N X B D C . ut

I Exercise 70 (3.2.12, Finite Induction Principle). Let P .x/ be a property. As-

sume that k 2 N and

a. P .0/.

b. For all n < k, P .n/ implies P .nC 1/.

Then P .n/ holds for all n 6 k.
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Proof. Suppose there were n < k such that :P .n/. Then it must be the case

that :P .m/, where mC 1 D n. Thus, X D
˚
a 2 N W a < k and :P .a/

	
¤ ¿, and

so X has a least element, ˛. Also ˛ ¤ 0 since P .0/ holds by assumption.

However, if :P .˛/, then :P .ˇ/, where ˇ C 1 D ˛, is also true. But ˇ < ˛,

which contradicts the assumption that ˛ is the least element of X . Therefore,

P .n/ holds for all n < k.

To see P .k/ holds, too, notice that there exists m 2 N and m < k such

that m C 1 D k (by Exercise 62). Because we have shown that P .m/ holds,

P .mC 1/ D P .k/ also holds. ut

I Exercise 71 (3.2.13, Double Induction). Let P .x; y/ be a property. Assume

If P .k; `/ holds for all k; ` 2 N such that k < m or .k D m and ` < n/;

then P .m; n/ holds.
(��)

Conclude that P .m; n/ holds for all m; n 2 N.

Proof. We proceed by induction on m. Fix n 2 N. Then P .m; n/ is true for all

m 2 N by the second version of Induction Principle. Now for every m 2 N,

.m; n/ is true for all n by the second version of Induction Principle. Hence,

P .m; n/ holds for all m; n 2 N. ut

3.3 The Recursion Theorem

I Exercise 72 (3.3.1). Let f be an infinite sequence of elements of A, where A

is ordered by �. Assume that fn � fnC1 for all n 2 N. Prove that n < m implies

fn � fm for all n;m 2 N.

Proof. We proceed by induction on m in the form of Exercise 69. For an arbi-

trary n 2 N, let P .x/ denote “fn � fx if n < x”. Let k D nC 1. then P .k/ holds

since fn � fnC1 D fk by assumption.

Suppose that P .m/ holds, where m > k, and consider P .mC 1/. Since fm �

fmC1 by the assumption of the exercise, and fn � fm by induction hypothesis

of P .m/, we have fn � fmC1.

Using the Induction Principle in the form of Exercise 69, we conclude that

P .m/ holds for all m > k D nC 1 > n. ut

I Exercise 73 (3.3.2). Let .A;�/ be a linearly ordered set and p; q 2 A. We say

that q is a successor or p if p � q and there is no r 2 A such that p � r � q.

Note that each p 2 A can have at most one successor. Assume that .A;�/ is

nonempty and has the following properties:

a. Every p 2 A has a successor.

b. Every nonempty subset of A has a �-least element.
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c. If p 2 A is not the �-least element of A, then p is a successor of some q 2 A.

Prove that .A;�/ is isomorphic to .N; </. Show that the conclusion need not hold

if one of the conditions (a)–(c) is omitted.

Proof. We first show that each p 2 A can have at most one successor. If q1
and q2 are both the successors of p, and q1 ¤ q2, say, q1 � q2, then p � q1 � q2,

in contradiction to the assumption that q2 is a successor of p.

Let a be the least element of A (by (b)) and let g.x; n/ be the successor of x

(for all n). Then a 2 A and g W A �N ! A is well defined by (a). The Recursion

Theorem guarantees the existence of a function f W N! A such that

� f0 D a D the least element of A;

� fnC1 D g.fn; n/ D the successor of fn.

By definition, fn � fnC1 for all n 2 N; by Exercise 72 fn � fm whenever

n < m. Consequently, f is injective. It remains to show that f is surjective.

If not, A X Rf ¤ ¿; let p be the least element of A X Rf . Then p ¤ a, the

least element of A. It follows from (c) that there exists q 2 A such that p is the

successor of q. There exists m 2 N such that fm D q; for otherwise q 2 A XRf
and q � p. Hence, fmC1 D p by the recursive condition. Consequently, p 2 Rf ,

a contradiction. ut

I Exercise 74 (3.3.3). Give a direct proof of Theorem 3.5 in a way analogous

to the proof of the Recursion Theorem.

Proof. We first show that there exists a unique infinite sequence of finite se-

quences hF n 2 Seq.S/ W n 2 Ni D F satisfying

F 0 D h i ; (A)

F nC1 D G
�
F n; n

�
; (B)

where

G
�
F n; n

�
D

˚
F n [

n˝
n; g.F n0 ; : : : ; F

n
n�1/

˛o
if F n is a sequence of length n

h i otherwise.

It is easy to see that G W Seq.S/ �N! Seq.S/.

Let T W .mC 1/! Seq.S/ be an m-step computation based on F0 D h i and G.

Then

T 0 D h i ; and T kC1 D G.T k ; k/ for 0 6 k < m:

Notice that T 2 P .N � Seq.S//. Let

F D
˚
T 2 P .N � Seq.S// W T is an m-step computation for some m 2 N

	
:

Let F D
S

F . Then
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� F is a function. We need only to prove the system of functions F is com-

patible. Let T;U 2 F , DT D m 2 N, DU D n 2 N. Assume, e.g., m 6 n; then

m � n H) m \ n D m, and it suffices to show thatD
T k0 ; : : : ; T

k
k�1

E
D T k D U k D

D
U k0 ; : : : ; U

k
k�1

E
for all k < m. This can be done by induction [Exercise 70]. Surely, T 0 D h i D

U 0. Next let k be such that k C 1 < m, and assume T k D U k . Then

T kC1 D T k [

�D
k; g.T k/

E�
D U k [

�D
k; g.U k/

E�
D U kC1:

Thus, T k D U k for all k < m.

� DF D N; RF � Seq.S/. We know that DF D
S˚

DT j T 2 F
	
� N, and

RF � N. To show that DF D N, it suffices to prove that for each n 2 N

there is an n-step computation T . We use the Induction Principle. Clearly,

T D f
˝
0; h i

˛
g is a 0-step computation.

Assume that T is an n-step computation. Then the following function TC on

.nC 1/C 1 is an .nC 1/-step computation:
˚
T kC D T

k ; if k 6 n
T nC1C D T n [

˚
hn; g.T n/i

	
:

We conclude that each n 2 N is in the domain of some computation T 2 F ,

so N �T2F DT D DF .

� F satisfies condition (A) and (B). Clearly, F0 D h i since T 0 D h i for all T 2

F . To show that FnC1 D G .Fn; n/ for any n 2 N, let T be an .n C 1/-step

computation; then T k D Fk for all k 2 DT , so FnC1 D T nC1 D G .T n; n/ D

G .Fn; n/.

Let H W N! Seq.S/ be such that

H0 D h i ; (A0)

and

HnC1 D G .Hn; n/ 8 n 2 N: (B0)

We show that Fn D Hn, 8 n 2 N, again using induction. Certainly F0 D H0.

If Fn D Hn, then FnC1 D G .Fn; n/ D G .Hn; n/ D HnC1; therefore, F D H , as

claimed.

Now we can define a function f by

f D
[
n2N

F n: ut
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I Exercise 75 (3.3.4). Derive the “parametric” version of the Recursion Theo-

rem: Let a W P ! A and g W P � A � N ! A be functions. There exists a unique

function f W P �N! A such that

a. f .p; 0/ D a.p/ for all p 2 P ;

b. f .p; nC 1/ D g
�
p; f .p; n/; n

�
for all n 2 N and p 2 P .

Proof. Define G W AP �N! AP by

G.x; n/.p/ D g.p; x.p/; n/

for x 2 AP and n 2 N. Define F W N! AP by recursion:

F0 D a 2 A
P ; FnC1 D G.Fn; n/: (3.1)

Then, by the Recursion Theorem, there exists a unique F W N ! AP satisfying

(3.1). Now let f .p; n/ D Fn.p/. Then

� f .p; 0/ D F0.p/ D a.p/, and

� f .p; nC 1/ D FnC1.p/ D G.Fn; n/.p/ D g.p; Fn.p/; n/ D g.p; f .p; n/; n/. ut

I Exercise 76 (3.3.5). Prove the following version of the Recursion Theorem:

Let g be a function on a subset of A�N into A, a 2 A. Then there is a unique

sequence f of elements of A such that

a. f0 D a;

b. fnC1 D g.fn; n/ for all n 2 N such that .nC 1/ 2 Df ;

c. f is either an infinite sequence or f is a finite sequence of length k C 1 and

g.fk ; k/ is undefined.

Proof. Let xA D A [ fxag where xa … A. Define xg W xA �N! xA as follows:

xg .x; n/ D

˚
g.x; n/ if defined

xa otherwise.
(3.2)

Then, by the Recursion Theorem, there exists a unique infinite sequence
xf W N! xA such that

xf0 D a; xfnC1 D xg. xfn; n/:

If xf` D xa for some ` 2 N, consider xf � ` for the least such `. ut

I Exercise 77 (3.3.6). Prove: If X � N, then there is a one-to-one (finite or

infinite) sequence f such that Rf D X .

Proof. Define g W X �N! X by

g.x; n/ D minfy 2 X W y > xg:
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Let a D minX . Then, by Exercise 76, there exists a unique function f satisfying

f0 D a and fnC1 D g.fn; n/.

For every m 2 N, we have fmC1 > fm C 1 > fm; hence, f is injective. It

follows from the previous exercise that f is surjective. ut

3.4 Arithmetic of Natural Numbers

I Exercise 78 (3.4.1). Prove the associative low of addition: .k C m/ C n D

k C .mC n/ for all k;m; n 2 N.

Proof. We use induction on n. So fix k;m 2 N. If n D 0, then

.k Cm/C 0 D k Cm;

and

k C .mC 0/ D k Cm:

Assume that .k Cm/C n D k C .mC n/ and consider nC 1:

.k Cm/C .nC 1/ D Œ.k Cm/C n�C 1

D Œk C .mC n/�C 1

D k C Œ.mC n/C 1�

D k C ŒmC .nC 1/�: ut

I Exercise 79 (3.4.2). If m; n; k 2 N, then m < n if and only if mC k < nC k.

Proof. We first need to prove the following proposition: for any m; n 2 N,

m < n () mC 1 < nC 1: (3.3)

The “H)“ half has been proved in Exercise 60, so we need only to show the

“(H” part. Assume that mC 1 < nC 1. Then m < mC 1 6 n. Hence, m < n.

For the “H)” half we use induction on k. Consider fixedm; n 2 N withm < n.

Clearly, m < n () mC 0 < nC 0. Assume that m < n H) mCk < nCk. Then

by (3.3), .mC k/C 1 < .nC k/C 1, i.e., mC .k C 1/ < nC .k C 1/.

For the “(H” half we use the trichotomy law and the “H)” half. If m C

k < n C k, then we cannot have m D n (lest n C k < n C k) nor n < m (lest

nC k < mC k < nC k). The only alternative is m < n. ut

I Exercise 80 (3.4.3). If m; n 2 N then m 6 n if and only if there exists k 2 N

such that n D mC k. This k is unique, so we can denote it n �m, the difference

of n and m.

Proof. For the “H)” half we use induction on n. If n D 0, the proposition

trivially hods since there is no natural number m < 0. Assume that m < n

implies that there exists a unique km;n 2 N such that m C km;n D n. Now
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consider nC 1. If m < nC 1, then m D n or m < n. If m D n, let km;nC1 D 1 and

so mC km;nC1 D nC 1; if m < n, then by the induction hypothesis, there exists

a unique km;n 2 N such that mC km;n D n. Let km;nC1 D km;n C 1. Then

mC km;nC1 D mC .km;n C 1/ D .mC km;n/C 1 D nC 1:

For the “(H” half we use induction on k. If k D 0, it is obvious that m D n.

Now assume that m C k D n implies that m 6 n. Let us suppose that for all

m; n 2 N there exists a unique k C 1 such that m C .k C 1/ D n. Then by

Exercise 79 we have

0 < k C 1 H) mC 0 < mC .k C 1/

H) m < n: ut

I Exercise 81 (3.4.4). There is a unique function ? (multiplication) from N �

N! N such that

m ? 0 D 0 for all m 2 NI

m ? .nC 1/ D m ? nCm for all m; n 2 N:

Proof. We use the parametric version of the Recursion Theorem. Let a W N !

N be defined as a.p/ D 0, and g W N�N�N! N be defined as g.p; x; n/ D xCp.

Then, there exists a unique function ? W N! N such that

m ? 0 D a.m/ D 0;

and

m ? .nC 1/ D g.m;m ? n; n/ D m ? nCm: ut

I Exercise 82 (3.4.5). Prove that multiplication is commutative, associative,

and distributive over addition.

Proof. (� is commutative) We first show that 0 commutes by showing 0 �m D 0

(since m � 0 D 0) for all m 2 N. Clearly, 0 � 0 D 0, and if 0 �m D 0, then

0 � .mC 1/ D 0 �mC 0 D 0:

Let us now assume that n commutes, and let us show that nC 1 commutes.

We prove, by induction on m, that

m � .nC 1/ D .nC 1/ �m for all m 2 N: (3.4)

If m D 0, then (3.4) holds, as we have already shown. Thus let us assume that

(3.4) holds for m, and let us prove that

.mC 1/ � .nC 1/ D .nC 1/ � .mC 1/: (3.5)

We derive (3.5) as follows:
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.mC 1/ � .nC 1/ D Œ.mC 1/ � n�C .mC 1/ D Œn � .mC 1/�C .mC 1/

D .n �mC n/C .mC 1/

D .n �mCm/C .nC 1/

D .m � nCm/C .nC 1/

D m � .nC 1/C .nC 1/

D .nC 1/ �mC .nC 1/

D .nC 1/ � .mC 1/:

(� is distributive over addition) We show that for all m; n; p 2 N,

m � .nC p/ D m � nCm � p: (3.6)

Fix m; n 2 N. We use induction on p. It is clear that m �.nC0/ D m �n D m �nC0 D

m � nCm � 0. Now assume that (3.6) holds for p, and let us consider p C 1:

m � ŒnC .p C 1/� D m � Œ.nC p/C 1�

D m � .nC p/Cm

D m � nCm � p Cm

D m � nC .m � p Cm/

D m � nCm � .p C 1/:

(� is associative) Fix m; n 2 N. We use induction on p. Clearly, m � .n � 0/ D

m � 0 D 0, and .m � n/ � 0 D 0 as well. Now suppose that

m � .n � p/ D .m � n/ � p:

Then

m � Œn � .p C 1/� D m � .n � p C n/

D m � .n � p/Cm � n

D .m � n/ � p Cm � n

D .m � n/ � .p C 1/: ut

I Exercise 83 (3.4.6). Ifm; n 2 N and k > 0, thenm < n if and only ifm�k < n�k.

Proof. For the “H)” half we fix m; n 2 N and use induction on k. Clearly,

m � 1 < n � 1 since

m � 1 D m � .0C 1/ D m � 0Cm D m;

and similarly for n � 1. Let us assume that m < n implies m � k < n � k with k > 0,

and let us consider k C 1:
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m � .k C 1/ D m � k Cm

< n � k Cm

< n � k C n

D n � .k C 1/;

where the inequalities follow from Exercise 79.

The other half then follows exactly as in Exercise 79. ut

I Exercise 84 (3.4.7). Define exponentiation of nature numbers as follows:

m0 D 1 for all m 2 N (in particular, 00 D 1)I

mnC1 D mn �m for all m; n 2 N (in particular, 0n D 0 for n > 0):

Prove the usual laws of exponents.

Proof. We show that mnCp D mn �mp for all m; n; p 2 N using induction on p.

It is evident that

mnC0 D mn D mn � 1 D mn �m0;

so let us assume mnCp D mn �mp and consider p C 1:

mnC.pC1/ D m.nCp/C1

D mnCp �m

D .mn �mp/ �m

D mn � .mp �m/

D mn �mpC1: ut

3.5 Operations and Structures

I Exercise 85 (3.5.1). Which of the following sets are closed under operations

of addition, subtraction, multiplication, and division of real number?

a. The set of all positive integers.

b. The set of all integers.

c. The set of all rational numbers.

d. The set of all negative rational numbers.

e. The empty set.

Solution. See the following table:
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C � � division of real numbers

(a) Yes No Yes No

(b) Yes Yes Yes No

(c) Yes Yes Yes No

(d) Yes No Yes No

(e) Yes Yes Yes Yes

ut

I Exercise 86 (3.5.4). Let A ¤ ¿, B D P .A/. Show that .B;[B ;\B/ and

.B;\B ;[B/ are isomorphic structures.

Proof. Define a function h W B ! B as h.x/ D B X x. It is evident that h is

injective. To see h is surjective, notice that if y 2 B , then y � A and so AXy 2 B ;

hence h.A X y/ D y.

Since B D P .A/, both [B and \B are well defined. For all x; y 2 B ,

h.x [B y/ D B X .x [B y/ D .B X x/ \B .B X y/ D h.x/ \B h.y/;

and similarly, h.x \B y/ D h.x/ [B h.y/. ut

I Exercise 87 (3.5.5). Refer to Example 5.7 for notation.

a. There is a real number a 2 A such that aCa D a (namely, a D 0). Prove from

this that there is a0 2 A0 such that a0 � a0 D a0. Find this a0.

b. For every a 2 A there is b 2 A such that aCb D 0. Show that for every a0 2 A0

there is b0 2 A0 such that a0 � b0 D 1. Find this b0.

Proof. It is from Example 5.7 that .A;6A;C/ Š .A0;6A0 ;�/, and the isomor-

phism h W A! A0 is h.x/ D ex .

(a) If aC a D a, then

h.aC a/ D eaCa D ea � ea D ea:

Hence, there exists a0 D ea D e0 D 1 such that a0 � a0 D a0.

(b) For every a0 2 A0, there exists a unique a 2 A such that h.a/ D a0. Let

b 2 A such that aC b D 0. Then

h.aC b/ D h.a/ � h.b/ D a0 � h.b/ D e0 D 1:

Hence, for every a0 2 A0, there exists b0 D h.b/ such that a0 � b0 D 1. ut

I Exercise 88 (3.5.6). Let ZC and Z� be, respectively, the sets of all positive

and negative integers. Show that .ZC; <;C/ is isomorphic to .Z�; >;C/ (where

< is the usual ordering of integers).

Proof. Define h W ZC ! Z� by letting h.z/ D �z. Then h is bijective. Let

z1; z2 2 ZC. Then z1 < z2 iff �z1 > �z2 iff h.z1/ > h.z2/. It is evident that
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both operations on ZC and Z� are well defined, and h.z1 C z2/ D �.z1 C z2/ D

.�z1/C .�z2/ D h.z1/C h.z2/. Thus, .ZC; <;C/ Š .Z�; >;C/. ut

I Exercise 89 (3.5.14). Construct the sets C0, C1, C2, and C3 in Theorem 5.10

for

a. A D .R; S/ and C D f0g.

b. A D .R;C;�/ and C D f0; 1g.

Proof. (a) C0 D C D f0g, C1 D C0[SŒC0� D f0g[f1g D f0; 1g, C2 D C1[SŒC1� D

f0; 1g [ f1; 2g D f0; 1; 2g, and C3 D C2 [ SŒC2� D f0; 1; 2g [ f1; 2; 3g D f0; 1; 2; 3g.

(b) C0 D C D f0; 1g, C1 D C0 [CŒC 20 � [ �ŒC
2
0 � D f0; 1g [ f0; 1; 2g [ f�1; 0; 1g D

f�1; 0; 1; 2g, C2 D C1 [ CŒC
2
1 � [ �ŒC

2
1 � D f�1; 0; 1; 2g [ f�2;�1; 0; 1; 2; 3; 4g [

f�3;�2;�1; 0; 1; 2; 3g D f�3;�2;�1; 0; 1; 2; 3; 4g, and C3 D C2 [CŒC
2
2 � [ �ŒC

2
2 � D

f�7;�6; � � � ; 7; 8g. ut





4
FINITE, COUNTABLE, AND UNCOUNTABLE SETS

4.1 Cardinality of Sets

I Exercise 90 (4.1.1). Prove Lemma 1.5.

a. If jAj 6 jBj and jAj DjC j, then jC j 6 jBj.

b. If jAj 6 jBj and jBj DjC j, then jAj 6 jC j.

c. jAj 6 jAj.

d. If jAj 6 jBj and jBj 6 jC j, then jAj 6 jC j.

Proof. (a) If jAj D jC j, then jC j D jAj, and so there is a bijection f W C ! A.

SincejAj 6 jBj, there is an injection g W A! B . Then gBf W C ! B is an injection

and so jC j 6 jBj.

(b) Since jAj 6 jBj, there is a bijection g W A ! Rg , where Rg � B is the image

of A under g. Since jBj D jC j, there is a bijection f W B ! C . Let h´ f�Rg be

the restriction of f on Rg . Let D0 ´ Rh � C . Then h W Rg ! D0 is a bijection.

To prove jAj 6 jC j, consider h Bg W A! D0. This is a one-to-one correspondence

from A to D0 � C .

(c) This claim follows two facts: (i) IdA is a one-to-one mapping of A onto A,

and (ii) A � A.

(d) Since jAj 6 jBj, there is a bijection f W A ! Rf , where Rf � B . Since jBj 6
jC j, there is a bijection g W B ! Rg , where Rg � C . Let h ´ g� Rf . Then

h B f W A! C is a injection and so jAj 6 jC j. ut

I Exercise 91 (4.1.2). Prove

a. If jAj < jBj and jBj 6 jC j, then jAj < jC j.

b. If jAj 6 jBj and jBj < jC j, then jAj < jC j.

Proof. (a) jAj < jBj means jAj 6 jBj and jAj ¤ jBj. We thus have jAj 6 jC j by

Exercise 90 (d). If jAj D jC j, then jBj 6 jAj by Exercise 90 (b). But then jAj D jBj
by the Cantor-Bernstein Theorem. A contradiction.

45
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(b) jBj < jC jmeansjBj 6 jC j andjBj ¤jC j. We thus havejAj 6 jC j by Exercise 90

(d). If jAj D jC j, then jC j 6 jBj by Exercise 90 (a). But then jBj D jC j by the

Cantor-Bernstein Theorem. A contradiction. ut

I Exercise 92 (4.1.3). If A � B , then jAj 6 jBj.

Proof. Just consider IdA. This is an embedding on B , and so jAj 6 jBj. ut

I Exercise 93 (4.1.4). Prove:

a. jA � Bj DjB � Aj.

b. j.A � B/ � C j DjA � .B � C/j.

c. jAj 6 jA � Bj if B ¤ ¿.

Proof. (a) Let f W .a; b/ 7! .b; a/ for all .a; b/ 2 A � B . It is easy to see f is a

function. To see f is injective, let .a1; b1/ ¤ .a2; b2/. Then f .a1; b1/ D .b1; a1/ ¤

.b2; a2/ D f .a2; b2/. To see f is surjective, let .b; a/ 2 B � A. There must exist

.a; b/ 2 A�B such that f .a; b/ D .b; a/. We thus proved that f W A�B ! B �A

is bijective; consequently, jA � Bj DjB � Aj.

(b) Remember that .A � B/ � C ¤ A � .B � C/ [see Exercise 26 (b)], but as we

are ready to prove, these two sets are equipotent. Let

f W
�
.a; b/; c

�
7!
�
a; .b; c/

�
; 8

�
.a; b/; c

�
2 .A � B/ � C:

With the same logic as in (a), we see that f is bijective and so j.A � B/ � C j D

jA � .B � C/j.

(c) If B ¤ ¿, we can choose some b 2 B . Let f W a 7! .a; b/ for all a 2 A. Then

f W A! A � b � A � B is bijective, and so jAj 6 jA � Bj if B ¤ ¿. ut

I Exercise 94 (4.1.5). Show that jS j 6 jP .S/j.

Proof. If a 2 S , then fag � S ; hence, fag 2 P .S/ for each a 2 S . Define

A D
˚
fag W a 2 S

	
:

It is clear that A � P .S/. Consider the embedding f W a 7! fag for all a 2 S .

Then f W S ! A is bijective, and so jS j 6 jP .S/j.
In fact, jS j < jP .S/j. To prove this, we need the following claim.

Claim. There is a one-to-one mapping from A ¤ ¿ to B iff there is a mapping

from B onto A.

Proof. If f W A! B is one-to-one, and Rf D B
� � B , then let

g.x/ D

˚
f �1.x/ if x 2 B�

a0 if x 2 B X B�, where a0 2 A.
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Then this g is a mapping from B onto A.

Conversely, let g W B ! A be a mapping of B onto A. The relation “x � y

if g.x/ D g.y/” is an equivalence relation on B [See Exercise 42, p. 22]. Let

h be a choice function on the set of equivalence classes, i.e., if Œx�� is an

equivalence class, then h
�
Œx��

�
is an element of Œx��. It is clear that the map

f .x/ D
�
h B g�1

�
.x/ is a one-to-one mapping of A into B .

To verifyjS j < jP .S/j, we want to show that there is no mapping from S onto

P .S/ [note that P .S/ ¤ ¿ since ¿ 2 P .S/ at least; hence here P .S/ takes the

role of A in the above claim]. Let f W S ! P .S/ be any mapping. We have to

show that f is not onto P .S/. Let

A´
˚
a 2 S W a … f .a/

	
2 P .S/:

[Notice that by the Axiom Schema of Comprehension, A is a subset of S , and

so is an element of P .S/ by the Axiom of Power Set.] We claim that A does not

have a preimage under f . In fact, suppose that is not the case, and f .a0/ D A

with some a0 2 S . Then, because A � S , there are two possibilities:

� a0 2 A, i.e., a0 2 f .a0/ which is not possible for then a0 cannot be in A by

the definition of A.

� a0 … A, which is gain not possible, for then a0 … f .a0/, so a0 should belong

to A.

Thus, in either case we have arrived at a contradiction, which means that a0
with the property f .a0/ D A does not exist. ut

I Exercise 95 (4.1.6). Show that jAj 6
ˇ̌̌
AS
ˇ̌̌

for any A and any S ¤ ¿.

Proof. For every a 2 A, we construct a constant function fa W S ! A by letting

fa.s/ D a for all s 2 S . Now F ´ ffa W a 2 Ag � AS . Let g W a 7! fa. It is easy

to see that g is surjective. To see g is injective, let a; a0 2 A and a ¤ a0; then

g.a/ D fa ¤ fa0 D g
�
a0
�
. This proves that jAj D jF j; that is, jAj 6

ˇ̌̌
AS
ˇ̌̌
, where

S ¤ ¿. ut

I Exercise 96 (4.1.7). If S � T , then
ˇ̌̌
AS
ˇ̌̌
6
ˇ̌̌
AT
ˇ̌̌
; in particular, jAnj 6 jAmj if

n 6 m.

Proof. For any f 2 AS , we define a corresponding function gf 2 AT as follows

gf .x/ D

˚
f .x/ if x 2 S

a0 if x 2 T X S , where a0 2 A:

Then B ´
n
gf 2 A

T W f 2 AS
o
� AT . Hence, we have a bijection AS ! B . If

n 6 m, then either n D m or n 2 m. Therefore, jAnj 6 jAmj if n < m. ut

I Exercise 97 (4.1.8). jT j 6
ˇ̌̌
ST
ˇ̌̌

if jS j > 2.
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Proof. Since jS j > 2, we can pick u; v 2 S with u ¤ v. For any t 2 T , define a

function ft 2 ST as follows

ft .x/ D

˚
u if x D t

v if x ¤ t:

Notice that A´
n
ft 2 S

T W t 2 T
o
� ST . Then we can define a function g W T !

A as g.t/ D ft . It is clear g is a one-to-one mapping from T onto B ; therefore,

jT j 6
ˇ̌̌
ST
ˇ̌̌
. ut

I Exercise 98 (4.1.9). If jAj 6 jBj and if A is nonempty then there exists a

mapping f of B onto A.

Proof. jAj 6 jBj implies that there is a one-to-one correspondence f from

A ¤ ¿ onto f ŒA� � B . Define g W B ! A as follows:

g.x/ D

˚
f �1.x/ if x 2 f ŒA�

a0 if x 2 B X f ŒA�;

where a0 2 A. See also the claim in Exercise 94. ut

(For Exercise 99–Exercise 101) Let F be a function on P .A/ into P .A/. A

set X � A is called a fixed point of F if F.X/ D X . The function F is called

monotone if X � Y � A implies F.X/ � F.Y /.

I Exercise 99 (4.1.10). Let F W P .A/! P .A/ be monotone. Then F has a fixed

point.

Proof. Let T D fX � A W F.X/ � Xg. Note that T ¤ ¿ since, e.g., A 2 T . Now

let xX D
T

T and so xX � X for any X 2 T . Since F is monotone, we have

F. xX/ � F.X/ � X for every X 2 T . Then

F
�
xX
�
� xX: (4.1)

Hence, xX 2 T .

On the other hand, (4.1) and the monotonicity of F implies that

F

�
F
�
xX
��
� F

�
xX
�
: (4.2)

But (4.2) implies that F
�
xX
�
2 T , too. Then, by the definition of xX , we have

xX � F
�
xX
�
: (4.3)

Therefore, (4.1) and (4.3) imply that F
�
xX
�
D xX , i.e., xX is a fixed point of F . ut
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I Exercise 100 (4.1.11). Use Exercise 99 to give an alternative proof of the

Cantor-Bernstein Theorem.

A
B

A1

Figure 4.1. Cantor-Bernstein Theorem

Proof. We use Exercise 99 to prove Lemma 4.1.7: If A1 � B � A and jA1j DjAj,

then jBj DjAj. Let F W P .A/! P .A/ be defined by

F.X/ D .A X B/ [ f ŒX�;

where f W A ! A1 is a bijection from A onto A1. Then F is monotone since f

is, and so there exists a fixed point C � A of F such that

C D .A X B/ [ f ŒC �:

Let D D A X C . Define a function g W A! B as

g.x/ D

˚
f .x/; if x 2 C

x; if x 2 D:

We now show that g is bijective.

g is surjective We have

Rg D f ŒC � [D D f ŒC � [ .A X C/ D f ŒC � [
n
A X

�
.A X B/ [ f ŒC �

�o
D f ŒC � [

�
.A \ B/ \ f c ŒC �

�
D f ŒC � [

�
B \ f c ŒC �

�
D f ŒC � [ B

D B;

where the last equality holds since f ŒC � � A1 � B [remember that f W A $

A1]. Thus, g is surjective indeed.
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g is injective Both g � C and g � D are injective functions, so we need only

to show f ŒC � \D D ¿. This holds because

f ŒC � \D D f ŒC � \
�
B \ f c ŒC �

�
D ¿:

Therefore, g W A! B is bijective, and so jBj DjAj. ut

I Exercise 101 (4.1.12). Prove that xX in Exercise 99 is the least fixed point of

F , i.e., if F.X/ D X for some X � A, then xX � X .

Proof. Notice that if F.X/ D X , then F.X/ � X , and so X 2 T . Then we obtain

the conclusion just because xX D
T

T . ut

(For Exercise 102 and Exercise 103) A function F W P .A/! P .A/ is continu-

ous if

F

 [
i2N

Xi

!
D

[
i2N

F .Xi /

holds for any nondecreasing sequence of subsets of A. [hXi W i 2 Ni is non-

decreasing if Xi � Xj holds whenever i 6 j .]

I Exercise 102 (4.1.13). Prove that F used in Exercise 100 is continuous.

Proof. Let hXi W i 2 Ni � P .A/ be a nondecreasing sequence of A. Then

F

0@[
i2N

Xi

1A D .A X B/ [ f
24[
i2N

Xi

35 D .A X B/ [
24[
i2N

f ŒXi �

35
D

[
i2N

�
.A X B/ [ f ŒXi �

�
D

[
i2N

F .Xi / : ut

I Exercise 103 (4.1.14). Prove that if xX is the least fixed point of a monotone

continuous function F W P .A/ ! P .A/, then xX D
S
i2NXi , where we define

recursively X0 D ¿, XiC1 D F.Xi /.

Proof. We prove this statement with several steps.

(1) We first show that the infinite sequence hXi W i 2 Ni defined by X0 D ¿,

XiC1 D F .Xi / is nondecreasing [hXi W i 2 Ni exists by the Recursion Theorem].

We use the Induction Principle to prove this property. Let P .x/ denote “Xx �

XxC1”. Then

� P .0/ holds because X0 D ¿.

� Assume that P .n/ holds, i.e., Xn � XnC1. We need to show P .nC 1/. Notice

that

X.nC1/C1 D F .XnC1/
h1i

� F .Xn/ D XnC1;
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where h1i holds because Xn � XnC1 by P .n/ and since F is monotone. We

thus prove P .nC 1/

Therefore, by the Induction Principle, Xn � XnC1, for any n 2 N. Then by

Exercise 72, Xi � Xj holds whenever i 6 j , i.e., hXi W i 2 Ni is a nondecreasing

infinite sequence.

(2) We now show
S
i2NXi is a fixed point of F . Since F is continuous and

hXi W i 2 Ni is nondecreasing, we have

F

0@[
i2N

Xi

1A D [
i2N

F .Xi / D F .X0/ [ F .X1/ [ � � � D ¿ [ F .X0/ [ F .X1/ � � �

D X0 [X1 [X2 [ � � �

D

[
i2N

Xi I

therefore, xX ´
S
i2NXi is a fixed point of F .

(3) To see xX is the least fixed point of F , let X be any fixed point of F , that is,

F.X/ D X . Then, since ¿ � X , we have F.¿/ � F.X/ D X as F is monotone

and X is a fixed point of F . Furthermore, X1 ´ F.¿/ � X means that X2 D

F .X1/ � F .X/ D X . With this process, we have XiC1 D F .Xi / � X . Therefore,
xX D

S
i2NXi � X for any fixed point X of F ; that is, xX is the least fixed point

of F .

(4) Till now, we have just proved that xX D
S
i2NXi is a least fixed point of F ,

but the exercise asks us to prove the inverse direction. However, that direction

must hold because there is only one least element in the set of all fixed points

of F . ut

4.2 Finite Sets

I Exercise 104 (4.2.1). If S D fX0; : : : ; Xn�1g and the elements of S are mutu-

ally disjoint, then
ˇ̌S

S
ˇ̌
D
Pn�1
iD0 jXi j.

Proof. We use the Induction Principle to prove this claim. The statement

is true if jS j D 0. Assume that it is true for all S with jS j D n, and let

S D fX0; : : : ; Xn�1; Xng be a set with n C 1 elements, where each Xi 2 S is

finite, and the elements of S are mutually disjoint. By the induction hypothe-

sis, j
Sn�1
iD1 Xi j D

Pn�1
iD0 jXi j, and we have

jS j D

ˇ̌̌̌
ˇ̌
0@n�1[
iD1

Xi

1A [Xn
ˇ̌̌̌
ˇ̌ h1iD

ˇ̌̌̌
ˇ̌n�1[
iD1

Xi

ˇ̌̌̌
ˇ̌CjXi j h2iD n�1X

iD1

jXi j CjXnj D

nX
iD1

jXi j ;

where h1i is from Theorem 4.2.7, and h2i is from the induction hypothesis. ut
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I Exercise 105 (4.2.2). If X and Y are finite, then X �Y is finite, and jX � Y j D

jX j �jY j.

Proof. Let X D fx0; : : : ; xm�1g, and let Y D fy0; : : : ; yn�1g, where hx0; : : : ; xm�1i
and hy0; : : : ; yn�1i are injective finite sequences. Then

X � Y D
˚
.x; y/ W x 2 X and y 2 Y

	
D

[
x02X

˚
.x0; y/ W y 2 Y

	
:

Note that
˚
.x0; y/ W y 2 Y

	
is finite for a fixed x0 2 X since Y is finite. Precisely,

since jY j D m, there is a bijective function f W m ! Y , so we can construct

a bijective function g W m !
˚
.x0; y/ W y 2 Y

	
as gi D .x0; fi / for all i 6 m � 1.

Therefore,
ˇ̌
f.x0; y/ W y 2 Y g

ˇ̌
D m for all x0 2 X . Thus, by Theorem 4.2.7, a finite

union of finite sets is finite, we conclude that X � Y is finite, and

jX � Y j D

ˇ̌̌̌
ˇ̌ [
x02X

˚
.x0; y/ W y 2 Y

	ˇ̌̌̌ˇ̌ D X
x02X

ˇ̌̌˚
.x0; y/ W y 2 Y

	ˇ̌̌
D

X
x02X

jY j DjX j �jY j ;

where the second equality comes from Exercise 104 because
˚
.x0; y/ W y 2 Y

	
\˚

.x00; y/ W y 2 Y
	
D ¿ whenever x0; x00 2 X and x0 ¤ x00. ut

I Exercise 106 (4.2.3). If X is finite, then jP .X/j D 2jX j.

Proof. We proceed by induction on the number of elements of X . The state-

ment is true ifjX j D 0: in this case, P .¿/ D f¿g, and sojP .¿/j D 1 D 20. Assume

that it is true for all X with jX j D n. Let Y be a set with n C 1 elements, i.e.,

Y D fy0; : : : ; yn�1; yng. Let X D fy0; : : : ; yn�1g and U D
˚
U W U � Y and yn 2 U

	
.

Then P .Y / D P .X/ [U. Since P .X/ \U D ¿, and jP .X/j D jUj, we have by

Exercise 104

jP .Y /j DjP .X/j CjUj DjP .X/j CjP .X/j D 2n C 2n D 2nC1 D 2jY j: ut

I Exercise 107 (4.2.4). If X and Y are finite, then XY has jX jjY j elements.

Proof. Let X D fx0; : : : ; xm�1g and Y D fy0; : : : ; yng, where hx0; : : : ; xm�1i and

hy0; : : : ; yni are injective finite sequences. We use the Induction Principle on Y

to prove this claim. If jY j D 0, then XY D X¿ D
˚
h i
	
D f¿g, and so

ˇ̌̌
XY

ˇ̌̌
D

1 D jX j0 D jX jjY j. Assume that for any finite X ,
ˇ̌̌
XY

ˇ̌̌
D jX jjY j if jY j D n 2 N.

Now consider a finite set Y with jY j D n C 1. Let Y D fy0; : : : ; yng. Let Y 0 D

fy0; : : : ; yn�1g; that is,
ˇ̌
Y 0
ˇ̌
D n. By the induction hypothesis,

ˇ̌̌
XY
0
ˇ̌̌
D jX jjY

0j
D

mn, i.e., there are mn functions in XY
0

. For any f 2 XY
0

, we can construct a set

F.f / as follows:

F.f /´

�

gi 2 X
Y
W gi .y/ D

˚
f .y/ if y 2 Y 0

xi if y D yn
, and i 6 m � 1

�

:
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It is easy to see that XY D
S
f 2XY 0 F.f /, and jF.f /j DjX j D m. Since

ˇ̌̌
XY
0
ˇ̌̌
D

mn by induction hypothesis, and for each f there is a corresponding set F.f /

with m elements; furthermore, F.f / \ F.f 0/ D ¿ whenever f ¤ f 0. It then

follows from Exercise 104 thatˇ̌̌
XY

ˇ̌̌
D

X
f 2XY 0

jF.f /j D mn �m D mnC1 DjX jjY j : ut

I Exercise 108 (4.2.5). If jX j D n > k D jY j, then the number of one-to-one

functions f W Y ! X is n � .n � 1/ � � � � � .n � k C 1/.

Proof. Let X D fx0; : : : ; xn�1g and Y D fy0; : : : ; yk�1g, where hx0; : : : ; xn�1i and

hy0; : : : ; yk�1i are injective finite sequences. To construct a injective function

f W Y ! X , we just pick k different elements from X . Because there are n � .n�

1/ � � � � � .n� kC 1/ different ways to pick n elements from k > n elements, there

are n � .n � 1/ � � � � � .n � k C 1/ injective functions f W Y ! X . ut

I Exercise 109 (4.2.6). X is finite iff every nonempty system of subsets of X

has a �-maximal elements.

Proof. To see the H) half, let X D fx0; : : : ; xn�1g. If ¿ ¤ U � P .X/, let

m´ max j̊Y j W Y 2 U
	
. Such a set m exists since X is finite, so Y � X is finite

[see Theorem 4.2.4], and P .X/ is finite, too [see Theorem 4.2.8]. Let zY 2 U

satisfying
ˇ̌̌
zY
ˇ̌̌
D m. Now we show zY is a �-maximal element in U. Suppose

not; then there exists Y 0 2 P .X/ such that zY � Y 0, but then
ˇ̌̌
zY
ˇ̌̌
<
ˇ̌
Y 0
ˇ̌
. A

contradiction.

For the (H half, assume that X is infinite, and every nonempty system of

X has a �-maximal element. Let

V ´
˚
Y � X W Y is finite

	
:

However, there are no maximal elements in V . To see this, suppose Y 2 V is a

�-maximal element, then consider Y 0 D Y [ fyg, where y … Y [such a y exists

since X is infinite]; then Y � Y 0 and Y 0 is finite. A contradiction. ut

I Exercise 110 (4.2.7). Use Lemma 2.6 and Exercise 105 and Exercise 107 to

give easy proofs of commutativity and associativity for addition and multiplica-

tion of natural numbers, distributivity of multiplication over addition, and the

usual arithmetic properties of exponentiation.

Proof. As an example, we only prove the commutativity of addition of natural

numbers. Let jX j D m and jY j D n, where X \ Y D ¿ and m; n 2 N. It follows

from Lemma 2.6 that

jX [ Y j DjX j CjY j D mC n:

Similarly, we have jY [X j DjY jCjX j D nCm. Since jX [ Y j DjY [X j, we know

that mC n D nCm. ut
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I Exercise 111 (4.2.8). If A, B are finite and X � A � B , then jX j D
P
a2A ka,

where ka D
ˇ̌
X \ .fag � B/

ˇ̌
.

Proof. Let Ka D X \ .fag �B/ for all a 2 A. We first show
S
a2AKa D X . Since

Ka � X for all a 2 A, we have
S
a2AKa � X . Let .a; b/ 2 X . Then a 2 A and

b 2 B , so there exists Ka such that .a; b/ 2 fag � B ; therefore, .a; b/ 2 X \Ka.

Consequently, X �
S
a2AKa. We then show that Ka \ Ka0 D ¿ if a ¤ a0, but

this is straightforward because .a; b/ ¤ .a0; b0/ for any b; b0 2 B when a ¤ a0.

Now, follows Exercise 104, we have

jX j D

ˇ̌̌̌
ˇ̌[
a2A

Ka

ˇ̌̌̌
ˇ̌ DX

a2A

jKaj D
X
a2A

ka: ut

4.3 Countable Sets

Remark. We verify that the mapping f W N �N! N defined by

f .x; y/ D
.x C y/.x C y C 1/

2
C x

is bijective (see Figure 4.2).

.0; 0/0 .1; 0/2 .2; 0/5 .3; 0/9

.0; 1/1 .1; 1/4 .2; 1/8

.0; 2/3 .1; 2/7

.0; 3/6

Figure 4.2. .x; y/ 7! .xC y/.xC y C 1/=2C x.

Look at the diagonal where x C y D 3 (positions 6, 7, 8, 9 in the diagram).

.xCy/.xCyC1/=2 D 6 is the sum of the first xCy D 3 integers, which accounts

for all previous diagonals (x C y D 0; 1; 2). Then x locates the position within

the diagonal; e.g., x D 0 yields position 6, x D 1 position 7, x D 2 position 8,

x D 3 position 9.

To go backwards, say we are given the integer 11. Since 1C 2C 3C 4 D 10 <

11 < 1C2C3C4C5, we are on the diagonal with xCy D 4; x D 0 gives position

10, x D 1 gives 11. Therefore x D 1, y D 4 � 1 D 3.

I Exercise 112 (4.3.1). Let jA1j DjB1j, jA2j DjB2j. Prove

a. If A1 \ A2 D ¿, B1 \ B2 D ¿, then jA1 [ A2j DjB1 [ B2j.
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b. jA1 � A2j DjB1 � B2j.

c. jSeq.A1/j DjSeq.B1/j.

Remark. See the original exercise. I am afraid that there are some mistakes in

the original one.

Proof. (a) Let f W A1 ! A2, and g W B1 ! B2 be bijections. Define a function

h W .A1 [ A2/! .B1 [ B2/ as follows:

h.a/ D

˚
f .a/ if a 2 A1

g.a/ if a 2 A2:

It can be see that

h D f [ g W .A1 [ A2/! .B1 [ B2/

is bijective since A1 \ A2 D B1 \ B2 D ¿.

(b) Let f and g be defined as in part (a). We define a function h W A1 � A2 !

B1 � B2 as follows:

h.a1; a2/ D
�
f .a1/; g.a2/

�
:

Then h is bijective.

(c) We know that
ˇ̌
An1
ˇ̌
D
ˇ̌
Bn1
ˇ̌
, 8 n 2 N [see Lemma 5.1.6]. Notice that Seq.A1/ DS

n2NA
n, and Seq.B1/ D

S
n2N B

n
1 , and

Am1 \ A
n
1 D ¿; Bm1 \ B

n
1 ;

for any m ¤ n, m; n 2 N [because, say, Am1 and An1 have different domains].

Therefore,

jSeq.A1/j D

ˇ̌̌̌
ˇ̌[
n2N

An1

ˇ̌̌̌
ˇ̌ DX

n2N

ˇ̌
An1
ˇ̌
D

X
n2N

ˇ̌
Bn1
ˇ̌
D

ˇ̌̌̌
ˇ̌[
n2N

Bn1

ˇ̌̌̌
ˇ̌ DjSeq.B1/j : ut

I Exercise 113 (4.3.2). The union of a finite set and a countable set is count-

able.

Proof. Let jAj D m, jBj D @0, and A0 D B X A. Then C D A [ B D A0 [ B .

Since A is finite,
ˇ̌
A0
ˇ̌
D n 6 m. Then there exists two bijections f W n ! A0 and

g W N! B . Define a function h W N! A0 [ B as follows

h.i/ D

˚
f .i/ if i < n

g.i � n/ if i > n:

It is easy to see that h is a bijection; thus jA [ Bj D
ˇ̌
A0 [ B

ˇ̌
D @0. ut

I Exercise 114 (4.3.3). If A ¤ ¿ is finite and B is countable, then A � B is

countable.
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Proof. Write A as A D fa0; : : : ; an�1g, where ha0; : : : ; an�1i is a one-to-one finite

sequence. Since B is countable, there is a bijection f W N! B . Pick ai 2 A and

consider the set

Ai D
˚
.ai ; f .n// W f .n/ 2 B and n 2 N

	
:

Then Ai is countable because there is a bijection g W n 7! .ai ; f .n//.

Since A � B D
S
i2nAi , that is, A � B is the union of a finite system of

countable sets, and so it is countable by Corollary 4.3.6. ut

I Exercise 115 (4.3.4). If A ¤ ¿ is finite, then Seq.A/ is countable.

Proof. It suffices to prove for A D n 2 N. We first show that jSeq.n/j > @0. Be-

cause n ¤ 0, we can pick an i 2 n. Consider the following set of finite sequences

on n:

S D
˚
s0 D h i ; s1 D hii ; s2 D hi; ii ; s3 D hi; i; ii ; : : :

	
:

Define f W N! S by letting f .n/ D sn; then f is bijective. Because S � Seq.n/,

we have @0 DjS j 6 jSeq.n/j.

We then show that Seq.n/ 6 @0. This is simply because Seq.n/ � Seq.N/ and

Seq.N/ D @0.

Now, by Cantor-Bernstein Theorem, jSeq.n/j D @0. ut

I Exercise 116 (4.3.5). Let A be countable. The set ŒA�n D
˚
S � A W jS j D n

	
is

countable for all n 2 N, n ¤ 0.

Proof. It is enough to prove the statement for A D N. We use the Induction

Principle in Exercise 69. ŒA�1 is countable since ŒA�1 D
˚
fag W a 2 A

	
, and we can

define a bijection f W A ! ŒA�1 by letting f .a/ D fag for all a 2 A. Therefore,ˇ̌
ŒA�1

ˇ̌
D jAj D @0. Assume that ŒA�n is countable; particularly, we write ŒA�n

as ŒA�n D fS1; S2; : : :g. We need to prove that ŒA�nC1 is countable, too. For any

Si 2 ŒA�
n, we construct a set

�i D
˚
Si [ fj g W j 2 N X Si

	
:

Notice that Ji D N X Si is countable; in particular, there exists a bijection

g W N! Ji . Define a bijection h W Ji ! �i by letting h.j / D Si [ fj g, and we see

that j�i j D @0.

Since ŒA�nC1 D
S
i2N �i , the set ŒA�nC1 is a countable union of countable sets.

Now for each i 2 N, let ai D hai .n/ W n 2 Ni, where

ai .n/ D Si [ fg.n/g :

Then �i D fai .n/ W n 2 Ng. It follows from Theorem 4.3.9, ŒA�nC1 is countable.

ut
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I Exercise 117 (4.3.6). A sequence hsni
1
nD0 of natural numbers is eventually

constant if there is n0 2 N, s 2 N such that sn D s for all n > n0. Show that the

set of eventually constant sequences of natural numbers is countable.

Proof. Let C be the set of eventually constant sequences of natural numbers.

A generic element of C is
˝
b0; : : : ; bn0�1; s; s; : : :

˛
, where

˝
b0; : : : ; bn0�1

˛
2 Nn0 , and

s 2 N.

Let Seq.N/ be the set of all finite sequences of elements of N. Define

fn0
W C ! Seq.N/ as follows:

f
�˝
b0; : : : ; bn0�1; s; s; : : :

˛�
D
˝
b0; : : : ; bn0�1; s

˛
:

Then f is bijective, and so jC j D @0. ut

I Exercise 118 (4.3.7). A sequence hsni
1
nD0 of natural numbers is (eventually)

periodic if there are n0; p 2 N, p > 1, such that for all n > n0, snCp D sn. Show

that the set of all periodic sequences of natural numbers is countable.

Proof. Let P be the set of all eventually periodic sequences of natural num-

bers. A generic element of P is˝
b0; : : : ; bn0�1; an0

; an0C1; : : : ; an0Cp�1; an0
; an0C1; : : : ; an0Cp�1; an0

; : : :
˛
:

Define f W P ! Seq.N/ by letting

f
�˝
b0; : : : ; bn0�1; an0

; an0C1; : : : ; an0Cp�1; an0
; an0C1; : : : ; an0Cp�1; an0

; : : :
˛�

D
˝
b0; : : : ; bn0�1; an0

; an0C1; : : : ; an0Cp�1

˛
:

f is bijective, and so jP j D @0. ut

I Exercise 119 (4.3.8). A sequence hsni
1
nD0 of natural numbers is called an

arithmetic progression if there is d 2 N such that snC1 D sn C d for all n 2 N.

Prove that the set of all arithmetic progressions is countable.

Proof. Let A be the set of all arithmetic progressions. A generic element of A

is

ha; aC d; aC 2d; aC 3d; : : :i :

Now define a function f W A! N �N by letting

f
�
ha; aC d; aC 2d; : : :i

�
D ha; d i :

f is bijection and so jAj D @0. ut

I Exercise 120 (4.3.9). For every s D hs0; : : : ; sn�1i 2 Seq.N X f0g/, let f .s/ D

p
s0
0 � � �p

sn�1

n�1 , where pi is the i -th prime number. Show that f is one-to-one and

use this fact to give another proof of jSeq.N/j D @0.
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Proof. (i) We use the Induction Principle on n to show that f .s/ ¤ f .s0/,

whereever s; s0 2 Seq.NXf0g/ and s ¤ s0. It is clear that ps00 ¤ p
s0

0

0 if s0 ¤ s00, i.e.,

this claim holds for jsj D 1. Assume which holds for jsj D n. We need to show

it holds for jsj D nC 1.

Suppose jsj D
ˇ̌
s0
ˇ̌
D nC 1 and s ¤ s0, but f .s/ D f .s0/; that is,

p
s0
0 � p

sn�1

n�1 � p
sn
n D p

s0
0

0 � � �p
s0

n�1

n�1 � p
s0n
n : (4.4)

There are two cases make (4.4) hold:

� sn D s0n. In this case, hs0; : : : ; sn�1i ¤
˝
s00; : : : ; s

0
n�1

˛
, and by the inductive hy-

pothesis, ps00 � � �p
sn�1

n�1 ¤ p
s0

0

0 � � �p
s0

n�1

n�1 . Therefore, (4.4) implies that

psnn ¤ p
s0n
n ; (4.5)

but which means that sn ¤ s0n. A contradiction.

� sn ¤ s0n. In this case, (4.5) must hold. Under this case, there are two cases

further:

˘ hs0; : : : ; sn�1i D
˝
s00; : : : ; s

0
n�1

˛
. Then,

p
s0
0 � � �p

sn�1

n�1 D p
s0

0

0 � � �p
s0

n�1

n�1 : (4.6)

However, (4.6) and (4.5) imply that (4.4) fails to hold.

˘ hs0; : : : ; sn�1i ¤
˝
s00; : : : ; s

0
n�1

˛
. In this case, we know by the inductive hy-

pothesis that

p
s0
0 � � �p

sn�1

n�1 ¤ p
s0

0

0 � � �p
s0

n�1

n�1 ; (4.7)

Without loss of generality, we assume that sn < s0n. Then (4.4) implies that

p
s0
0 � � �p

sn�1

n�1 D p
s0

0

0 � � �p
s0

n�1

n�1 � p
s0n�sn
n : (4.8)

But we know from the Unique Factorization Theorem [see, for example,

Apostol 1974] that every natural number n > 1 can be represented as a

product of prime factors in only one way, apart form the order of the

factors. Therefore, (4.8) cannot hold since pn ¤ pi , 8 i 6 n � 1, and

s0n � sn > 0.

(ii) We now show f is indeed onto N X f0; 1g. This is follows the Unique Fac-

torization Theorem again; hence, jSeq.N X 0/j D @0. To prove jSeq.N/j D @0, we

consider the following function g W Seq.N/! N

g.s0/ D f
�
s0 C 1

�
; 8 s0 2 Seq.N/;

where 1 is the finite sequence h1; 1; : : :i which has the same length as s0. Then

g is one-to-one and onto N X f0; 1g, which mean that

jSeq.N/j D @0: ut



SECTION 4.4 LINEAR ORDERINGS 59

I Exercise 121 (4.3.10). Let .S;</ be a linearly ordered set and let hAn W n 2 Ni

be an infinite sequence of finite subsets of S . Then
S1
nD0An is at most countable.

Proof. Because .S;</ is a linearly ordered set, and An � S is finite for all

n 2 N, we can write An as

An D
˚
s0; s1; : : : ; sjAnj�1

	
;

and rank the elements of An as

s0 < s1 < : : : < sjAnj�1:

Then we can construct
˝
an.k/ W k < jAnj � 1

˛
, a unique enumeration of An, by

letting an.k/ D sk . Therefore,
S1
nD0An is at most countable. ut

I Exercise 122 (4.3.11). Any partition of an at most countable set has a set of

representatives.

Proof. Let P be a partition of A. Then there exists an equivalence relation �

on A induced by P . Since A is at most countable, the set of equivalence classes,

A= �D fŒa�� W a 2 Ag, is at most countable. Hence,

A= �D hŒa1��; Œa2��; : : :i ;

and so there is a set of representatives: fa1; a2; : : :g. ut

4.4 Linear Orderings

I Exercise 123 (4.4.1). Assume that .A1; <1/ is similar to .B1;�1/ and .A2; <2/

is similar to .B2;�2/.

a. The sum of .A1; <1/ and .A2; <2/ is similar to the sum of .B1;�1/ and .B2;�2/,

assuming that A1 \ A2 D ¿ D B1 \ B2.

b. The lexicographic product of .A1; <1/ and .A2; <2/ is similar to the lexico-

graphic product of .B1;�1/ and .B2;�2/.

Proof. We use .A;</ Š .B;�/ to denote that .A;</ is similar to .B;�/.

(a) Let .A;</ be the sum of .A1; <1/ and .A2; <2/, and let .B;�/ be the sum of

.B1;�1/ and .B2;�2/. Then both .A;</ and .B;�/ are linearly ordered sets (by

Lemma 4.4.5 and Exercise 49). Because .A1; <1/ Š .B1;�1/, there is an isomor-

phism f1 W .A1; <1/! .B1;�1/; similarly, there is an isomorphism f2 W A2 ! B2

since .A2; <2/ Š .B2;�2/. Define a bijection g W A! B by g D f1 [ f2.

To see a1 < a2 iff g.a1/ � g.a2/, notice that (i) If a1; a2 2 A1, then g.a1/ D

f1.a1/ and g.a2/ D f2.a2/; hence, a1 <1 a2 iff a1 < a2 iff f1.a1/ �1 f1.a2/ iff

g.a1/ � g.a2/. (ii) If a1; a2 2 A2 we get the similarly result. (iii) If a1 2 A1 and

a2 2 A2, then a1 < a2 by the definition of <. Moreover, by the definition of g,
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g.a1/ 2 B1 and g.a2/ 2 B2; then by the definition of �, we have g.a1/ � g.a2/.

For the inverse direction, suppose g.a1/ � g.a2/. However, since a1 2 A1 and

a2 2 A2, we know immediately that a1 < a2 by definition of <. We thus proved

.A;</ Š .B;�/.

(b) Let A D A1 � A2 and B D B1 � B2. We need to show that .A;</ Š .B;�/,

where < and � are the lexicographic orderings of A and B . First notice that

both .A;</ and .B;�/ are linearly ordered sets by Lemma 4.4.6. For any

.a1; a2/ 2 A, let f W A! B be defined as

f .a1; a2/ D
�
f1.a1/; f2.a2/

�
;

where f1 W A1 ! B1 and f2 W A2 ! B2 are isomorphisms. It is easy to see that f

is bijective.

Now let .a1; a2/; .a01; a
0
2/ 2 A. Suppose .a1; a2/ < .a01; a

0
2/; then either a1 <1

a01, or a1 D a01 and a2 <2 a02. In the first case, f1.a1/ �1 f1.a
0
1/, and so

.f1.a1/; f2.a2// � .f1.a
0
1/; f2.a

0
2//; in the second case, f1.a1/ D f1.a

0
1/ and

f2.a2/ �2 f2.a
0
2/ and so .f1.a1/; f2.a2// � .f1.a01/; f2.a

0
2//.

To see the inverse direction, let .f1.a1/; f2.a2// � .f1.a
0
1/; f2.a

0
2//. Then ei-

ther f1.a1/ �1 f1.a01/ or f1 .a1/ D f1.a
0
1/ and f2.a2/ �2 f2.a02/. In the first case,

f1.a1/ �1 f1.a
0
1/ and so a1 <1 a01 and so .a1; a2/ < .a01; a

0
2/; in the second case,

a1 D a
0
1 and a2 <2 a02 and so .a1; a2/ < .a01; a

0
2/. ut

I Exercise 124 (4.4.2). Give an example of linear orderings .A1; <1/ and

.A2; <2/ such that the sum of .A1; <1/ and .A2; <2/ does not have the same

order type as the sum of .A2; <2/ and .A1; <1/ (“addition of order types is not

commutative”). Do the same thing for lexicographic product.

Proof. (i) Let .A1; <1/ D
�
N X f0g ; <�1

�
, and .A2; <2/ D .N; </, where < de-

notes the usual ordering of numbers by size. Then the sum of
�
N X f0g ; <�1

�
and .N; </ is just .Z; </. Particularly, there is no greatest element in .Z; </.

However, there is a greatest element in the sum of .N; </ and
�
N X f0g ; <�1

�
,

namely, �1.

(ii) This is just the case of lexicographic ordering and antilexicographic or-

dering. ut

I Exercise 125 (4.4.3). Prove that the sum and the lexicographic product of

two well-orderings are well-orderings.

Proof. Let .A1; <1/ and .A2; <2/ be two well-ordered sets.

(i) Let A1 \A2 D ¿ and .A;</ be the sum of .A1; <1/ and .A2; <2/. Let B � A

be nonempty. Write B D .B \A1/[ .B \A2/. Let B \A1 D B1 and B \A2 D B2.

Then B1 � A1, B2 � A2, and B1 \ B2 D ¿. There are three cases:

� If B1 ¤ ¿ and B2 ¤ ¿, then B1 has a least element b1, and B2 has a least

element b2. By definition, b1 < b2 and so b1 is the least element of B .

� If B1 ¤ ¿ and B2 D ¿, then B ’s least element is just b1.
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� If B1 D ¿ and B2 ¤ ¿, then B ’s least element is just b2.

(ii) Let < be the lexicographic ordering on A D A1 � A2. Take an arbitrary

nonempty subset C � A. Let C1 be the projection of C on A1. Then C1 ¤ ¿ and

so has a least element yc1. Now take the set fc2 2 A2 W .yc1; c2/ 2 C g. This set is

nonempty hence has a least element yc2. We now show that .yc1; yc2/ is the least

element of C : for every .c1; c2/ 2 C , either yc1 < c1, or yc1 D c1 and yc2 < c2. In

both case, .yc1; yc2/ < .c1; c2/. Thus, .A;</ is well-ordered. ut

I Exercise 126 (4.4.4). If hAi W i 2 Ni is an infinite sequence of linearly ordered

sets of natural numbers and jAi j > 2 for all i 2 N, then the lexicographic order-

ing of�i2NAi is not a well-ordering.

Proof. Because jAi j > 2 for all i 2 N, we can pick a1i 2 Ai , a
2
i 2 Ai , and a1i <

a2i , where < is the usual linear ordering on N. Consider the infinite sequence

ha0; a1; : : :i, where

a0 D
D
a20; a

2
1; a

2
2; a

2
3; a

2
4; : : :

E
;

a1 D
D
a10; a

2
1; a

2
2; a

2
3; a

2
4; : : :

E
;

a2 D
D
a10; a

1
1; a

2
2; a

2
3; a

2
4; : : :

E
;

� � �

In this sequence, anC1 � an by the lexicographic ordering �. More explicitly,

diff .anC1; an/ D n, and anC1.n/ D a1n < a2n D an.n/. Then the set fa0; a1; : : :g
does not have a least element, that is, the lexicographic ordering of�i2NAi

is not well-ordering. ut

I Exercise 127 (4.4.5). Let h.Ai ; <i / W i 2 I i be an indexed system of mutually

disjoint linearly ordered sets, I � N. The relation � on
S
i2I Ai defined by:

a � b iff either a; b 2 Ai and a <i b for some i 2 I or a 2 Ai , b 2 Aj and

i < j (in the usual ordering of natural numbers) is a linear ordering. If all <i
are well-orderings, so is �.

Proof. We first show that � is a linear ordering (compare with Exercise 49).

(Transitivity) Let a; b; c 2
S
i2I Ai with a � b and b � c. If a; b; c 2 Ai for some

i 2 I , then a <i b and b <i c imply that a � c; if a; b 2 Ai , c 2 Aj , and

i < j , then a � c; if a 2 Ai , b; c 2 Aj , and i < j , then a � c. (Asymmetry) Let

a; b 2
S
i2I Ai and a � b. If a; b 2 Ai , then a <i b, which implies that a �i b,

which implies that a Ÿ b; if a 2 Ai , b 2 Aj , and i < j , then, by definition,

a Ÿ b. (Linearity) Given a; b 2
S
i2I Ai , one of the following cases has to occur:

If a; b 2 Ai for some i 2 I , then a; b is comparable since <i is; if a 2 Ai , b 2 Aj ,

and i < j , then a � b; if a 2 Ai , b 2 Aj , and i > j , then b � a.

Now suppose that all <i are well-orderings. Pick an arbitrary nonempty sub-

set A �
S
i2I Ai . For each a 2 A, there exists a unique ia 2 I such that a 2 Aia .

Let
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IA D
˚
i 2 I W a 2 Ai for some a 2 A

	
:

Notice that IA ¤ ¿. Then IA has a least element i 0. Since Ai 0 is also

nonempty, Ai 0 has a least element ai 0 . Hence, ai 0 is the least element of A. ut

I Exercise 128 (4.4.6). Let .Z; </ be the set of all integers with the usual linear

ordering. Let � be the lexicographic ordering of ZN as defined in Theorem 4.4.7.

Finally, let FS � ZN be the set of all eventually constant elements of ZN; i.e.,

hai W i 2 Ni 2 FS iff there exists n0 2 N, a 2 Z such that ai D a for all i > n0

(compare with Exercise 117). Prove that FS is countable and .FS;� \FS2/ is a

dense linear ordered set without endpoints.

Proof. The countability of FS is obtained by a similar proof as in Exercise 117.

It is also easy to see that .FS;� \FS2/ is a linear ordered set without endpoints.

So we just show that it is dense.

Take two arbitrary elements a D hai W i 2 Ni and b D hbi W i 2 Ni in FS, and

assume that a � b. Then there exists n0 2 N such that an0
< bn0

, where n0 is

the least element of diff .a;b/. Define c D hci W i 2 Ni by letting

ci D

˚
ai if i 6 n0
max fai ; big if i > n0:

This infinite sequence c is well-defined since both a and b are eventually con-

stant. Then a � c � b. ut

I Exercise 129 (4.4.7). Let � be the lexicographic ordering of NN (where N

is assumed to be ordered in the usual way) and let P � NN be the set of all

eventually periodic, but not eventually constant, sequences of natural numbers

(see Exercises 117 and 118 for definitions of these concepts). Show that .P;�

\P 2/ is a countable dense linearly ordered set without endpoints.

Proof. It is evident that .P;� \P 2/ is a countable linearly ordered set, so we

focus on density. Take two arbitrary elements a;b 2 NN with a � b. Then

there exists n0 2 N such that an0
< bn0

, where n0 is defined as in the previous

exercise. Define c 2 P as in the previous exercise, we have a � c � b. ut

I Exercise 130 (4.4.8). Let .A;</ be linearly ordered. Define � on Seq.A/ by:

ha0; : : : ; am�1i � hb0; : : : ; bn�1i iff there is k < n such that ai D bi for all i < k

and either ak < bk or ak is undefined (i.e., k D m < n). Prove that � is a linear

ordering. If .A;</ is well-ordered, .Seq.A/;�/ is also well-ordered.

Proof. Transitivity: Let ha0; : : : ; am�1i � hb0; : : : ; bn�1i � hc0; : : : ; c`�1i. Then

there exists k1 < n such that ai D bi for all i < k1 and either ak1
< bk1

or ak1

is undefined. Similarly, there exists k2 < ` such that bi < ci for all i < k2 and

either bk2
< ck2

or bk2
is undefined. Assume that k1 < k2.

� If ai D bi for all i < k1, ak1
< bk1

, bi D ci for all i < k2, and bk2
< ck2

, then

ai D ci for all i < k1, and ak1
< ck1

, i.e., ha0; : : : ; am�1i � hc0; : : : ; c`�1i.
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� If ai D bi , k1 D m < n, bi D ci for all i < k2, and bk2
< ck2

, then ai D bi D ci
for all i < k1, and ak1

is undefined, i.e., ha0; : : : ; am�1i � hc0; : : : ; c`�1i.

� If ai D bi for all i < k1, ak1
< bk1

, bi D ci for all i < k2, and k2 D n < `,

then ai D bi D ci for all i < k1, and ak1
< bk1

D ck1
, i.e., ha0; : : : ; am�1i �

hc0; : : : ; c`�1i.

We can see that ha0; : : : ; am�1i � hc0; : : : ; c`�1i also holds for k1 > k2.
Asymmetry: Follows from definition immediately.

Linearity: Given ha0; : : : ; am�1i ; hb0; : : : ; bn�1i 2 Seq.A/. If m < n, then either

there exists k < m such that ai D bi for all i < k and ak < bk or ak > bk , which

implies that ha0; : : : ; am�1i � hb0; : : : ; bn�1i or ha0; : : : ; am�1i � hb0; : : : ; bn�1i; or

ai D bi for all i < m, which implies that ha0; : : : ; am�1i � hb0; : : : ; bn�1i. All other

cases can be analyzed similarly.

Well-ordering: Let X � Seq.A/ be nonempty, and .A;</ be well-ordered. Let

Bi D fai 2 A W ha0; : : : ; ai ; : : : ; an�1i 2 Xg:

Then Bi � A is nonempty and so has a least element bi . The sequence

hb0; : : : ; b`�1i is the least element of X and so .Seq.A/;�/ is well-ordered. ut

I Exercise 131 (4.4.10). Let .A;</ be a linearly ordered set without endpoints,

A ¤ ¿. A closed interval Œa; b� is defined for a; b 2 A by Œa; b� D fx 2 A W a 6
x 6 bg. Assume that each closed interval Œa; b�, a; b 2 A, has a finite number of

elements. Then .A;</ is similar to the set Z of all integers in the usual ordering.

Proof. Take arbitrary a; b 2 A with a 6 b. Denote Œa; b� as fai0 ; ai1 ; : : : ; aik g

(since it is finite), where ai0 D a and aik D k, with ai0 < � � � < aik . Let

hŒa;b� D
˚
.ai0 ; 0/; .ai1 ; 1/; : : : ; .aik ; k/

	
:

Clearly, h is a partial isomorphism. Now for any c 2 A, either c < a or c > b.

For example, assume that c < a. Let Œc; a� D fcj`
; : : : ; cj0

g, where cj`
D c and

cj0
D a, with cj`

< � � � < cj0
. Let

hŒc;a� D
˚
.cj`

;�`/; : : : ; .cj1
;�1/; .cj0

; 0/
	
:

Let h D
S
a;b2A hŒa;b�. Then h is an isomorphism and so .A;</ Š .Q; </. ut

I Exercise 132 (4.4.11). Let .A;</ be a dense linearly ordered set. Show that

for all a; b 2 A, a < b, the closed interval Œa; b�, as defined in Exercise 131, has

infinitely many elements.

Proof. If Œa; b� has finitely element, then .A;</ Š .Z; </. However, .Z; </ is

not dense. ut

I Exercise 133 (4.4.12). Show that all countable dense linearly ordered sets

with both endpoints are similar.
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Proof. Let .P;�/ and .Q;</ be such two sets. Let hpn W n 2 Ni be an injective

sequence such that P D fpn W n 2 Ng, and let hqn W n 2 Ni be an injective se-

quence such that Q D fqn W n 2 Ng. We also assume that p0 � p1 � � � � � xp and

q0 < q1 < � � � < xq, where xp is the greatest element of P and xq is the greatest

element of Q.

Let h0 W p0 7! q0. Having defined hn W fp0; : : : ; png ! fq0; : : : ; qng, we let

hnC1 W hn [ f.pnC1; qnC1/g. Now let h D
S1
D0 hi . Then h is an isomorphism and

so .P;�/ Š .Q;</. ut

I Exercise 134 (4.4.13). Let .Q; </ be the set of all rational numbers in the

usual ordering. Find subsets of Q similar to

a. the sum of two copies of .N; </;

b. the sum of .N; </ and .N; <�1/;

c. the lexicographic product of .N; </ and .N; </.

Proof. For (a) and (b), we take the subset as Z. For (c), let A D fm � 1=.n C

1/ W m; n 2 N, irreducibleg. We show that A Š N � N. Let h W A ! N � N be

defined as h.m � 1=.nC 1// D .m; n/. It is clear that h is bijective. First assume

that m1 � 1=.n1 C 1/ < m2 � 1=.n2 C 1/. Then it is impossible that m1 > m2; for

otherwise,
1

n1 C 1
�

1

n2 C 1
> m2 �m1 > 1;

which is impossible. If m1 < m2, there is nothing to prove. So assume that

m1 D m2, but then n1 < n2 and hence .m1; n1/ < .m2; n2/. The other hand can

be proved similarly. ut

4.5 Complete Linear Orderings

Remark (p. 87). Let .P;</ be a dense linearly ordered set. .P;</ is complete

iff it does not have any gaps.

Proof. We first show that if .P;</ does not have any gaps, then it is complete.

Suppose .P;</ is not complete, that is, there is a nonempty set S � P bounded

from above, and S does not have a supremum. Let

A D
˚
x 2 P W x 6 s for some s 2 S

	
;

B D
˚
x 2 P W x > s for every s 2 S

	
:

Then .A;B/ is a gap: A ¤ ¿ since S � A, and B ¤ ¿ since S is bounded from

above. Next, for every p 2 P , if p > s for all s 2 S then p 2 B ; if p 6 s for some

s 2 S then p 2 A, i.e., A [ B D P . Finally, A \ B D ¿, and if a 2 A and b 2 B

then there exists s 2 S such that a 6 s < b, i.e., a < b.
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If A has a greatest element, or B has a least element, then A has a supre-

mum, but which means that S has a supremum, too. To see this, let supA D  .

Then  > a for all a 2 A, and if  0 <  , there exists za 2 A such that  0 < za 6  .

Since S � A, we get s 6  for all s 2 S . So we need only to prove that there

exists zs 2 S such that  0 < s 6  . By definition, there exists zs 2 S such that

zs > za; therefore,  0 < za 6 zs 6  implies that  0 < zs 6  since < is transitive.

For the other direction, assume that .P;</ has a gap .A;B/. Then ¿ ¤ A �

P , A is bounded from above (since any element of B is an upper bound of A).

But A does not have a supremum; hence .P;</ is not complete. ut

I Exercise 135 (4.5.1). Prove that there is no x 2 Q for which x2 D 2.

Proof. (See Rudin, 1976, for this exercise and Exercise 136.) If there were such

a x 2 Q, we could write x D m=n, where m and n are integers that are not both

even. Let us assume this is done. Then x2 D 2 implies

m2 D 2n2: (4.9)

This shows that m2 is even. Hence m is even (if m were odd, then m D 2k C 1,

k 2 Z, then m2 D 2
�
2k2 C 2k

�
C 1 is odd), and so m2 is divisible by 4. It follows

that the right side of (4.9) is divisible by 4, so that n2 is even, which implies

that n is even.

The assumption that x2 D 2 holds thus leads to the conclusion that both m

and n are even, contrary to our choice ofm and n. Thus, x2 ¤ 2 for all x 2 Q. ut

I Exercise 136 (4.5.2). Show that .A;B/, where

A D
n
x 2 Q W x 6 0 or .x > 0 and x2 < 2/

o
; B D

n
x 2 Q W x > 0 and x2 > 2

o
;

is a gap in .Q; </.

Proof. To show that .A;B/ is a gap in .Q; </, we need to show (a)–(c) of the

definition hold. Since (a) and (b) are clear [note that
p
2 … Q by Exercise 135],

we need only to verify (c); that is, A does not have a greatest element, and B

does not have a least element.

More explicitly, for every p 2 A we can find a rational q 2 A such that p < q,

and for every p 2 B such that q < p. To to this, we associate with each rational

p > 0 the number

q D p �
p2 � 2

p C 2
D
2p C 2

p C 2
: (4.10)

Then

q2 � 2 D
2.p2 � 2/

.p C 2/2
: (4.11)

� If p 2 A then p2 � 2 < 0, (4.10) shows that q > p, and (4.11) shows that

q2 < 2. Thus q 2 A.
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� If p 2 B then p2 � 2 > 0, (4.10) shows that 0 < q < p, and (4.11) shows that

q2 > 2. Thus q 2 B . ut

I Exercise 137 (4.5.3). Let 0:a1a2a3 � � � be an infinite, but not periodic, decimal

expansion. Let

A D
˚
x 2 Q W x 6 0:a1a2 � � � ak for some k 2 N X f0g

	
;

B D
˚
x 2 Q W x > 0:a1a2 � � � ak for all k 2 N X f0g

	
:

Show that .A;B/ is a gap in .Q; </.

Proof. It is easy to see that A and B are nonempty, disjoint, and A [ B D Q.

Further, if a 2 A and b 2 B , then there exists k 2 N X f0g such that a 6
0:a1a2 � � � ak < b.

If A has a greatest element ˛, then ˛ D 0:a1a2 � � � ak for some k 2 NXf0g. But

˛ < 0:a1a2 � � � ak1 2 A. Similarly, B does not have a least element. ut

I Exercise 138 (4.5.4). Show that a dense linearly ordered set .P;</ is com-

plete iff every nonempty S � P bounded from below has an infimum.

Proof. We first suppose .P;</ is complete. Then by definition, every nonempty

S 0 � P bounded from above has a supremum. Now suppose ¿ ¤ S � S is

bounded from below. Let S 0 be the set of all lower bounds of S . Since S is

bounded from below, S 0 ¤ ¿, and since S 0 consists of exactly those s0 2 P

which satisfy the inequality s0 6 s for every s 2 S , we see that every s 2 S is an

upper bound of S 0. Thus S 0 is bounded above and

˛ D supS 0

exists in P by definition of completion. We show that indeed ˛ D infS .

� If  < ˛ then  is not an upper bound of S 0, hence  … S . It follows that

˛ 6 s for every s 2 S since s is an upper bound of S 0. Thus ˛ is an lower

bound of S , i.e., ˛ 2 S 0.

� If ˛ < ˇ then ˇ … S 0, since ˛ is an upper bound of S 0.

We have shown that ˛ 2 S 0 but ˇ … S 0 if ˇ > ˛. In other words, ˛ is a lower

bound of S , but ˇ is not if ˇ > ˛. This means that ˛ D infS .

With the same logic, we can prove the inverse direction. Suppose every

nonempty S � P bounded from below has an infimum. Let ¿ ¤ S 0 � P is

an arbitrary set bounded from above. We want to show that S 0 has a supre-

mum. Let S be the set of all upper bounds of S 0. Since S 0 is bounded above,

S ¤ ¿, and since S consists of exactly those s 2 P which satisfy the inequal-

ity s > s0 for every s0 2 S 0, we see that every s0 2 S 0 is an lower bound of S .

Therefore, S is bounded from below and

ˇ D infS
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exists in P . We show that ˇ D supS 0, too.

� As before, we first show ˇ 2 S . If  > ˇ, then  is not an lower bound of S ,

hence  … S 0. It follows that s0 6 ˇ for every s0 2 S 0; that is, ˇ is an upper

bound of S 0, so ˇ 2 S .

� If ˛ < ˇ then ˛ … S , since ˇ is an upper bound of S 0.

We have shown that ˇ 2 S but ˛ … S if ˛ < ˇ. Therefore, ˇ D supS 0. ut

I Exercise 139 (4.5.5). Let D be dense in .P;</, and let E be dense in .D;</.

Show that E is dense in .P;</.

Proof. It seems that the definition of denseness in the Theorem 4.5.3(c) is

wrong. We use the definition from Jech (2006):

Definition 4.1. a. A linear ordering .P;</ is dense if for all a < b there exists

a c such that a < c < b.

b. A set D � P is a dense subset if for all a < b in P there exists a d 2 D such

that a < d < b.

Let p1; p2 2 P and p1 < p2. Since D is dense in .P;</, there exists d1 2 D

such that

p1 < d1 < p2: (4.12)

Because d1 2 D � P , we know there exists a d2 2 D such that

d1 < d2 < p2: (4.13)

Because E is dense in .D;</, there exists e 2 E such that

d1 < e < d2: (4.14)

Now combine (4.12)—(4.14) and adopt the fact that < is linear, we conclude

that for any p1 < p2, there exists e 2 E such that p1 < e < p2; that is, E is

dense in .P;</. ut

I Exercise 140 (4.5.8). Prove that the set R X Q of all irrational numbers is

dense in R.

Proof. We want to show that for any a; b 2 R and a < b, there is an x 2 R XQ

such that a < x < b. We can chose such an x as follows:

x D

˚
.aC b/=2 if x 2 R XQ

.aC b/=
p
2 otherwise:

ut
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4.6 Uncountable Sets

I Exercise 141 (4.6.1). Use the diagonal argument to show that NN is uncount-

able.

Proof. Consider any infinite sequence
D
an 2 NN W n 2 N

E
, we prove that there

is some d 2 NN, and d ¤ an for all n 2 N. This can be done by defining

d.n/ D an.n/C 1:

Note that an.n/C 1 2 N, and d ¤ an for all n 2 N. ut

I Exercise 142 (4.6.2). Show that
ˇ̌̌
NN

ˇ̌̌
D 2@0 .

Proof. We first show that NN � P .N � N/. A generic element of NN can be

written as f.1; a1/; .2; a2/; .3; a3/; : : :g. Since .n; an/ 2 N�N for all n 2 N, we have

f.1; a1/; .2; a2/; : : :g � N �N; that is, f.1; a1/; .2; a2/; : : :g 2 P .N �N/. Therefore,

2N
� NN

� P .N �N/:

Because jN �Nj D jNj, we have jP .N �N/j D jP .N/j (by Exercise 143); fur-

thermore,
ˇ̌̌
2N
ˇ̌̌
DjP .N/j, so

ˇ̌̌
2N
ˇ̌̌
DjP .N �N/j. It follows from Cantor-Bernstein

Theorem that
ˇ̌̌
NN

ˇ̌̌
D 2@0 D c. ut

I Exercise 143 (4.6.3). Show that jAj DjBj implies jP .A/j DjP .B/j.

Proof. Let f W A ! B be a bijection. For every subset a � A, we define a

function g W P .A/! P .B/ as follows:

g.a/ D f Œa�;

where f Œa� is the image of a under f . Then it is easy to see that g is bijective.

Hence, jP .A/j DjP .B/j. ut



5
CARDINAL NUMBERS

5.1 Cardinal Arithmetic

I Exercise 144 (5.1.1). Prove properties (a)–(n) of cardinal arithmetic stated in

the text of this section.

a. � C � D �C �.

b. � C .�C �/ D .� C �/C �.

c. � 6 � C �.

d. If �1 6 �2 and �1 6 �2, then �1 C �1 6 �2 C �2.

e. � � � D � � �.

f. � �
�
� � �

�
D .� � �/ � �.

g. � � .�C �/ D � � �C � � �.

h. � 6 � � � if � > 0.

i. If �1 6 �2 and �1 6 �2, then �1 � �1 6 �2 � �2.

j. � C � D 2 � �.

k. � C � 6 � � �, whenever � > 2.

l. � 6 �� if � > 0.

m. � 6 �� if � > 1.

n. If �1 6 �2 and �1 6 �2, then ��1

1 6 �
�2

2 .

Proof. We let jAj D �, jBj D �, and jC j D � throughout this exercise.

(a & b) A [ B D B [ A, and A [ .B [ C/ D .A [ B/ [ C .

(c) Let A\B D ¿. Then �C� DjA [ Bj. Considering the embedding IdA W A!

A [ B . Then jAj 6 jA [ Bj, i.e., � 6 � C �.

69
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(d) Let jA1j D �1, jA2j D �2, jB1j D �1, jB2j D �2, A1 \ B1 D ¿ D A2 \ B2,

jA1j 6 jA2j, and jB1j 6 jB2j. Let f W A1 ! A2 and g W B1 ! B2 be two injections.

Define h W A1 [ B1 ! A2 [ B2 by letting

h.x/ D

˚
f .x/ if x 2 A1

g.x/ if x 2 B1:

Then h is an injection, and so �1 C �1 6 �2 C �2.
(e) Let f W A�B ! B �A with f ..a; b// D .b; a/ for all .a; b/ 2 A�B . Then f

is bijective, and so jA � Bj DjB � Aj, i.e., � � � D � � �.

(f) By letting f W .a; .b; c// 7! ..a; b/; c/ for all .a; .b; c// 2 A � .B � C/, we see

that jA � .B � C/j Dj.A � B/ � C j; hence, � � .� � �/ D .� � �/ � �.

(g) A � .B [ C/ D .A � B/ [ .A � C/.

(h) Pick b 2 B (since � > 0). Define f W A! A � fbg by letting for all a 2 A:

f .a/ D .a; b/:

Then f is bijective. Since A � fbg � A � B , we have (h).

(i) Let jA1j D �1, jA2j D �2, jB1j D �1, jB2j D �2, �1 6 �2, and �1 6 �2. Let

f W A1 ! A2 and g W B1 ! B2 be two injections. By defining h W A1�B1 ! A2�B2

with

h.a; b/ D .f .a/; g.b//;

we see that h is injective. Therefore, �1 � �1 6 �2 � �2.
(j) In the book.

(k) � C � 6 2 � � 6 � � � if � > 2, by part (j) and (i).

(l) For every a 2 A, let fa 2 AB be defined as fa.b/ � a for all b 2 B . Then

we define a function F W A! AB by letting F.a/ D fa. Then F is injective and

so � 6 �� if � > 0.

(m) Take a1; a2 2 A (since � > 1). For every b 2 B , we define a function

fb W B ! A by letting

fb.x/ D

˚
a1 if x D b

a2 if x ¤ b:

Then define a function F W B ! AB as F.b/ D fb . This function F is injective,

and so jBj 6
ˇ̌̌
AB

ˇ̌̌
.

(n) Let jA1j D �1, jA2j D �2, jB1j D �1, jB2j D �2, �1 6 �2, and �1 6 �2. Let

f W A1 ! A2 and g W B1 ! B2 be two injections. For any k 2 AB1

1 , we can pick a

hk 2 A
B2

2 such that

hk.x/ D

˚
.f B k B g�1/.x/ if x 2 gŒB1�

yb2 if x 2 A2 X gŒB1�;

where yb2 2 B2. Then the function F W A
B1

1 ! A
B2

2 defined by f .k/ D hk is

injective, and so ��1

1 6 �
�2

2 . ut
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I Exercise 145 (5.1.2). Show that �0 D 1 and �1 D � for all �.

Proof. �0 D 1 because A¿ D h i for all A.

Let jAj D � and B D fbg. Then Afbg D fbg � A; that is,
ˇ̌̌
Afbg

ˇ̌̌
DjAj. ut

I Exercise 146 (5.1.3). Show that 1� D 1 for all � and 0� D 0 for all � > 0.

Proof. Let A D fag and jBj D �. In this case, fagB D ff W B ! fag W f .b/ D

a for all b 2 Bg; that is,
ˇ̌̌
fagB

ˇ̌̌
D 1 D

ˇ̌
fag
ˇ̌
.

Since ¿B D ¿ for all B , we have
ˇ̌̌
¿B

ˇ̌̌
D 0 Dj¿j. ut

I Exercise 147 (5.1.4). Prove that �� 6 2��� .

Proof. Let jAj D �. We look for an injection F W AA ! f0; 1gA�A. For every

element f 2 AA, let F.f / W A � A! f0; 1g be defined as

F.f /.a; b/ D

˚
0 if b ¤ f .a/

1 if b D f .a/:

To verify F is injective, take arbitrary f; f 0 2 AA with f ¤ f 0. Then there exists

a 2 A such that f .a/ ¤ f 0.a/. For the pair .a; f .a// 2 A � A,

F.f /.a; f .a// D 1 ¤ 0 D F.f 0/.a; f .a//:

Hence, F.f / ¤ F.f 0/ whenever f ¤ f 0. Thus, �� 6 2��� . ut

I Exercise 148 (5.1.5). If jAj 6 jBj and if A ¤ ¿, then there is a mapping of B

onto A.

Proof. Let f W A! B be an injection, and let a 2 A. Define g W B ! A as

g.b/ D

˚
f �1.b/ if b 2 f ŒA�

a if b 2 B X f ŒA�:

It is evident that g is surjective. ut

I Exercise 149 (5.1.6). If there is a mapping of B onto A, then 2jAj 6 2jBj.

Proof. Let g W B ! A be surjective. Define f W P .A/! P .B/ as f .X/ D g�1ŒX�.

Then f is injective and so 2jAj DjP .A/j 6 jP j .B/ D 2jBj. ut

I Exercise 150 (5.1.7). Use Cantor’s Theorem to show that the “set of all sets”

does not exist.

Proof. Suppose U is the “set of all sets”. Then Y D P .
S

U/ �
S

U, and so

jY j 6
ˇ̌S

U
ˇ̌
. But Cantors’ Theorem says that jY j >

ˇ̌S
U
ˇ̌
. A contradiction. ut
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I Exercise 151 (5.1.8). Let X be a set and let f be a one-to-one mapping of X

into itself such that f ŒX� � X . Then X is infinite.

Proof. f W X ! f ŒX� is bijective, and so jX j D jf ŒX�j. If X is finite, it contra-

dicts Lemma 4.2.2. ut

I Exercise 152 (5.1.9). Every countable set is Dedekind infinite.

Proof. It suffices to consider N. Let f W N! NXf0g be defined as f .n/ D nC1.

Thus, N is Dedekind infinite. ut

I Exercise 153 (5.1.10). If X contains a countable subset, then X is Dedekind

infinite.

Proof. Let A � X be countable. Then there is an bijection f W N! A. Define a

function g W X ! X by

g.f .n// D f .nC 1/ for n 2 N

g.x/ D x for x 2 X X A

(see Figure 5.1). By this construction, g W X ! X X fg.0/g is bijective.

0 1 2 3

f

X
g

Figure 5.1. f .0/ is not in Rg .
ut

I Exercise 154 (5.1.11). If X is Dedekind infinite, then it contains a countable

subset.

Proof. Let X be Dedekind infinite. Then there exists a bijection f W X ! Y ,

where Y � X . Pick x 2 X X Y . Let

x0 D x; x1 D f .x0/; : : : ; xnC1 D f .xn/; : : : :

Then the set fxn W n 2 Ng is countable. ut

I Exercise 155 (5.1.12). If A and B are Dedekind finite, then A[B is Dedekind

finite.

Proof. If A and B are Dedekind finite, then A and B does not contain a count-

able subset; hence, A[B does not contain a countable subset, and so A[B is

Dedekind finite. ut



SECTION 5.2 THE CARDINALITY OF THE CONTINUUM 73

I Exercise 156 (5.1.13). If A and B are Dedekind finite, then A�B is Dedekind

finite.

Proof. If A and B are Dedekind finite, then A and B does not contain a count-

able subset; hence, A�B does not contain a countable subset, and so A�B is

Dedekind finite. ut

I Exercise 157 (5.1.14). If A is infinite, then P .P .A// is Dedekind infinite.

Proof. For each n 2 N, let

Sn D
˚
X � A W jX j D n

	
:

The set fSn W n 2 Ng is a countable subset of P .P .A//, and hence P .P .A// is

Dedekind infinite. ut

5.2 The Cardinality of the Continuum

I Exercise 158 (5.2.1). Prove that the set of all finite sets of reals has cardinal-

ity c.

Proof. Every finite set of reals can be written as a finite union of open inter-

vals with rational endpoints. For example, we can write fa; b; cg as .a; b/[ .b; c/.

Thus, the cardinality of the set of all finite sets of reals is c. ut

I Exercise 159 (5.2.2). A real number x is algebraic if it is a solution of some

equation

anx
n
C an�1x

n�1
C � � � C a1x C a0 D 0; (�)

where a0; : : : ; an are integers. If x is not algebraic, it is called transcendental.

Show that the set of all algebraic numbers is countable and hence the set of all

transcendental numbers has cardinality c.

Proof. Let An denote the set of algebraic numbers that satisfy polynomials of

the form akx
k C � � � C a1x C a0 where k < n and maxfjaj jg < n. Note that there

are at most nn polynomials of this form, and each one has at most n roots.

Hence, An is a finite set having at most nnC1 < @0 elements. Let A denote the

set of all algebraic numbers. Then jAj D
ˇ̌S

n2N An

ˇ̌
6 @0 � @0 D @0.

On the other hand, consider the following set of algebraic numbers:

A0 D fx 2 R W a0 C x D 0; a0 2 Zg :

Obviously, jA0j D jZj and so jAj > jZj D @0. It follows from Cantor-Benstein

Theorem that jAj D @0. ut

I Exercise 160 (5.2.4). The set of all closed subsets of reals has cardinality c.
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Proof. Let C be the set of closed sets in R, and O the set of open sets in R. A

set E 2 C iff R X E 2 O; that is, there exists a bijection f W C ! O defined by

f .E/ D R XE. Thus, jC j D jOj D c by Theorem 5.2.6(b). ut

I Exercise 161 (5.2.5). Show that, for n > 0, n � 2c D @0 � 2
c D c � 2c D 2c � 2c D

.2c/n D .2c/@0 D .2c/c D 2c.

Proof. We have

2c 6 n � 2c 6 @0 � 2c 6 c � 2c 6 2c
� 2c
D 2cCc

D 2c;

2c 6 .2c/n 6 .2c/@0 6 .2c/c 6D 2c2

D 2c;

and

2c 6 nc 6 @c
0 6 .2

@0/c D 2@0�c D 2c:

Thus, by the Cantor-Bernstein Theorem, we get the result. ut

I Exercise 162 (5.2.6). The cardinality of the set of all discontinuous functions

is 2c.

Proof. Let C denote the set of all continuous functions, and D the set of all

discontinuous functions. Suppose that jD j D � < 2c. Then by Cantor’s Theo-

rem, ˇ̌̌
RR
ˇ̌̌
DjD j CjC j D � C c < 2�Cc 6 22cCc:

Since

2c
C c 6 2c

C 2c
D 2 � 2c

D 2c

by Exercise 161, we have ˇ̌̌
RR
ˇ̌̌
< 2c

D

ˇ̌̌
RR
ˇ̌̌
:

A contradiction. ut

I Exercise 163 (5.2.7). Construct a one-to-one mapping of R � R onto R.

Proof. Using the hints. ut



6
ORDINAL NUMBERS

6.1 Well-Ordered Sets

I Exercise 164 (6.1.1). Give an example of a linearly ordered set .L;</ and

an initial segment S of L which is not of the form fx W x < ag, for any a 2 L.

Proof. We know from Lemma 6.1.2 that if L is a well-ordered set, then every

initial segment is of the form LŒa� for some a 2 L. Hence, we have to find a

linear ordered set which is not well-ordered. We also know from Lemma 4.4.2

that every linear ordering on a finite set is a well-ordering. Therefore, our fist

task is to find an infinite linear ordered .L;</ which is not well-ordered.

As an example, let L D R and S D .�1; 0�. Then .R; </ is a linear ordered

set, and S is an initial segment of L, but S ¤ RŒa� for any a 2 R. ut

I Exercise 165 (6.1.2). !C 1 is not isomorphic to ! (in the well-ordering by 2).

Proof. We first show that ! D N is an initial segment of ! C 1. By definition,

! C 1 D ! [ f!g, so ! � ! C 1. Choose any ˛ 2 !, and let ˇ 2 ˛. Both ˛ and

ˇ are natural numbers, and so ˇ 2 !. Then, by Corollary 6.1.5 (a), ! C 1 is not

isomorphic to ! since ! C 1 is a well-ordered sets. ut

I Exercise 166 (6.1.3). There exist 2@0 well-orderings of the set of all natural

numbers.

Proof. There are @@0

0 D c well-orderings on N. ut

I Exercise 167 (6.1.4). For every infinite subset A of N, .A;</ is isomorphic to

.N; </.

Proof. Let A � N be infinite. Notice that .A;</ is a well-ordered set, and A is

not an initial segment of N; for otherwise, A D NŒn� for some n 2 N and so A

is finite.

A cannot be isomorphic to NŒn� for all n 2 N since NŒn� is finite; similarly,

AŒn� cannot be isomorphic to N. Hence, by Theorem 6.1.3, A is isomorphic to

N. ut

75
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I Exercise 168 (6.1.5). Let .W1; <1/ and .W2; <2/ be disjoint well-ordered sets,

each isomorphic to .N; </. Show that the sum of the two linearly ordered

sets is a well-ordering, and is isomorphic to the ordinal number ! C ! D

f0; 1; 2; : : : ; !; ! C 1; ! C 2; : : :g.

Proof. Let .W;�/ be the sum of .W1; <1/ and .W2; <2/. We have known that

.W;�/ is a linearly ordered set. To see .W;�/ is well-ordered, take an arbitrary

nonempty setX � W . ThenX D .W1\X/\.W2\X/, and .W1\X/\.W2\X/ D ¿.

For i D 1; 2, if Wi \ X ¤ ¿, then it has a least element ˛i . Let ˛ D minf˛1; ˛2g.

Then ˛ is the least element of X .

Let fi W Wi ! N, i D 1; 2, be two isomorphisms. To see .W;�/ Š .! C !;</,

let f W W1 [W2 ! ! C ! be defined as

f .w/ D

˚
f1.w/ if w 2 W1

! C f2.w/ if w 2 W2:

It is clear that f is an isomorphism and so .W;</ Š .! C !;</. ut

I Exercise 169 (6.1.6). Show that the lexicographic product .N � N; </ is iso-

morphic to ! � !.

Proof. Define a function f W N�N! ! �! as follows: for an arbitrary .m; n/ 2

N �N,

f .m; n/ D ! �mC n:

Clearly, f is bijective. To see f is an isomorphism, let .m; n/ < .p; q/. Then

either m < p or m D p and n < q. For every case, ! �mC n < ! � p C q. ut

I Exercise 170 (6.1.7). Let .W;</ be a well-ordered set, and let a … W . Extend

< to W 0 D W [ fag by making a greater than all x 2 W . Then W has smaller

order type than W 0.

Proof. We have W 0Œa� D W . Define a bijection f W W ! W 0Œa� as f .x/ D x for

all x 2 W . Then f is an isomorphism. ut

I Exercise 171 (6.1.8). The sets W D N � f0; 1g and W 0 D f0; 1g � N, ordered

lexicographically, are nonisomorphic well-ordered sets.

Proof. See Figures 6.1 and 6.2. The first ordering is isomorphic to .!;</, but

the second ordering is isomorphic to .!C!;</. Since !C! is not isomorphic

to ! (by Exercise 165, we get the result.

6.2 Ordinal Numbers

Remark. Let A be a nonempty set of ordinals. Take ˛ 2 A, and consider the

set ˛ \ A.
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.0; 0/ .1; 0/ .2; 0/ .3; 0/ � � �

.0; 1/ .1; 1/ .2; 1/ .3; 1/ � � �

Figure 6.1. The lexicographic ordering on N� f0; 1g.

.0; 0/ .0; 1/ .0; 2/ .0; 3/ � � �

.1; 0/ .1; 1/ .1; 2/ .1; 3/ � � �

Figure 6.2. The lexicographic ordering on f0; 1g �N.
ut

a. If ˛ \ A D ¿, then ˛ is the least element of A.

b. If ˛\A ¤ ¿, then  , where  is the least element of ˛\A, is the least element

of A.

Proof. (a) If ˛ \ A D ¿, then ˇ … ˛ for every ˇ 2 A. It follows from Theorem

6.2.6(c) that ˛ 6 ˇ for all ˇ 2 A. Hence, ˛ is the least element of A.

(b) For every ˇ 2 A, if ˇ … ˛, then ˛ 6 ˇ; if ˇ 2 ˛, then ˇ < ˛. If ˛ \ A ¤ ¿,

it has a least element  in the ordering 2˛ ; that is  6 ˇ for any ˇ 2 ˛ \ A.

Further, since  2 ˛ \ A � ˛, we have  < ˛ and  2 A. In sum,
˚
 < ˛ 6 ˇ if ˇ 2 A X ˛

 6 ˇ if ˇ 2 A \ ˛:

Hence,  is the least element of A. ut

I Exercise 172 (6.2.1). A set X is transitive if and only if X � P .X/.

Proof. Take an arbitrary x 2 X . If X is transitive, then x � X , and so x 2 P .X/,

i.e., X � P .X/. On the other hand, if X � P .X/, then x 2 X implies that

x 2 P .X/, which is equivalent to x � X ; hence X is transitive. ut

I Exercise 173 (6.2.2). A set X is transitive if and only if
S
X � X .

Proof. Take any x 2
S
X , then there exists xi 2 X such that x 2 xi , that is,

x 2 xi 2 X ; therefore, x 2 X if X is transitive and so
S
X � X . To see the

converse direction, let
S
X � X . Take any x 2

S
X . There exists xi 2 X such

that x 2 xi ; but x 2 X since
S
X � X , so X is transitive. ut

I Exercise 174 (6.2.3). Are the following sets transitive?

a.
˚
¿; f¿g; ff¿gg

	
,

b.
˚
¿; f¿g; ff¿gg; f¿; f¿gg

	
,
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c.
˚
¿; ff¿gg

	
.

Proof. (a) and (b) are transitive. However, (c) is not since f¿g 2 ff¿gg, but

f¿g … f¿; ff¿ggg. ut

I Exercise 175 (6.2.4). Which of the following statements are true?

a. If X and Y are transitive, the X [ Y is transitive.

b. If X and Y are transitive, the X \ Y is transitive.

c. If X 2 Y and Y is transitive, then X is transitive.

d. If X � Y and Y is transitive, then X is transitive.

e. If Y is transitive and S � P .Y /, then Y [ S is transitive.

Proof. (a), (b), and (e) are correct. ut

I Exercise 176 (6.2.5). If every X 2 S is transitive, then
S
S is transitive.

Proof. Let u 2 v 2
S
S . Then there exists X 2 S such that u 2 v 2 X and so

u 2 X since X is transitive. Therefore, u 2
S
S , i.e.,

S
S is transitive. ut

I Exercise 177 (6.2.7). If a set of ordinals X does not have a greatest element,

then supX is a limit ordinal.

Proof. If X does not have a greatest element, then supX > ˛ for all ˛ 2 X ,

and supX is the least such ordinal. If there were ˇ such that supX D ˇ C 1,

then ˇ would be the greatest element of X . A contradiction. ut

I Exercise 178 (6.2.8). If X is a nonempty set of ordinals, then
T
X is an

ordinal. Moreover,
T
X is the least element of X .

Proof. If u 2 v 2
T
X , then u 2 v 2 ˛ for all ˛ 2 X , and so u 2 ˛ for all

˛ 2 X , i.e., u 2
T
X . Hence,

T
X is transitive. It is evident to see that

T
X

is well-ordered. Thus,
T
X is an ordinal. For every ˛ 2 X , we have

T
X � ˛;

hence,
T
X 6 ˛ for all ˛ 2 X .

We finally show that
T
X 2 X . If not, then

T
X <  , where  is the least

element of X . It is impossible. ut
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Part I

Linear Algebra Done Right (Axler, 1997)





1
VECTOR SPACES

“As You Should Verify”

Remark. P D fp 2 P.F / W p.3/ D 0g is a subspace of P.F /.

Proof. The additive identity 0P.F / is in the set; let p; q 2 P , then .p C q/.3/ D

p.3/C q.3/ D 0; for any a 2 F and p 2 P , we have .ap/.3/ D a � 0 D 0. ut

Remark. If U1; : : : ; Um are subspaces of V , then the sum U1 C � � � C Um is a

subspace of V .

Proof. First, 0 2 Ui for all Ui implies that 0 D 0 C � � � C 0 2
Pm
iD1 Ui . Now

let u; v 2
Pm
iD1 Ui . Then u D

Pm
iD1 ui and v D

Pm
iD1 vi , where ui ; vi 2 Ui , and

so u C v D
Pm
iD1.ui C vi / 2

Pm
iD1 Ui since ui C vi 2 Ui for all i . Finally, let

u D
Pm
iD1 ui 2

Pm
iD1 Ui and a 2 F . Then au D

Pm
iD1.aui / 2

Pm
iD1 Ui . ut

Exercises

I Exercise 1 (1.1). Suppose a and b are real numbers, not both 0. Find real

numbers c and d such that 1=.aC bi/ D c C di .

Solution. Note that for z 2 C with z ¤ 0, there exists a unique w 2 C such

that zw D 1; that is, w D 1=z. Let z D aC bi and w D c C di . Then

.aC bi/.c C di/ D .ac � bd/C .ad C bc/i D 1C 0i

yields ˚
ac � bd D 1;

ad C bc D 0
H)

˚
c D a=.a2 C b2/;

d D �b=.a2 C b2/:
ut

I Exercise 2 (1.2). Show that .�1C
p
3i/=2 is a cube root of 1.

3
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Proof. We have0@ � 1Cp3i
2

1A3 D
0@ � 1Cp3i

2

1A2 �
0@ � 1Cp3i

2

1A
D

0@�1
2
�

p
3

2
i

1A �
0@�1

2
C

p
3

2
i

1A
D 1: ut

I Exercise 3 (1.3). Prove that �.�v/ D v for very v 2 V .

Proof. We have v C .�v/ D 0, so by the uniqueness of additive inverse, the

additive inverse of �v, i.e., �.�v/, is v. ut

I Exercise 4 (1.4). Prove that if a 2 F , v 2 V , and av D 0, then a D 0 or v D 0.

Proof. Suppose that v ¤ 0 and a ¤ 0. Then v D 1 � v D .av/=a D 0=a D 0. A

contradiction. ut

I Exercise 5 (1.5). For each of the following subsets of F 3, determine whether

it is a subspace of F 3:

a. U D
˚
.x1; x2; x3/ 2 F 3 W x1 C 2x2 C 3x3 D 0

	
;

b. U D
˚
.x1; x2; x3/ 2 F 3 W x1 C 2x2 C 3x3 D 4

	
;

c. U D
˚
.x1; x2; x3/ 2 F 3 W x1x2x3 D 0

	
;

d. U D
˚
.x1; x2; x3/ 2 F 3 W x1 D 5x3

	
.

Solution. (a) Additive Identity: 0 2 U ; Closed under Addition: Let x;y 2 U ,

then xCy D .x1Cy1; x2Cy2; x3Cy3/, and .x1Cy1/C 2.x2Cy2/C 3.x3Cy3/ D

.x1C 2x2C 3x3/C .y1C 2y2C 3y3/ D 0C 0 D 0; that is, xCy 2 U . Closed under

Scalar Multiplication: Pick any a 2 F and x 2 U . Then ax1C2 � .ax2/C3 � .ax3/ D

a � .x1C 2x2C 3x3/ D 0, i.e., ax 2 U . In sum, U is a subspace of F 3, and actually,

U is a hyperplane through the 0.

(b) U is not a subspace because 0 … U .

(c) Let x D .1; 1; 0/ and y D .0; 0; 1/. Then x;y 2 U , but x C y D .1; 1; 1/ … U .

(d) 0 2 U ; Let x;y 2 U . Then x1C y1 D 5.x3C y3/. Let a 2 F and x 2 U . Then

ax1 D a � 5x3. ut

I Exercise 6 (1.6). Give an example of a nonempty subset U of R2 such that U

is closed under addition and under taking additive inverses (meaning �u 2 U

whenever u 2 U ), but U is not a subspace of R2.

Solution. Let U D Z2, which is not closed under scalar multiplication. ut

I Exercise 7 (1.7). Give an example of a nonempty subset U of R2 such that U

is closed under scalar multiplication, but U is not a subspace of R2.
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Solution. Let

U D
n
.x; y/ 2 R2 W x D y

o
[

n
.x; y/ 2 R2 W x D �y

o
:

In this case, .x; x/C .x;�x/ D .2x; 0/ … U unless x D 0. ut

I Exercise 8 (1.8). Prove that the intersection of any collection of subspaces of

V is a subspace of V .

Proof. Let fUig be a collection of subspaces of V . (i) Every Ui is a subspace,

then 0 2 Ui for all i and so 0 2
T
Ui . (ii) Let x;y 2

T
Ui . Then x;y 2 Ui for all i

and so xCy 2 Ui , which implies that xCy 2
T
Ui . (iii) Let a 2 F and x 2

T
Ui .

Then ax 2 Ui for all i implies that ax 2
T
Ui . ut

I Exercise 9 (1.9). Prove that the union of two subspaces of V is a subspace of

V if and only if one of the subspaces is contained in the other.

Proof. Let U and W be two subspaces of V . The “If” part is trivial. So we

focus on the “Only if” part. Let U [ W be a subspace. Suppose U ª W and

W ª U . Pick x 2 U X W and y 2 W X U . Then x C y … U ; for otherwise

y D .x C y/ � x 2 U ; similarly, x C y … W . But then x C y … U [ W , which

contradicts the fact that x;y 2 U [W and U [W is a subspace.

A nontrivial vector space V over an infinite field F is not the union of a finite

number of proper subspaces; see Roman (2008, Theorem 1.2). ut

I Exercise 10 (1.10). Suppose that U is a subspace of V . What is U C U ?

Solution. Since U � U and U C U is the smallest subspace containing U , we

have U CU � U ; on the other hand, U � U CU is clear. Hence, U CU D U . ut

I Exercise 11 (1.11). Is the operation of addition on the subspaces of V com-

mutative? Associative?

Solution. Yes. Let U1, U2 and U3 be subspaces of V .

U1 C U2 D fu1 C u2 W u1 2 U1;u2 2 U2g

D fu2 C u1 W u2 2 U2;u1 2 U1g

D U2 C U1:

Similarly for associativity. ut

I Exercise 12 (1.12). Does the operation of addition on the subspaces of V

have an additive identity? Which subspaces have additive inverses?

Solution. The set f0g is the additive identity: U C f0g D fuC 0 W u 2 U g D U .

Only the set f0g has additive inverse. Suppose that U is a subspace, and its

additive inverse is W , i.e., U C W D fu C w W u 2 U and w 2 W g D f0g. Since
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0 2 U , we have 0 C w D 0 for all w 2 W , which means that W D f0g. But it is

clearly that U C f0g D f0g iff U D f0g. ut

I Exercise 13 (1.13). Prove or give a counterexample: if U1, U2, W are sub-

spaces of V such that U1 CW D U2 CW , then U1 D U2.

Solution. Suppose U1; U2 � W . Then U1 C W D U2 C W for any U1 and U2.

Hence, the statement is false in general. ut

I Exercise 14 (1.14). Suppose U is the subspace of P.F / consisting of all poly-

nomials p of the form p.z/ D az2 C bz5, where a; b 2 F . Find a subspace W of

P.F / such that P.F / D U ˚W .

Solution. Let

W D
n
p 2 P.F / W p.z/ D a0 C a1z C a3z

3
C a4z

4
o
: ut

I Exercise 15 (1.15). Prove or give a counterexample: if U1, U2, W are sub-

spaces of V such that V D U1 ˚W and V D U2 ˚W , then U1 D U2.

Solution. Let V D R2, W D f.x; 0/ 2 R2 W x 2 Rg, U1 D f.x; x/ 2 R2 W x 2 Rg, and

U2 D f.x;�x/ 2 R2 W x 2 Rg. Then

U1 CW D
n
.x C y; x/ 2 R2 W x; y 2 R

o
D R2 D V;

U2 CW D
n
.x C y;�x/ 2 R2 W x; y 2 R

o
D R2 D V;

Ui \W D f.0; 0/g ; i D 1; 2:

Therefore, V D Ui ˚W for i D 1; 2, but U1 ¤ U2. ut



2
FINITE-DIMENSIONAL VECTOR SPACES

“As You Should Verify”

Remark (p.22). The span of any list of vectors in V is a subspace of V .

Proof. If U D . /, define span.U / D f0g, which is a subspace of V . Now let

U D .v1; : : : ; vn/ be a list of vectors in V . Then span.U / D f
Pn
iD1 aivi W ai 2 F g.

(i) 0 D
Pn
iD1 0vi 2 span.U /. (ii) Let u D

Pn
iD1 aivi and v D

Pn
iD1 bivi . Then

u C v D
Pn
iD1.ai C bi /vi 2 span.U /. (iii) For every u D

Pn
iD1 aivi , we have

au D
Pn
iD1.aai /vi 2 span.U /. ut

Remark (p.23). Pm.F / is a subspace of P.F /.

Proof. (i) 0P.F / 2 Pm.F / since its degree is �1 < m by definition. (ii) Let

p D
P`
iD0 a`z

` and q D
Pn
jD0 bj z

j , where `; n 6 m and a`; bn ¤ 0. Without loss

of generality, suppose ` > n. Then p C q D
Pn
iD0 .ai C bi / z

i C
P`
jDnC1 aj z

j 2

Pm.F /. (iii) It is easy to see that if p 2 Pm.F / then ap 2 Pm.F /. ut

Exercises

I Exercise 16 (2.1). Prove that if .v1; : : : ; vn/ spans V , then so does the list

.v1 � v2; v2 � v3; : : : ; vn�1 � vn; vn/ obtained by subtracting from each vector

(except the last one) the following vector.

Proof. We first show that span.v1; : : : ; vn/ � span.v1 � v2; : : : ; vn�1 � vn; vn/.

Suppose that V D span.v1; : : : ; vn/. Then, for any v 2 V , there exist a1; : : : ; an 2

F such that

7
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v D a1v1 C a2v2 C � � � C anvn

D a1.v1 � v2/C .a1 C a2/v2 C a3v3 C � � � C anvn

D a1.v1 � v2/C .a1 C a2/.v2 � v3/C .a1 C a2 C a3/v3 C a4v4 C � � � C anvn

D

n�1X
iD1

264
0@ iX
jD1

aj

1A .vi � viC1/

375C anvn

2 span.v1 � v2; v2 � v3; : : : ; vn�1 � vn; vn/:

For the converse direction, let u 2 span.v1 � v2; v2 � v3; : : : ; vn�1 � vn; vn/.

Then there exist b1; : : : ; bn 2 F such that

u D b1.v1 � v2/C b2.v2 � v3/C � � � C bn�1.vn�1 � vn/C bn � vn

D b1v1 C .b2 � b1/v2 C .b3 � b2/v3 C � � � C .bn � bn�1/vn

2 span.v1; : : : ; vn/: ut

I Exercise 17 (2.2). Prove that if .v1; : : : ; vn/ is linearly independent in V , then

so is the list .v1�v2; v2�v3; : : : ; vn�1�vn; vn/ obtained by subtracting from each

vector (except the last one) the following vector.

Proof. Let

0 D

n�1X
iD1

ai .vi � viC1/C anvn D a1v1 C .a2 � a1/v2 C � � � C .an � an�1/vn:

Since .v1; : : : ; vn/ is linear independent, we have a1 D a2�a1 D � � � D an�an�1 D

0, i.e., a1 D a2 D � � � D an D 0. ut

I Exercise 18 (2.3). Suppose .v1; : : : ; vn/ is linearly independent in V and

w 2 V . Prove that if .v1 Cw; : : : ; vn Cw/ is linearly dependent, then w 2

span.v1; : : : ; vn/.

Proof. If .v1 C w; : : : ; vn C w/ is linearly dependent, then there exists a list

.a1; : : : ; an/ ¤ 0 such that

nX
iD1

ai .vi Cw/ D

nX
iD1

aivi C

0@ nX
iD1

ai

1Aw D 0: (2.1)

Since .a1; : : : ; an/ ¤ 0, we know that
Pn
iD1 ai ¤ 0. It follows from (2.1) that

w D

nX
iD1

0B@�ai
ı

nX
jD1

aj

1CA vi 2 span.v1; : : : ; vn/: ut

I Exercise 19 (2.4). Suppose m is a positive integer. Is the set consisting of 0

and all polynomials with coefficients in F and with degree equal to m a subspace

of P.F /?
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Solution. No. Consider p; q with

p.z/ D a0 C a1z C � � � C amz
m;

q.z/ D b0 C b1z C � � � � amz
m;

where am ¤ 0. Then p.z/Cq.z/ D .a0Cb0/C.a1Cb1/zC� � �C.am�1Cbm�1/zm�1,

whose degree is less than or equal to m�1. Hence, this set of polynomials with

degree equal to m is not closed under addition. ut

I Exercise 20 (2.5). Prove that F1 is infinite dimensional.

Proof. Suppose that F1 is finite dimensional. Then every linearly indepen-

dent list of vectors in a finite dimensional vector space can be extended to a

basis of the vector space. Consider the following list

..1; 0; 0; 0; : : :/; .0; 1; 0; 0; : : :/; .0; 0; 1; 0; : : :/; : : : ; .0; : : : ; 1; 0; : : ://;

where each vector is in F1, and the length of the above list is n. It is easy

to show that this list is linearly independent, but it can not be expanded to a

basis of F1. ut

I Exercise 21 (2.6). Prove that the real vector space consisting of all continuous

real-valued functions on the interval Œ0; 1� is infinite dimensional.

Proof. Consider the following set fp.z/ 2 P.F / W z 2 Œ0; 1�g, which is a sub-

space, but is infinite dimensional. ut

I Exercise 22 (2.7). Prove that V is infinite dimensional if and only if there is a

sequence v1; v2; : : : of vectors in V such that .v1; : : : ; vn/ is linearly independent

for every positive integer n.

Proof. Let V be infinite dimensional. Clearly, there exists a nonzero vector

v1 2 V ; for otherwise, V D f0g and so V is finite dimensional. Since V is infinite

dimensional, span.v1/ ¤ V ; hence there exists v2 2 V X span.v1/; similarly,

span.v1; v2/ ¤ V ; thus we can choose v3 2 V X span.v1; v2/. We thus construct

an infinite sequence v1; v2; : : :

We then use the Induction Principle to prove that for every positive inte-

ger n, the list .v1; : : : ; vn/ is linearly independent. Obviously, v1 is linear inde-

pendent since v1 ¤ 0. Let us assume that .v1; : : : ; vn/ is linear independent

for some positive integer n. We now show that .v1; : : : ; vn; vnC1/ is linear in-

dependent. If not, then there exist a1; : : : ; an; anC1 2 F , not all 0, such thatPnC1
iD1 aivi D 0. We must have anC1 ¤ 0: if anC1 D 0, then

Pn
iD1 aivi D 0 implies

that a1 D � � � D an D anC1 D 0 since .v1; : : : ; vn/ is linear independent by the

induction hypothesis. Hence,

vnC1 D

nX
iD1

.�ai=anC1/vi ;
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i.e. vnC1 2 span.v1; : : : ; vn/, which contradicts the construction of .v1; : : : ; vnC1/.

Conversely, assume that there exists an infinite sequence v1; v2; : : : of vec-

tors in V , and .v1; : : : ; vn/ is linearly independent for any positive integer n.

Suppose V is finite dimensional; that is, there is a spanning list of vectors

.u1; : : : ;um/ of V , and such that the length of every linearly independent list of

vectors is less than or equal to m ( by Theorem 2.6). A contradiction. ut

I Exercise 23 (2.8). Let U be the subspace of R5 defined by

U D
n
.x1; x2; x3; x4; x5/ 2 R5 W x1 D 3x2 and x3 D 7x4

o
:

Find a basis of U .

Proof. A particular basis of U can be ..3; 1; 0; 0; 0/; .0; 0; 7; 1; 0/; .0; 0; 0; 0; 1//. ut

I Exercise 24 (2.9). Prove or disprove: there exists a basis .p0; p1; p2; p3/ of

P3.F / such that none of the polynomials p0; p1; p2; p3 has degree 2.

Proof. Notice that p0 D 1, p1 D z, p02 D z2, and p3 D z3 is a standard basis

of P3.F /, but p02 has degree 2. So we can let p2 D p02 C p3 D z2 C z3. Then

span.p0; p1; p2; p3/ D P3.F / and so .p0; p1; p2; p3/ is a basis of P3.F / by Theo-

rem 2.16. ut

I Exercise 25 (2.10). Suppose that V is finite dimensional, with dimV D n.

Prove that there exist one-dimensional subspaces U1; : : : ; Un of V such that

V D U1 ˚ � � � ˚ Un:

Proof. Let .v1; : : : ; vn/ be a basis of V . For each i D 1; : : : ; n, let Ui D span.vi /.

Then each Ui is a subspace of V and so U1 C � � � C Un � V . Clearly, dimV DPn
iD1 dimUi D n. By Proposition 2.19, it suffices to show that V � U1C� � �CUn.

It follows because for every v 2 V ,

v D

nX
iD1

aivi 2 U1 C � � � C Un: ut

I Exercise 26 (2.11). Suppose that V is finite dimensional and U is a subspace

of V such that dimU D dimV . Prove that U D V .

Proof. Let .u1; : : : ;un/ be a basis of U . Since .u1; : : : ;un/ is linearly indepen-

dent in V and the length of .u1; : : : ;un/ is equal to dimV , it is a basis of V .

Therefore, V D span.u1; : : : ;un/ D U . ut

I Exercise 27 (2.12). Suppose that p0; p1; : : : ; pm are polynomials in Pm.F /

such that pj .2/ D 0 for each j . Prove that .p0; p1; : : : ; pm/ is not linearly inde-

pendent in Pm.F /.
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Proof. dim Pm.F / D mC1 since .1; z; : : : ; zm/ is a basis of Pm.F /. If .p0; : : : ; pm/

is linear independent, then it is a basis of Pm.F / by Proposition 2.17. Then

p D
Pm
iD0 pi for every p 2 Pm.F /. Take an arbitrary p 2 Pm.F / with p.2/ ¤ 0

and we get a contradiction. ut

I Exercise 28 (2.13). Suppose U andW are subspaces of R8 such that dimU D

3, dimW D 5, and U CW D R8. Prove that U \W D f0g.

Proof. Since R8 D U CW and dim R8 D dimU C dimV , we have R8 D U ˚ V

by Proposition 2.19; then Proposition 1.9 implies that U \W D f0g. ut

I Exercise 29 (2.14). Suppose that U and W are both five-dimensional sub-

spaces of R9. Prove that U \W ¤ f0g.

Proof. If U \ W D f0g, then dimU CW D dimU C dimW � dimU \W D

5C 5 � 0 D 10 > 9; but U CW � R9. A contradiction. ut

I Exercise 30 (2.15). Prove or give a counterexample that

dimU1 C U2 C U3 DdimU1 C dimU2 C dimU3

� dimU1 \ U2 � dimU1 \ U3 � dimU2 \ U3

C dimU1 \ U2 \ U3:

Solution. We construct a counterexample to show the proposition is faulse.

Let

U1 D
n
.x; 0/ 2 R2 W x 2 R

o
;

U2 D
n
.0; x/ 2 R2 W x 2 R

o
;

U3 D
n
.x; x/ 2 R2 W x 2 R

o
:

Then U1 \ U2 D U1 \ U3 D U2 \ U3 D U1 \ U2 \ U3 D f.0; 0/g; hence

dimU1 \ U2 D dimU1 \ U3 D dimU2 \ U3 D dimU1 \ U2 \ U3 D 0:

But dimU1 C U2 C U3 D 2 since U1 C U2 C U3 D R2. ut

I Exercise 31 (2.16). Prove that if V is finite dimensional and U1; : : : ; Um are

subspaces of V , then dimU1 C � � � C Um 6
Pm
iD1 dimUi .

Proof. Let .u1i ; : : : ;u
ni

i / be a basis of Ui for each i D 1; : : : ; m. Then

mX
iD1

dimUi D

mX
iD1

ni :

Let

.u11; : : : ;u
n1

1 ; : : : ;u
1
m; : : : ;u

nm
m / D B:
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Clearly, U1C� � �CUm D span.B/, and dim span.B/ 6
Pm
iD1 ni by Theorem 2.10.

Therefore, dimU1 C � � � C Um 6
Pm
iD1 dimUi . ut

I Exercise 32 (2.17). Suppose V is finite dimensional. Prove that if U1; : : : ; Um
are subspaces of V such that V D U1 ˚ � � � ˚ Um, then dimV D

Pm
iD1 dimUi .

Proof. Let the list .u1i ; : : : ;u
ni

i / be a basis of Ui for all i D 1; : : : ; m. ThenPm
iD1 dimUi D

Pm
iD1 ni . Let

.u11; : : : ;u
n1

1 ; : : : ;u
1
m; : : : ;u

nm
m / D U:

Then span.U / D V . We show that .u11; : : : ;u
n1

1 ; : : : ;u
1
m; : : : ;u

nm
m / is linear inde-

pendent. Let

0 D .a11u
1
1 C � � � C a

n1

1 u
n1

1 /�
u1

C � � � C .a1mu1m C � � � C a
nm
m unm

m /Ÿ
um

:

Then
Pm
iD1 ui D 0 and so ui D 0 for each i D 1; : : : ; m (since V D

Lm
iD1 Ui ). But

then a11 D � � � D a
nm
m D 0. Thus, .u11; : : : ;u

nm
m / is linear independent and spans

V , i.e. it is a basis of V . ut



3
LINEAR MAPS

“As You Should Verify”

Remark (p. 40). Given a basis .v1; : : : ; vn/ of V and any choice of vectors

w1; : : : ;wn 2 W , we can construct a linear map T W V ! W such that

T.a1v1 C � � � C anvn/ D a1w1 C � � � C anwn;

where a1; : : : ; an are arbitrary elements of F . Then T is linear.

Proof. Let u;w 2 V with u D
Pn
iD1 aivi and v D

Pn
iD1 bivi ; let a 2 F . Then

T.uC v/ D T

0@ nX
iD1

.ai C bi /vi

1A D nX
iD1

.ai C bi /wi

D

nX
iD1

aiwi C

nX
iD1

biwi

D TuC Tv;

and

T.au/ D T

0@ nX
iD1

.aai /vi

1A D nX
iD1

.aai /wi D a

0@ nX
iD1

aiwi

1A D aTu: ut

Remark (p. 40-41). Let S;T 2 L.V;W /. Then SC T; aT 2 L.V;W /.

Proof. As for S C T, we have .SC T/ .uC v/ D S .uC v/ C T .uC v/ D Su C

Sv C Tu C Tv D .SC T/ .u/ C .SC T/ .v/, and .SC T/ .av/ D S .av/ C T .av/ D

a .SC T/ .v/.

As for aT, we have .aT/ .uC v/ D a
�
T .uC v/

�
D a ŒTuC Tv� D aTuC aTv D

.aT/uC .aT/ v, and .aT/ .bv/ D a
�
T .bv/

�
D abTv D b .aT/ v. ut

13
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Exercises

I Exercise 33 (3.1). Show that every linear map from a one-dimensional vector

space to itself is multiplication by some scalar. More precisely, prove that if

dimV D 1 and T 2 L.V; V /, then there exists a 2 F such that Tv D av for all

v 2 V .

Proof. Let w 2 V be a basis of V . Then Tw D aw for some a 2 F . For an

arbitrary v 2 V , there exists b 2 F such that v D bw. Then

Tv D T.bw/ D b.Tw/ D b.aw/ D a.bw/ D av: ut

I Exercise 34 (3.2). Give an example of a function f W R2 ! R such that

f .av/ D af .v/ for all a 2 R and all v 2 R2 but f is not linear.

Proof. For any v D .v1; v2/ 2 R2, let

f .v1; v2/ D

˚
v1 if v1 D v2

0 if v1 ¤ v2:

Now consider u; v 2 R2 with u1 ¤ u2, v1 ¤ v2, but u1 C v1 D u2 C v2 > 0. Notice

that

f .uC v/ D u1 C v1 > 0 D f .u/C f .v/:

Hence, f is not linear. ut

I Exercise 35 (3.3). Suppose that V is finite dimensional. Prove that any linear

map on a subspace of V can be extended to a linear map on V . In other words,

show that if U is a subspace of V and S 2 L.U;W /, then there exists T 2 L.V;W /

such that Tu D Su for all u 2 U .

Proof. Let .u1; : : : ;um/ be a basis of U , and extend it to a basis of V :

.u1; : : : ;um; v1; : : : ; vn/:

Choose n vectors w1; : : : ;wn from W . Define a map T W V ! W by letting

T

0@ mX
iD1

aiui C

nX
jD1

ajvj

1A D mX
iD1

aiSui C

nX
jD1

ajwj :

It is trivial to see that Su D Tu for all u 2 U . So we only show that T is a

linear map. Let u; v 2 V with u D
Pm
iD1 aiui C

Pn
jD1 ajvj and v D

Pm
iD1 biui CPn

jD1 bjvj ; let a 2 F . Then
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T .uC v/ D T

0@ mX
iD1

.ai C bi /ui C

nX
jD1

�
aj C bj

�
vj

1A
D

mX
iD1

.ai C bi /Sui C

nX
jD1

.aj C bj /wj

D

24 mX
iD1

aiSui C

nX
jD1

ajwj

35C
24 mX
iD1

biSui C

nX
jD1

bjwj

35
D TuC Tv;

and

Tau D T

0B@a
0@ mX
iD1

aiui C

nX
jD1

ajvj

1A
1CA D T

0@ mX
iD1

aaiui C

nX
jD1

aajvj

1A
D

mX
iD1

aaiSui C

nX
jD1

aajwj

D a

24 mX
iD1

aiSui C

nX
jD1

ajwj

35
D aTu: ut

I Exercise 36 (3.4). Suppose that T is a linear map from V to F . Prove that if

u 2 V is not in ıT, then

V D ıT ˚ fau W a 2 F g:

Proof. Let T 2 L.V; F /. Since u 2 V X ıT, we get u ¤ 0 and Tu ¤ 0. Thus,

dim RT > 1. Since dim RT 6 dim F D 1, we get dim RT D 1. It follows from

Theorem 3.4 that

dimV D dim ıT C 1 D dim ıT C dim fau W a 2 F g: (3.1)

Let .v1; : : : ; vm/ be a basis of ıT. Then .v1; : : : ; vm;u/ is linear independent

since u … span.v1; : : : ; vm/ D ıT. It follows from (3.1) that .v1; : : : ; vm;u/ is a

basis of V (by Proposition 2.17). Therefore

V D span.v1; : : : ; vm;u/ D

8<:
mX
iD1

aivi C au W a1; : : : ; am; a 2 F

9=;
D

8<:
mX
iD1

aivi W a1; : : : ; am 2 F

9=;C fau W a 2 F g

D ıT C fau W a 2 F g:

(3.2)

It follows from (3.1) and (3.2) that V D ıT˚fau W a 2 F g by Proposition 2.19. ut
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I Exercise 37 (3.5). Suppose that T 2 L.V;W / is injective and .v1; : : : ; vn/ is

linearly independent in V . Prove that .Tv1; : : : ;Tvn/ is linearly independent in

W .

Proof. Let

0 D

nX
iD1

ai � Tvi D T

0@ nX
iD1

aivi

1A :
Then

Pn
iD1 aivi D 0 since ıT D f0g. The linear independence of .v1; : : : ; vn/

implies that a1 D � � � D an D 0. ut

I Exercise 38 (3.6). Prove that if S1; : : : ; Sn are injective linear maps such that

S1 � � � Sn makes sense, then S1 � � � Sn is injective.

Proof. We use mathematical induction to prove this claim. It holds for n D 1

trivially. Let us suppose that S1 � � � Sn is injective if S1; : : : ; Sn are. Now assume

that S1; : : : ; SnC1 are all injective linear maps. Let T D S1 � � � SnC1. For every

v 2 ıT we have

0 D Tv D .S1 � � � Sn/ .SnC1v/ :

But the above display implies that SnC1v D 0 since .S1 � � � Sn/ is injective by the

induction hypothesis, which implies further that v D 0 since SnC1 is injective.

This proves that ıT D f0g and so T is injective. ut

I Exercise 39 (3.7). Prove that if .v1; : : : ; vn/ spans V and T 2 L.V;W / is sur-

jective, then .Tv1; : : : ;Tvn/ spans W .

Proof. Since T is surjective, for any w 2 W , there exists v 2 V such that

Tv D w; since V D span.v1; : : : ; vn/, there exists .a1; : : : ; an/ 2 F n such that

v D
Pn
iD1 aivi . Hence,

w D T

0@ nX
iD1

aivi

1A D nX
iD1

aiTvi ;

that is, W D span.Tv1; : : : ;Tvn/. ut

I Exercise 40 (3.8). Suppose that V is finite dimensional and that T 2 L.V;W /.

Prove that there exists a subspace U of V such that U \ ıT D f0g and RT D

fTu W u 2 U g.

Proof. Let .u1; : : : ;um/ be a basis of ıT, which can be extended to a basis

.u1; : : : ;um; v1; : : : ; vn/ of V . Let U D span.v1; : : : ; vn/. Then U \ ıT D f0g (see

the proof of Proposition 2.13).

To see RT D fTu W u 2 U g, take an arbitrary v 2 V . Then

Tv D T

0@ mX
iD1

aiui C

nX
jD1

ajvj

1A D T

0@ nX
jD1

ajvj

1A D Tu
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for some u D
Pn
jD1 ajvj 2 U . ut

I Exercise 41 (3.9). Prove that if T is a linear map from F 4 to F 2 such that

ıT D

n
.x1; x2; x3; x4/ 2 F 4 W x1 D 5x2 and x3 D 7x4

o
;

then T is surjective.

Proof. Let

v1 D

ˇ
5

1

0

0



and v2 D

ˇ
0

0

7

1



:

It is easy to see that .v1; v2/ is a basis of ıT; that is, dim ıT D 2. Then

dim RT D dim F 4 � dim ıT D 4 � 2 D 2 D dim F 2;

and so T is surjective. ut

I Exercise 42 (3.10). Prove that there does not exist a linear map from F 5 to

F 2 whose null space equalsn
.x1; x2; x3; x4; x5/ 2 F 5 W x1 D 3x2 and x3 D x4 D x5

o
:

Proof. It is easy to see that the following two vectors consist of a basis of ıT

if T 2 L.F 5; F 2/:

v1 D

�
3

1

0

0

0

�

and v2 D

�
0

0

1

1

1

�

:

Then, dim ıT D 2 and so dim RT D 5�2 D 3 > dim F 2, which is impossible. ut

I Exercise 43 (3.11). Prove that if there exists a linear map on V whose null

space and range are both finite dimensional, then V is finite dimensional.

Proof. If dim ıT < 1 and dim RT < 1, then dimV D dim ıT C dim RT <

1. ut

I Exercise 44 (3.12). Suppose that V and W are both finite dimensional. Prove

that there exists a surjective linear map from V onto W if and only if dimW 6
dimV .

Proof. If there exists a surjective linear map T 2 L.V;W /, then dimW D

dim RT D dimV � dim ıT > dimV .

Now let dimW 6 dimV . Let .v1; : : : ; vn/ be a basis of V , and let .w1; : : : ;wm/

be a basis of W , with m 6 n. Define T 2 L.V;W / by letting
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T

0@ mX
iD1

aivi C

nX
jDmC1

ajvj

1A D mX
iD1

aiwi :

Then for every w D
Pm
iD1 aiwi 2 W , there exists v D

Pn
jD1 ajvj such that

Tv D w, i.e. T is surjective. ut

I Exercise 45 (3.13). Suppose that V and W are finite dimensional and that U

is a subspace of V . Prove that there exists T 2 L.V;W / such that ıT D U if and

only if dimU > dimV � dimW .

Proof. For every T 2 L.V;W /, if ıT D U , then dimU D dimV � dim RT >
dimV � dimW .

Now let dimU > dimV � dimW . Let .u1; : : : ;um/ be a basis of U , which can

be extended to a basis .u1; : : : ;um; v1; : : : ; vn/ of V . Let .w1; : : : ;wp/ be a basis

of W . Then m > .mC n/ � p implies that n 6 p. Define T 2 L.V;W / by letting

T

0@ mX
iD1

aiui C

nX
jD1

ajvj

1A D nX
jD1

ajwj :

Then ıT D U . ut

I Exercise 46 (3.14). Suppose that W is finite dimensional and T 2 L.V;W /.

Prove that T is injective if and only if there exists S 2 L.W; V / such that ST is the

identity map on V .

Proof. Suppose first that ST D IdV . Then for any u; v 2 V with u ¤ v, we have

u D .ST/u ¤ .ST/v D v; that is, S.Tu/ ¤ S.Tv/, and so Tu ¤ Tv.

For the inverse direction, let T be injective. Then dimV 6 dimW by Corol-

lary 3.5. Also, dimW < C1. Let .v1; : : : ; vn/ be a basis of V . It follows from

Exercise 37 that .Tv1; : : : ;Tvn/ is linearly independent, and so can be extended

to a basis .Tv1; : : : ;Tvn;w1; : : : ;wm/ of W . Define S 2 L.W; V / by letting

S .Tvi / D .ST/ vi D vi ; and S .wi / D 0V : ut

I Exercise 47 (3.15). Suppose that V is finite dimensional and T 2 L.V;W /.

Prove that T is surjective if and only if there exists S 2 L.W; V / such that TS is

the identity map on W .

Proof. If TS D IdW , then for any w 2 W , we have T .Sw/ D IdW .w/ D w, that

is, there exists Sw 2 V such that T .Sw/ D w, and so T is surjective.

If T is surjective, then dimW 6 dimV . Let .w1; : : : ;wm/ be a basis of W , and

let .v1; : : : ; vn/ be a basis of V with n > m. Define S 2 L.W; V / by letting

Swi D vi ; with Tvi D wi : ut
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I Exercise 48 (3.161). Suppose that U and V are finite-dimensional vector

spaces and that S 2 L.V;W /, T 2 L.U; V /. Prove that

dim ıST 6 dim ıS C dim ıT:

Proof. We have W
S
 � V

T
 � U . Since

RST D .ST/ ŒU � D S
�
T ŒU �

�
D S ŒRT� ;

we have

dim RST D dim S ŒRT�:

Let N be the complement of RT so that V D RT ˚N ; then

dimV D dim RT C dimN; (3.3)

and

RS D S ŒV � D S ŒRT�C S ŒN � :

It follows from Theorem 2.18 that

dim RS D dim S ŒRT�C dim S ŒN � � dim S ŒRT� \ S ŒN �

6 dim S ŒRT�C dim S ŒN �

6 dim S ŒRT�C dimN

D dim RST C dimN;

and hence that

dimV � dim ıS D dim RS

6 dim RST C dimN

D dim RST C dimV � dim RT;

(3.4)

where the last equality is from (3.3). Hence, (3.4) becomes

dim RT � dim ıS 6 dim RST;

or equivalently,

dimU � dim ıT � dim ıS 6 dimU � dim ıSTI

that is,

dim ıST 6 dim ıS C dim ıT: ut

I Exercise 49 (3.17). Prove that the distributive property holds for matrix ad-

dition and matrix multiplication.

Proof. Let A D Œaij � 2 Mat .m; n; F /, B D Œbij � 2 Mat
�
n; p; F

�
, and C D Œcij � 2

Mat
�
n; p; F

�
. Then B C C D Œbij C cij � 2 Mat

�
n; p; F

�
. It is evident that AB and

1 See Halmos (1995, Problem 95, p.270).
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AC are m � p matrices. Further,

A .BCC/ D

�
a11 � � � a1n
:::

: : :
:::

am1 � � � amn

˘�
b11 C c11 � � � b1p C c1p

:::
: : :

:::

bn1 C cn1 � � � bnp C cnp

˘

D

�Pn
iD1 a1ibi1 C

Pn
iD1 a1ici1 � � �

Pn
iD1 a1ibip C

Pn
iD1 a1icip

:::
: : :

:::Pn
iD1 amibi1 C

Pn
iD1 amici1 � � �

Pn
iD1 amibip C

Pn
iD1 amicip

˘

D ABCAC:

ut

I Exercise 50 (3.18). Prove that matrix multiplication is associative.

Proof. Similar to Exercise 49. ut

I Exercise 51 (3.19). Suppose T 2 L.F n; Fm/ and that

M.T/ D

�
a11 � � � a1n
:::

:::

am1 � � � amn

˘

;

where we are using the standard bases. Prove that

T.x1; : : : ; xn/ D

0@ nX
iD1

a1ixi ; : : : ;

nX
iD1

amixi

1A
for every .x1; : : : ; xn/ 2 F n.

Proof. We need to prove that Tx D M.T/ � x for any x 2 F n. Let .en1 ; : : : ; e
n
n/

be the standard basis for F n, and let .em1 ; : : : ; e
m
m/ be the standard basis for Fm.

Then

T.x1; : : : ; xn/ D T

0@ nX
iD1

xie
n
i

1A D nX
iD1

xiTeni D

nX
iD1

xi

mX
jD1

aj ie
m
j

D

0@ nX
iD1

a1ixi ; : : : ;

nX
iD1

amixi

1A : ut

I Exercise 52 (3.20). Suppose .v1; : : : ; vn/ is a basis of V . Prove that the func-

tion T W V ! Mat .n; 1; F / defined by Tv D M.v/ is an invertible linear map of

V onto Mat .n; 1; F /; here M.v/ is the matrix of v 2 V with respect to the basis

.v1; : : : ; vn/.

Proof. For every v D
Pn
iD1 bivi 2 V , we have
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M.v/ D

�
b1
:::

bn

˘

:

Since av D
Pn
iD1 .abi / vi for any a 2 F , we have M .av/ D aM.v/. Further,

for any u D
Pn
iD1 aivi 2 V , and any v D

Pn
iD1 bivi 2 V , we have u C v DPn

iD1.ai C bi /vi ; hence, M .uC v/ DM .u/CM.v/. Therefore, T is a liner map.

We now show that T is invertible by proving T is bijective. (i) If Tv D

.0; : : : ; 0/0, then v D
Pn
iD1 0vi D 0V ; that is, ıT D f0T g. Hence, T is injective.

(ii) Take any M D .a1; : : : ; an/
0
2 Mat .n; 1; F /. Let v D

Pn
iD1 aivi . Then Tv D M ;

that is, T is surjective. ut

I Exercise 53 (3.21). Prove that every linear map from Mat .n; 1; F / to Mat .m; 1; F /

is given by a matrix multiplication. In other words, prove that if

T 2 L.Mat .n; 1; F / ;Mat .m; 1; F //;

then there exists anm�nmatrix A such that TB D AB for every B 2 Mat .n; 1; F /.

Proof. A basis of Mat .m; n; F / consists of thosem�nmatrices that have 0 in all

entries except for a 1 in one entry. Therefore, a basis for Mat .n; 1; F / consists

of the standard basis of F n,
�
en1 ; : : : ; e

n
n

�
, where, for example, en1 D .1; 0; : : : ; 0/

0.

For any T 2 L.Mat .n; 1; F / ;Mat .m; 1; F //, let

A
.m�n/

´

�
Ten1 � � � Tenn

�
:

Then for any B D
Pn
iD1 aie

n
i 2 Mat .n; 1; F /, we have

TB D T

0@ nX
iD1

aie
n
i

1A D nX
iD1

aiTeni D AB: ut

I Exercise 54 (3.22). Suppose that V is finite dimensional and S;T 2 L.V /.

Prove that ST is invertible if and only if both S and T are invertible.

Proof. First assume that both S and T are invertible. Then .ST/
�
T�1S�1

�
D

SIdS�1 D Id and
�
T�1S�1

�
.ST/ D Id. Hence, ST is invertible and .ST/�1 D

T�1S�1.

Now suppose that ST is invertible, so it is injective. Take any u; v 2 V with

u ¤ v; then .ST/u ¤ .ST/ v; that is,

u ¤ v H) S.Tu/ ¤ S.Tv/: (3.5)

But then Tu ¤ Tv, which implies that T is invertible by Theorem 3.21. Finally,

for any u; v 2 V with u ¤ v, there exist u0; v0 2 V with u0 ¤ v0 such that u D Tu0

and v D Tv0. Hence, by (3.5), u ¤ v implies that

Su D S.Tu0/ ¤ S.Tv0/ D SvI
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that is, S is injective, too. Applying Theorem 3.21 once again, we know that S

is invertible. ut

I Exercise 55 (3.23). Suppose that V is finite dimensional and S;T 2 L.V /.

Prove that ST D Id if and only if TS D Id.

Proof. We only prove the only if part; the if part can be proved similarly. If

ST D Id, then ST is bijective and so invertible. Then by Exercise 54, both S and

T are invertible. Therefore,

ST D Id () S�1ST D S�1Id () T D S�1 () TS D S�1S D Id: ut

I Exercise 56 (3.24). Suppose that V is finite dimensional and T 2 L.V /. Prove

that T is a scalar multiple of the identity if and only if ST D TS for every S 2

L.V /.

Proof. If T D aId for some a 2 F , then for any S 2 L.V /, we have

ST D aSId D aS D aIdS D TS:

For the converse direction, assume that ST D TS for all S 2 L.V /. ut

I Exercise 57 (3.25). Prove that if V is finite dimensional with dimV > 1, then

the set of noninvertible operators on V is not a subspace of L.V /.

Proof. Since every finite-dimensional vector space is isomorphic to some F n,

we just focus on F n. For simplicity, consider F 2. Let S;T 2 F 2 with

S .a; b/ D .a; 0/ and T .a; b/ D .0; b/ :

Obviously, both S and T are noninvertible since they are not injective; however,

SC T D Id is invertible. ut

I Exercise 58 (3.26). Suppose n is a positive integer and aij 2 F for i; j D

1; : : : ; n. Prove that the following are equivalent:

a. The trivial solution x1 D � � � D xn D 0 is the only solution to the homogeneous

system of equations

nX
kD1

a1kxk D 0

:::

nX
kD1

ankxk D 0:

b. For every c1; : : : ; cn 2 F , there exists a solution to the system of equations
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nX
kD1

a1kxk D c1

:::

nX
kD1

ankxk D cn:

Proof. Let

A D

�
a11 � � � a1n
:::

:::

an1 � � � ann

˘

:

If we let Tx D Ax, then by Exercise 52, T 2 L.F n; F n/. (a) implies that ıT D f0g;

hence

dim RT D n � 0 D n:

Since RT is a subspace of F n, we have RT D F n, that is, T is surjective: for any

.c1; : : : ; cn/, there is a unique solution .x1; : : : ; xn/. ut





4
POLYNOMIALS

I Exercise 59 (4.1). Suppose m and n are positive integers with m 6 n. Prove

that there exists a polynomial p 2 Pn.F / with exactly m distinct roots.

Proof. Let

p.z/ D

mY
iD1

.z � �i /
mi ;

where �1; : : : ; �m 2 F are distinct and
Pm
iD1mi D n. ut

I Exercise 60 (4.2). Suppose that z1; : : : ; zmC1 are distinct elements of F and

that w1; : : : ; wmC1 2 F . Prove that there exists a unique polynomial p 2 Pm.F /

such that p.zj / D wj for j D 1; : : : ; mC 1.

Proof. Let pi .x/ D
Q
j¤i .x � zj /. Then degpi D m and pi .zj / ¤ 0 if and only if

i D j . Define

p.x/ D

mC1X
iD1

wi

pi .zi /
pi .x/:

Then degp D m and

p.zj / D
w1

p1.z1/
p1.zj /C � � � C

wj

pj .zj /
pj .zj /C � � � C

wmC1

pmC1.zmC1/
pmC1.zj /

D wj : ut

I Exercise 61 (4.3). Prove that if p; q 2 P.F /, with p ¤ 0, then there exist

unique polynomials s; r 2 P.F / such that q D sp C r and deg r < degp.

Proof. Assume that there also exist s0; r 0 2 P.F / such that q D s0p C r 0 and

deg r 0 < degp. Then

.s � s0/p C .r � r 0/ D 0:

If s ¤ s0, then deg .s � s0/pCdeg .r � r 0/ D deg .s � s0/CdegpCdeg .r � r 0/ >
0; but deg 0 D �1. Hence, s D s0 and so r D r 0. ut

I Exercise 62 (4.4). Suppose p 2 P.C/ has degree m. Prove that p has m

distinct roots if and only if p and its derivative p0 have no roots in common.

25
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Proof. If � is a root of p, then we can write p as p.z/ D .z � �/q.z/. Then

p0.z/ D q.z/C .z � �/q0.z/:

So � is also a root for p0 if and only if � is a root of q; that is, � is a multiple

root. A contradiction. ut

I Exercise 63 (4.5). Prove that every polynomial with odd degree and real

coefficients has a real root.

Proof. If p 2 P.R/ with degp is odd, then p.�1/ < 0 and p.C1/ > 0. Then

there exists x� 2 R such that p.x�/ D 0. ut



5
EIGENVALUES AND EIGENVECTORS

“As You Should Verify”

Remark (p.80). Fix an operator T 2 L.V /, then the function from P.F / to L.V /

given by p 7! p.T/ is linear.

Proof. Let the mapping be A W P.F / ! L.V / with A.p/ D p.T/. For any p; q 2

P.F /, we have A.pCq/ D .pCq/.T/ D p.T/Cq.T/ D A.p/CA.q/. For any a 2 F ,

we have A.ap/ D .ap/.T/ D ap.T/ D aA.p/. ut

Exercises

I Exercise 64 (5.1). Suppose T 2 L.V /. Prove that if U1; : : : ; Um are subspaces

of V invariant under T, then U1 C � � � C Um is invariant under T.

Proof. Take an arbitrary u 2 U1C� � �CUm; then u D u1C� � �Cum, where ui 2 Ui

for every i D 1; : : : ; m. Therefore, Tu D Tu1 C � � � C Tum 2 U1 C � � � C Um since

Tui 2 Ui . ut

I Exercise 65 (5.2). Suppose T 2 L.V /. Prove that the intersection of any col-

lection of subspaces of V invariant under T is invariant under T.

Proof. Let the collection fUi E V W i 2 I g of subspaces of V invariant under T,

where I is an index set. Let U D
T
i2I Ui . Then u 2 Ui for every i 2 I if u 2 U ,

and so Tu 2 Ui for every i 2 I . Then Tu 2 U ; that is, U is invariant under T. ut

I Exercise 66 (5.3). Prove or give a counterexample: if U is a subspace of V

that is invariant under every operator on V , then U D f0g or U D V .

Proof. Assume that U ¤ f0g and U ¤ V . Let .u1; : : : ;um/ be a basis of U ,

which then can be extended to a basis .u1; : : : ;um; v1; : : : ; vn/ of V , where n > 1
since U ¤ V . Define an operator T 2 L.V / by letting T.a1u1 C � � � C amum C

27
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b1v1 C � � � C bnvn/ D .a1 C � � � C am C b1 C � � � C bn/v1. Then U fails be invariant

clearly. ut

I Exercise 67 (5.4). Suppose that S;T 2 L.V / are such that ST D TS. Prove

that ıT��Id is invariant under S for every � 2 F .

Proof. If u 2 ıT��Id, then .T � �Id/.u/ D Tu � �u D 0; hence

S.Tu � �u/ D S0 () STu � �Su D 0

() TSu � �Su D 0

() .T � �Id/.Su/ D 0I

that is, Su 2 ıT��Id. ut

I Exercise 68 (5.5). Define T 2 L.F 2/ by T.w; z/ D .z; w/. Find all eigenvalues

and eigenvectors of T.

Proof. Tu D �u implies that .z; w/ D .�w; �z/. Hence, �1 D 1, �2 D �1, and the

corresponding eigenvectors are .1; 1/ and .1;�1/. Since dim F 2 D 2, they are

the all eigenvalues and eigenvectors of T. ut

I Exercise 69 (5.6). Define T 2 L.F 3/ by T.z1; z2; z3/ D .2z2; 0; 5z3/. Find all

eigenvalues and eigenvectors of T.

Proof. If � 2 F is a eigenvalue of T and .z1; z2; z3/ ¤ 0 is a corresponding

eigenvector, then T.z1; z2; z3/ D �.z1; z2; z3/, that is,
„
2z2 D �z1 (i)

0 D �z2 (ii);

5z3 D �z3 (iii):

(5.1)

� If z2 ¤ 0, then � D 0 from (ii); but then z2 D 0 from (i). A contradiction.

Hence, z2 D 0 and (5.1) becomes
˚
0 D �z1 (i0)

5z3 D �z3 (iii0):
(5.2)

� If z3 ¤ 0, then � D 5 from (iii0); then (i0) implies that z1 D 0. Hence, � D 5 is

an eigenvalue, and the corresponding eigenvector is .0; 0; 1/.

� If z1 ¤ 0, then � D 0 from (i0); then (iii0) implies that z3 D 0. Hence, � D 0 is

an eigenvalue, and the corresponding eigenvector is .1; 0; 0/. ut

I Exercise 70 (5.7). Suppose n is a positive integer and T 2 L.F n/ is defined by

T.x1; : : : ; xn/ D

0@ nX
iD1

xi ; : : : ;

nX
iD1

xi

1A I
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in other words, T is the operator whose matrix (with respect to the standard

basis) consists of all 1’s. Find all eigenvalues and eigenvectors of T.

Proof. If � 2 F is an eigenvalue of T and .x1; : : : ; xn/ ¤ 0 is a corresponding

eigenvector, then
Pn
iD1 xi ¤ 0 and

�Pn
iD1 xi
:::Pn

iD1 xi

˘

D

�
�x1
:::

�xn

˘

:

Hence, � ¤ 0, xi ¤ 0 for all i D 1; : : : ; n, and �x1 D � � � D �xn implies that

x1 D � � � D xn, and so the unique eigenvalue of T is .
Pn
iD1 xi /=xi D n. Then an

eigenvector to n is .1; : : : ; 1/. ut

I Exercise 71 (5.8). Find all eigenvalues and eigenvectors of the backward

shift operator T 2 L.F1/ defined by T.z1; z2; z3; : : :/ D .z2; z3; : : :/.

Proof. For any � 2 F with � ¤ 0, we have T.�; �2; �3; : : :/ D .�2; �3; : : :/ D

��.�; �2; : : :/; hence, every � ¤ 0 is an eigenvalue of T. We now show that � D 0 is

also an eigenvalue: let z D .z1; 0; : : :/ with z1 ¤ 0. Then Tz D .0; 0; : : :/ D 0 � z. ut

I Exercise 72 (5.9). Suppose T 2 L.V / and dim RT D k. Prove that T has at

most k C 1 distinct eigenvalues.

Proof. Suppose that T has more than or equal to kC2 distinct eigenvalues. We

take the first k C 2 eigenvalues: �1; : : : ; �kC2. Then there are k C 2 correspond-

ing nonzero eigenvectors, u1; : : : ;ukC2, satisfying Tu1 D �1u1; : : : ;TukC2 D

�kC2ukC2. Since the k C 2 eigenvectors are linearly independent, the list

.�1u1; : : : ; �kC2ukC2/ is linearly independent, too (there are nC 1 vectors if one

� is zero). Obviously, the above list is in RT, which means that dim RT > kC 1.
A contradiction. ut

I Exercise 73 (5.10). Suppose T 2 L.V / is invertible and � 2 F Xf0g. Prove that

� is an eigenvalue of T if and only if 1=� is an eigenvalue of T�1.

Proof. If � ¤ 0 be an eigenvalue of T, then there exists a nonzero u 2 V such

that Tu D �u. Therefore,

T�1.Tu/ D T�1.�u/ () u D �T�1u () T�1u D u=�I

that is, 1=� is an eigenvalue of T�1. The other direction can be proved with the

same way. ut

I Exercise 74 (5.11). Suppose S;T 2 L.V /. Prove that ST and TS have the same

eigenvalues.

Proof. Let � be an eigenvalue of ST, and u ¤ 0 be the corresponding eigenvec-

tor. Then .ST/u D �u. Therefore,
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T.STu/ D T.�u/ () .TS/.Tu/ D �.Tu/:

Hence, if Tu ¤ 0, then � is an eigenvalue of TS, and the corresponding eigen-

vector is Tu; if Tu D 0, then .ST/u D S.Tu/ D 0 implies that � D 0 (since u ¤ 0).

In this case, T is not injective, and so TS is not injective (by Exercise 54). But

this means that there exists v ¤ 0 such that .TS/v D 0 D 0v; that is, 0 is an

eigenvalue of TS. The other direction can be proved with the same way. ut

I Exercise 75 (5.12). Suppose T 2 L.V / is such that every vector in V is an

eigenvector of T. Prove that T is a scalar multiple of the identity operator.

Proof. Let B D .v1; : : : ; vn/ be a basis of V and take arbitrary vi and vj from

B . Then there are �i and �j such that Tvi D �ivi and Tvj D �jvj . Since viCvj is

also an eigenvector, there is � 2 F such that T.vi C vj / D �.vi C vj /. Therefore,

�ivi C �jvj D �vi C �vj I

that is, .�i � �/ vi C
�
�j � �

�
vj D 0. Since .vi ; vj / is linearly independent, we

have �i D �j D �. Hence, for any v D
Pn
iD1 aivi 2 V , we have

Tv D T

0@ nX
iD1

aivi

1A D nX
iD1

ai�vi D �

0@ nX
iD1

aivi

1A D �v;

i.e., T D �Id. ut

I Exercise 76 (5.13). Suppose T 2 L.V / is such that every subspace of V with

dimension dimV � 1 is invariant under T. Prove that T is a scalar multiple of

the identity operator.

Proof. Let dimV D n and .v1; v2; : : : ; vn/ be a basis of V . We first show that

there exists �1 2 F such that Tv1 D �1v1.

Let V1 D fav1 W a 2 F g and U1 D span.v2; : : : ; vn/. Then for any v DPn
iD1 aivi 2 V , we have

Tv D T

0@a1v1 C nX
iD2

aivi

1A D a1Tv1 C T

0@ nX
iD2

aivi

1A
D a1

0@ nX
jD1

bjvj

1AC T

0@ nX
iD2

aivi

1A
D .a1b1/ v1 C

264 nX
iD2

.a1bi / vi C T

0@ nX
iD2

aivi

1A
375

2 V1 C U1;

where T
�Pn

iD2 aivi
�
2 U1 since U1 is invariant under T.
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Since V D V1 C U1 and dimV D dimV1 C dimU1, we have V D V1 ˚ U1

by Proposition 2.19, which implies that V1 \ U1 D f0g by Proposition 1.9. If

Tv1 … V1, then Tv1 ¤ 0 and Tv1 2 U1; hence, there exist c2; : : : ; cn 2 F not all

zero such that

Tv1 D

nX
iD2

civi :

Without loss of generality, we suppose that cn ¤ 0.

Let Vn D favn W a 2 F g and Un D span.v1; : : : ; vn�1/. Similarly, V D Vn ˚ Un

and Vn \ Un D f0g. Since Un is invariant under T, we have Tv1 2 Un, that is,

Tv1 D
Pn�1
jD1 djvj , but which means that cn D 0 A contradiction. We thus proved

that Tv1 2 V1, i.e., there is �1 2 F such that Tv1 D �1v1. But this way can be

applied to every vi . Therefore, every vi is an eigenvector of T. By Exercise 75,

T is a scalar multiple of the identity operator. ut

I Exercise 77 (5.14). Suppose S;T 2 L.V / and S is invertible. Prove that if

p 2 P.F / is a polynomial, then p.STS�1/ D Sp.T/S�1.

Proof. Let p.z/ D a0 C a1zC a2z2 C � � � C amzm. Then

p.STS�1/ D a0IdC a1 � .STS�1/C a2 � .STS�1/2 C � � � C am � .STS�1/m:

We also have

.STS�1/n D .STS�1/ � .STS�1/ � .STS�1/n�2

D .ST2S�1/ � .STS�1/n�2

D � � �

D STnS�1:

Therefore,

Sp.T/S�1 D S.a0IdC a1TC a2T
2
C � � � C amTm/S�1

D a0IdC a1 � .STS�1/C a2 � .ST2S�1/C � � � C am � .STmS�1/

D p.STS�1/: ut

I Exercise 78 (5.15). Suppose F D C, T 2 L.V /, p 2 P.C/, and a 2 C. Prove

that a is an eigenvalue of p.T/ if and only if a D p.�/ for some eigenvalue � of

T.

Proof. If � is an eigenvalue of T, then there exists v ¤ 0 such that Tv D �v.

Thus,

Œp.T/�.v/ D .a0IdC a1TC a2T
2
C � � � C amTm/v

D a0vC a1TvC a2T
2vC � � � amTmv

D a0vC a1�vC a2T.�v/C � � � C amTm�1.�v/

D a0vC .a1�/vC .a2�
2/vC � � � C .am�

m/v

D p.�/vI
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that is, p.�/ is an eigenvalue of p.T/.

Conversely, let a 2 C be an eigenvalue of p.T/ D a0Id C a1T C � � � C amTm,

and v be the corresponding eigenvector. Then p.T/.v/ D av; that is,�
.a0 � a/IdC a1TC � � � C amTm

�
v D 0:

It follows from Corollary 4.8 that the above display can be rewritten as follows:�
c.T � �1Id/ � � � .T � �mId/

�
v D 0; (5.3)

where c; �1; : : : ; �m 2 C and c ¤ 0. Hence, for some i D 1; : : : ; m, we have

.T � �i Id/v D 0; that is, �i is an eigenvalue of T. ut

I Exercise 79 (5.16). Show that the result in the previous exercise does not

hold if C is replaced with R.

Proof. Let T 2 L.R2/ defined by T.w; z/ D .�z; w/. Then T has no eigen-

value (see p. 78). But T2.w; z/ D T.�z; w/ D .�w;�z/ has an eigenvalue: let

.�w;�z/ D �.w; z/; then ˚
�w D �w

�z D �z:

Hence, � D �1. ut

I Exercise 80 (5.17). Suppose V is a complex vector space and T 2 L.V /. Prove

that T has an invariant subspace of dimension j for each j D 1; : : : ;dimV .

Proof. Suppose that dimV D n. Let .v1; : : : ; vn/ be a basis of V with respect to

which T has an upper-triangular matrix (by Theorem 5.13)

M
�
T; .v1; : : : ; vn/

�
D

ˇ
�1

¨
�2

: : :

0 �n



:

Then it follows from Proposition 5.12 that the claim holds. ut

I Exercise 81 (5.18). Give an example of an operator whose matrix with re-

spect to some basis contains only 0’s on the diagonal, but the operator is invert-

ible.

Proof. Let T 2 L.R2/. Take the standard basis
�
.0; 1/ ; .1; 0/

�
of R2, with respect

to which T has the following matrix

M.T/ D

 
0 1

1 0

!
:

Then T.x; y/ DM.T/ � .x; y/0 D
�
y; x

�
is invertible. ut
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I Exercise 82 (5.19). Give an example of an operator whose matrix with re-

spect to some basis contains only nonzero numbers on the diagonal, but the

operator is not invertible.

Proof. Consider the standard basis
�
.1; 0/ ; .0; 1/

�
of R2. Let T 2 L.R2/ be de-

fined as T.x; y/ D .x; 0/. Then T is not injective and so is not invertible. Its

matrix is

M.T/ D

 
1 0

0 0

!
: ut

I Exercise 83 (5.20). Suppose that T 2 L.V / has dimV distinct eigenvalues

and that S 2 L.V / has the same eigenvectors as T (not necessarily with the

same eigenvalues). Prove that ST D TS.

Proof. Let dimV D n. Let �1; : : : ; �n be n distinct eigenvalues of T and

.v1; : : : ; vn/ be n eigenvector corresponding to the eigenvalues. Then .v1; : : : ; vn/

is independent and so is a basis of V . Further, the matrix of T with respect to

.v1; : : : ; vn/ is given by

M
�
T; .v1; : : : ; vn/

�
D

ˇ
�1 0 � � � 0

0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �n



:

Since S has the same eigenvectors as T, so for any vi , there is some y�i such

that Svi D y�ivi . For every v D
Pn
iD1 aivi 2 V we have

.ST/.v/ D S

264T

0@ nX
iD1

aivi

1A
375 D S

0@ nX
iD1

aiTvi

1A D S

0@ nX
iD1

ai�ivi

1A
D

nX
iD1

.ai�i / Svi

D

nX
iD1

�
ai�iy�i

�
vi ;

and

.TS/.v/ D T

264S

0@ nX
iD1

aivi

1A
375 D T

0@ nX
iD1

aiSvi

1A D T

0@ nX
iD1

�
aiy�i

�
vi

1A
D

nX
iD1

�
aiy�i

�
Tvi

D

nX
iD1

�
ai�iy�i

�
vi :
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Hence, ST D TS. ut

I Exercise 84 (5.21). Suppose P 2 L.V / and P2 D P. Prove that V D ıP ˚RP .

Proof. By Theorem 3.4, dimV D dim ıP C dim RP , so it suffices to show that

V D ıP C RP by Proposition 2.19. Take an arbitrary v 2 V . Since P2 D P, we

have

P2v D Pv () P .Pv � v/ D 0 () Pv � v 2 ıP I

that is, there exists u 2 ıP such that Pv � v D u. Therefore,

v D �uC Pv 2 ıP CRP : ut

I Exercise 85 (5.22). Suppose V D U ˚ W , where U and W are nonzero

subspaces of V . Find all eigenvalues and eigenvectors of PU;W .

Proof. We first show that � D 0 is an eigenvalue of PU;W . Since W ¤ f0g, we

can take w 2 W with w ¤ 0. Obviously, w 2 V and w can be written as w D 0Cw

uniquely. Then

PU;W .w/ D 0 D 0wI

that is, 0 is an eigenvalue of PU;W and any w 2 W with w ¤ 0 is an eigenvector

corresponding to 0.

Now let us check whether there is eigenvalue � ¤ 0. If there is an eigenvalue

� ¤ 0 under PU;W , then there exists v D uC w ¤ 0, where u 2 U and w 2 W ,

such that PU;W .v/ D �v, but which means that

u D � .uCw/ :

Then w D .1 � �/u=� 2 U since � ¤ 0, and which implies that w D 0 since

V D U ˚W forces U \W D f0g. Therefore, v D u ¤ 0 and

PU;W .v/PU;W .u/ D u D 1 � u;

that is, � D 1 is the unique nonzero eigenvalue of PU;W . ut

I Exercise 86 (5.23). Give an example of an operator T 2 L.R4/ such that T

has no (real) eigenvalues.

Proof. Our example is based on (5.4). Let T 2 L.R4/ be defined by

T.x1; x2; x3; x4/ D .�x2; x1;�x4; x3/:

Suppose that � is a (real) eigenvalue of T; then
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˚
�x1 D �x2

�x2 D x1

�x3 D �x4

�x4 D x3:

If � D 0, then .x1; x2; x3; x4/ D 0. So � ¤ 0. It is evident that

x1 ¤ 0 () x2 ¤ 0; and x3 ¤ 0 () x4 ¤ 0:

Suppose that x1 ¤ 0. Then from the first two equations we have

�2x2 D �x2 H) �2 D �1;

which has no solution in R. Hence, x1 D x2 D 0 when � ¤ 0. Similarly, we can

show that x3 D x4 D 0 if � ¤ 0. ut

I Exercise 87 (5.24). Suppose V is a real vector space and T 2 L.V / has

no eigenvalues. Proves that every subspace of V invariant under T has even

dimension.

Proof. If U is invariant under T and dimU is odd, then T� U 2 L.U / has an

eigenvalue. But this implies that T has an eigenvalue. A contradiction. ut





6
INNER-PRODUCT SPACES

“As You Should Verify”

Remark (p. 113). The orthogonal projection PU has the following properties:

a. PU 2 L.V /;

b. RPU
D U ;

c. ıPU
D U?;

d. v � PU v 2 U? for every v 2 V ;

e. P2U D PU ;

f. kPU vk 6 kvk for every v 2 V ;

g. PU v D
Pm
iD1 hv; ei i ei for every v 2 V , where .e1; : : : ; em/ is a basis of U .

Proof. (a) For any v; v0 2 V , we have

PU .vC v0/ D PU
�
.uCw/C .u0 Cw0/

�
D PU

�
.uC u0/C .wCw0/

�
D uC u0

D PU vC PU v0;

where u;u0 2 U and w;w0 2 U?. Also it is true that PU .av/ D aPU v. Therefore,

PU 2 L.V /.

(b) Write every v 2 V as v D uCw, where u 2 U and w 2 U?. Since PU v D u,

we have one direction that RPU
� U . For the other direction, notice that U D

PU ŒU � � RPU
.

(c) If v 2 ıPU
, then 0 D PU v D u; that is, v D 0Cw with w 2 U?. This proves

that ıPU
� U?. The other inclusion direction is clear.

(d) For every v 2 V , we have v D u C w, where u 2 U and w 2 U?. Hence,

v � PU v D .uCw/ � u D w 2 U?.

(e) For every v 2 V , we have P2U v D PU .PU v/ D PUu D u D PU v.

37
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(f) We can write every v 2 V as v D uCw with u 2 U and w 2 U?; therefore,

kvk D kuCwk
�
D kuk C kwk > kuk D kPU vk, where .�/ holds since U ? U?.

(g) It follows from Axler (1997, 6.31, p.112). ut

Remark (p. 119-120). Verify that the function T 7! T� has the following prop-

erties:

a. .SC T/� D S� C T� for all S;T 2 L.V;W /;

b. .aT/� D xaT� for all a 2 F and T 2 L.V;W /;

c. .T�/� D T for all T 2 L.V;W /;

d. Id� D Id, where Id is the identity operator on V ;

e. .ST/� D T�S� for all T 2 L.V;W / and S 2 L.W;U /.

Proof. (a) h.SC T/v;wi D hSv;wiChTv;wi D hv; S�wiChv;T�wi D hv; .S� C T�/wi :

(b) h.aT/v;wi D ahTv;wi D ahv;T�wi D hv; .xaT�/ .w/i.

(c) hT�w; vi D hv;T�wi D hTv;wi D hw;Tvi.

(d)
˝
Idv;w

˛
D hv;wi D

˝
v; Idw

˛
.

(e) h.ST/v;wi D hS.Tv/;wi D hTv; S�wi D hv; .T�S�/wi. ut

Exercises

I Exercise 88 (6.1). Prove that if x, y are nonzero vectors in R2, then hx;yi D

kxk kyk cos � , where � is the angle between x and y .

Proof. Using notation as in Figure 6.1, the law of cosines states that

kx � yk2 D kxk2 C kyk2 � 2kxk kyk cos �: (6.1)

x

y
x � y

�

Figure 6.1. The law of cosines

After inserting kx � yk2 D hx � y;x � yi D kxk2 C kyk2 � 2 hx;yi into (6.1),

we get the conclusion. ut

I Exercise 89 (6.2). Suppose u; v 2 V . Prove that hu; vi D 0 if and only if

kuk 6 kuC avk for all a 2 F .
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Proof. If hu; vi D 0, then hu; avi D 0 and so

kuC avk
2
D huC av;uC avi D kuk2 C kavk

2 > kuk2:

Now suppose that kuk 6 kuC avk for any a 2 F . If v D 0, then hu; vi D 0 holds

trivially. Thus we assume that v ¤ 0. We first have

kuC avk
2
D huC av;uC avi

D hu;uC avi C hav;uC avi

D kuk2 C xahu; vi C ahu; vi C kavk
2

D kuk2 C kavk
2
C xahu; vi C xahu; vi

D kuk2 C kavk
2
C 2Re

�
ahu; vi

�
:

Therefore, kuk 6 kuC avk for all a 2 F implies that for all a 2 F ,

2Re
�
xahu; vi

�
> �kavk

2
D �jaj2 kvk2: (6.2)

Take a D �˛hu; vi, with ˛ > 0; then (6.2) becomes

2
ˇ̌
hu; vi

ˇ̌2 6 ˛ˇ̌hu; viˇ̌2 kvk2: (6.3)

Let ˛ D 1=kvk2. Then (6.3) becomes

2
ˇ̌
hu; vi

ˇ̌2 6 ˇ̌hu; viˇ̌2 :
Hence, hu; vi D 0. ut

I Exercise 90 (6.3). Prove that
�Pn

jD1 aj bj

�2
6
�Pn

jD1 ja
2
j

� �Pn
jD1 b

2
j =j

�
for

all aj ; bj 2 R.

Proof. Since aj ; bj 2 R, we can write any a D .a1; : : : ; an/ and b D .b1; : : : ; bn/

as a D .a01; a
0
2

ıp
2 ; : : : ; a

0
n

ıp
n/ and b D .b01;

p
2b02; : : : ;

p
nb0n/ for some a0 D

.a01; : : : ; a
0
n/ and b0 D .b01; : : : ; b

0
n/. Then0@ nX

jD1

aj bj

1A2 D
0@ nX
jD1

a0j b
0
j

1A2 D ˝a0;b0˛2 ;
nX

jD1

ja2j D

nX
jD1

j
a0
2
j

j
D

nX
jD1

a0
2
j D ka

0k
2 ;

and
nX

jD1

b2j

j
D

nX
jD1

j b0
2
j

j
D

nX
jD1

b0
2
j D kb

0k
2 :

Hence, by the Cauchy-Schwarz Inequality,
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jD1

aj bj

1A2 D ˝a0;b0˛2 6 ka0k2 kb0k2 D
0@ nX
jD1

ja2j

1A0@ nX
jD1

b2j

j

1A : ut

I Exercise 91 (6.4). Suppose u; v 2 V are such that kuk D 3, kuC vk D 4, and

ku � vk D 6. What number must kvk equal?

Solution. By the parallelogram equality, kuC vk
2
Cku � vk

2
D 2.kuk2Ckvk2/,

so we have kvk D
p
17. ut

I Exercise 92 (6.5). Prove or disprove: there is an inner product on R2 such

that the associated norm is given by k.x1; x2/k Djx1j Cjx2j for all .x1; x2/ 2 R2.

Proof. There is no such inner product on R2. For example, let u D .1; 0/ and

v D .0; 1/. Then kuk D kvk D 1 and kuC vk D ku � vk D 2. But then the

Parallelogram Equality fails. ut

I Exercise 93 (6.6). Prove that if V is a real inner-product space, then hu; vi D

.kuC vk
2
� ku � vk

2/=4 for all u; v 2 V .

Proof. If V is a real inner-product space, then for any u; v 2 V ,

kuC vk
2
� ku � vk

2

4
D
huC v;uC vi � hu � v;u � vi

4

D

�
kuk2 C 2hu; vi C kvk2

�
�
�
kuk2 � 2hu; vi C kvk2

�
4

D hu; vi: ut

I Exercise 94 (6.7). Prove that if V is a complex inner-product space, then

hu; vi D
kuC vk

2
� ku � vk

2
C kuC ivk

2 i � ku � ivk
2 i

4

for all u; v 2 V .

Proof. If V is a complex inner-product space, then for any u; v 2 V we have

kuC vk
2
D huC v;uC vi D hu;uC vi C hv;uC vi

D kuk2 C hu; vi C hv;ui C kvk2;

ku � vk
2
D hu � v;u � vi D hu;u � vi � hv;u � vi

D kuk2 � hu; vi � hv;ui C kvk2;

kuC ivk
2 i D huC iv;uC ivi i D

�
hu;uC ivi C hiv;uC ivi

�
i

D

�
kuk2 C ihu; vi C i hv;ui C i ikvk2

�
i

D kuk2i C hu; vi � hv;ui C kvk2i;

and
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ku � ivk
2 i D hu � iv;u � ivi i D

�
hu;u � ivi � hiv;u � ivi

�
i

D

�
kuk2 � ihu; vi � i hv;ui C i ikvk2

�
i

D kuk2i � hu; vi C hv;ui C kvk2i:

Hence,

kuC vk
2
� ku � vk

2
C kuC ivk

2 i � ku � ivk
2 i

4

D
2hu; vi C 2 hv;ui C 2hu; vi � 2 hv;ui

4

D hu; vi: ut

I Exercise 95 (6.10). On P2.R/, consider the inner product given by

hp; qi D

Z 1

0

p .x/ q .x/ dx:

Apply the Gram-Schmidt procedure to the basis .1; x; x2/ to produce an or-

thonormal basis of P2.R/.

Solution. It is clear that e1 D 1 since k1k2 D
R 1
0
.1 � 1/ dx D 1. As for e2, let

e2 D
x � hx; e1i e1x � hx; e1i e1 :

Since

hx; e1i D

Z 1

0

x dx D
1

2
I

we have

e2 D
x � 1=2

kx � 1=2k
D

x � 1=2sZ 1

0

�
x � 1=2

�2
dx

D
p
3 .2x � 1/ :

As for e3,

e3 D
x2 � hx2; e1ie1 � hx

2; e2ie2x2 � hx2; e1ie1 � hx2; e2ie2 :
Since D

x2; e1

E
D

Z 1

0

x2 dx D
1

3
;

D
x2; e2

E
D

Z 1

0

x2
hp
3 .2x � 1/

i
dx D

p
3

6
;

and

x2 � hx2; e1ie1 � hx2; e2ie2 D
sZ 1

0

�
x2 � x C

1

6

�2
dx D

p
1=5

6
;

we know that
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e3 D
x2 � x C 1=6p

1=5

.
6
D
p
5
�
6x2 � 6x C 1

�
: ut

I Exercise 96 (6.11). What happens if the Gram-Schmidt procedure is applied

to a list of vectors that is not linearly independent.

Solution. If .v1; : : : ; vn/ is not linearly independent, then

ej D
vj �

˝
vj ; ej

˛
e1 � � � � �

˝
vj ; ej�1

˛
ej�1vj �

˝
vj ; ej

˛
e1 � � � � �

˝
vj ; ej�1

˛
ej�1


may not be well defined since if vj 2 span.v1; : : : ; vj�1/, thenvj �

˝
vj ; ej

˛
e1 � � � � �

˝
vj ; ej�1

˛
ej�1

 D 0: ut

I Exercise 97 (6.12). Suppose V is a real inner-product space and .v1; : : : ; vm/

is a linearly independent list of vectors in V . Prove that there exist exactly 2m

orthonormal lists .e1; : : : ; em/ of vectors in V such that

span.v1; : : : ; vj / D span.e1; : : : ; ej /

for all j 2 f1; : : : ; mg.

Proof. Given the linearly independent list .v1; : : : ; vm/, we have a correspond-

ing orthonormal list .e1; : : : ; em/ by the Gram-Schmidt procedure, such that

span.v1; : : : ; vj / D span.e1; : : : ; ej / for all j 2 f1; : : : ; mg.

Now, for every i D 1; : : : ; m, the list .e1; : : : ;�ei ; : : : ; em/ is also an orthonor-

mal list; further,

span.e1; : : : ; ei / D span.e1; : : : ;�ei /:

The above shows that there are at least 2m orthonormal lists satisfying the

requirement.

On the other hand, if there is an orthonormal list .f1; : : : ;fm/ satisfying

span.v1; : : : ; vj / D span.f1; : : : ;fj /

for all j 2 f1; : : : ; mg, then span.v1/ D span.f1/ implies that

f1 D ˙
v1

kv1k
D ˙e1I

Similarly, span.e1; e2/ D span.v1; v2/ D span.e1;f2/ implies that

f2 D a1e1 C a2e2; for some a1; a2 2 R:

Then the orthonormality implies that

he1; a1e1 C a2e2i D 0 H) a1 D 0;

ha2e2; a2e2i D 1 H) a2 D ˙1I
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that is, f2 D ˙e2. By induction, we can show that fi D ˙ei for all i D 1; : : : ; m,

and this completes the proof. ut

I Exercise 98 (6.13). Suppose .e1; : : : ; em/ is an orthonormal list of vectors

in V . Let v 2 V . Prove that kvk2 D
ˇ̌
hv; e1i

ˇ̌2
C � � � C

ˇ̌
hv; emi

ˇ̌2
if and only if

v 2 span.e1; : : : ; em/.

Proof. It follows from Corollary 6.25 that the list .e1; : : : ; em/ can be ex-

tended to an orthonormal basis .e1; : : : ; em;f1; : : : ;fn/ of V . Then by Theorem

6.17, every vector v 2 V can be presented uniquely as v D
Pm
iD1 hv; ei i ei CPn

jD1

˝
v;fj

˛
fj , and so

kvk2 D


mX
iD1

hv; ei i ei C

nX
jD1

˝
v;fj

˛
fj


2

D

*
mX
iD1

hv; ei i ei C

nX
jD1

˝
v;fj

˛
fj ;

mX
iD1

hv; ei i ei C

nX
jD1

˝
v;fj

˛
fj

+

D

mX
iD1

ˇ̌
hv; ei i

ˇ̌2
C

nX
jD1

ˇ̌̌˝
v;fj

˛ˇ̌̌2
:

Hence,

kvk2 D
ˇ̌
hv; e1i

ˇ̌2
C � � � C

ˇ̌
hv; emi

ˇ̌2
()

˝
v;fj

˛
D 0; 8 j D 1; : : : ; n

() v D

mX
iD1

hv; ei i ej

() v 2 span.e1; : : : ; em/: ut

I Exercise 99 (6.14). Find an orthonormal basis of P2.R/ such that the differ-

entiation operator on P2.R/ has an upper-triangular matrix with respect to this

basis.

Solution. Consider the orthonormal basis .1;
p
3.2x � 1/;

p
5.6x2 � 6xC 1// D

.e1; e2; e3/ in Exercise 95. Let T be the differentiation operator on P2.R/. We

have

Te1 D 0 2 span.e1/;

Te2 D
hp
3.2x � 1/

i0
D 2
p
3 2 span.e1; e2/;

and

Te3 D
hp
5.6x2 � 6x C 1/

i0
D 12

p
5x � 6

p
5 2 span.e1; e2; e3/:

It follows from Proposition 5.12 that T has an upper-triangular matrix. ut

I Exercise 100 (6.15). Suppose U is a subspace of V . Prove that dimU? D

dimV � dimU .

Proof. We have V D U ˚ U?; hence,
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dimV D dimU C dimU? � dimU \ U?

D dimU C dimU?I

that is, dimU? D dimV � dimU . ut

I Exercise 101 (6.16). Suppose U is a subspace of V . Prove that U? D f0g if

and only if U D V .

Proof. If U? D f0g, then V D U ˚ U? D U ˚ f0g D U . To see the converse

direction, let U D V . For any w 2 U?, we have hw;wi D 0 since w 2 U? � V D

U ; then w D 0, that is, U? D f0g. ut

I Exercise 102 (6.17). Prove that if P 2 L.V / is such that P2 D P and ev-

ery vector in ıP is orthogonal to every vector in RP , then P is an orthogonal

projection.

Proof. For every w 2 RP , there exists vw 2 V such that Pvw D w. Hence,

Pw D P .Pvw/ D P2vw D Pvw D w:

By Exercise 84, V D ıP ˚ RP if P2 D P . Then any v 2 V can be uniquely

written as v D uCw with u 2 ıP and w 2 RP , and

Pv D P .uCw/ D Pw D w;

Hence, P D PRP
when ıP ? RP . ut

I Exercise 103 (6.18). Prove that if P 2 L.V / is such that P2 D P and kPvk 6
kvk for every v 2 V , then P is an orthogonal projection.

Proof. It follows from the previous exercise that if P2 D P , then Pv D w for

every v 2 V , where v is uniquely written as v D uCw with u 2 ıP and w 2 RP .

It now suffices to show that ıP ? RP . Take an arbitrary v D u C w 2 V ,

where u 2 ıP and w 2 RP . Then kPvk 6 kvk implies that

hPv;Pvi D hw;wi 6 huCw;uCwi () �kuk2 6 2Re
�
hu;wi

�
:

The above inequality certainly fails for some v if hu;wi ¤ 0 (see Exercise 89).

Therefore, ıP ? RP and P D PRP
. ut

I Exercise 104 (6.19). Suppose T 2 L.V / and U is a subspace of V . Prove that

U is invariant under T if and only if PUTPU D TPU .

Proof. It follows from Theorem 6.29 that V D U ˚ U?.

Only if: Suppose that U is invariant under T. For any v D uC w with u 2 U

and w 2 U?, we have

.PUTPU / .v/ D .PUT/ .u/ D PU .Tu/ D Tu;
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where the last equality holds since u 2 U and U is invariant under T. We

also have

.TPU / .v/ D Tu:

If: Now suppose that PUTPU D TPU . Take any u 2 U and we have

Tu D T
�
PU .u/

�
D .TPU / .u/ D .PUTPU / .u/ D PU .Tu/ 2 U

by the definition of PU . This proves that U is invariant under T. ut

I Exercise 105 (6.20). Suppose T 2 L.V / and U is a subspace of V . Prove that

U and U? are both invariant under T if and only if PUT D TPU .

Proof. Suppose first that both U and U? are both invariant under T. Then for

any v D uCw, where u 2 U and w 2 U?, we have

.PUT/ .v/ D .PUT/ .uCw/ D PU .TuC Tw/ D Tu;

and .TPU / .v/ D Tu.

Now suppose PUT D TPU . For any u 2 U , we have Tu D .TPU / .u/ D

.PUT/ .u/ D PU .Tu/ 2 U . Applying the previous argument to U? proves that

U? is invariant. ut

I Exercise 106 (6.21). In R4, let U D span..1; 1; 0; 0/ ; .1; 1; 1; 2//. Find u 2 U

such that ku � .1; 2; 3; 4/k is as small as possible.

Solution. We first need to find the orthonormal basis of U . Using the Gram-

Schmidt procedure, we have

e1 D
.1; 1; 0; 0/

k.1; 1; 0; 0; /k
D

�p
2=2;
p
2=2; 0; 0

�
;

and

e2 D
.1; 1; 1; 2/ � h.1; 1; 1; 2/ ; e1i e1.1; 1; 1; 2/ � h.1; 1; 1; 2/ ; e1i e1 D

�
0; 0;
p
5=5; 2

p
5=5

�
:

Then by 6.35,

PU .1; 2; 3; 4/ D h.1; 2; 3; 4/ ; e1i e1 C h.1; 2; 3; 4/ ; e2i e2 D
�
3=2; 3=2; 11=5; 22=5

�
:

Remark. We can use Maple to obtain the orthonormal basis easily:

>with(LinearAlgebra):

>v1:=<1,1,0,0>:

>v2:=<1,1,1,2>:

>GramSchmidt({v1,v2}, normalized)

ut

I Exercise 107 (6.22). Find p 2 P3 .R/ such that p .0/ D 0, p0 .0/ D 0, andR 1
0 j2C 3x � p .x/j

2 dx is as small as possible.
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Proof. p .0/ D p0 .0/ D 0 implies that p .x/ D ax2 C bx3, where a; b 2 R. We

want to find p 2 U � span.x2; x3/ such that distance from q D 23x to U is as

small as possible. With the Gram-Schmidt procedure, the orthonomal basis is

e1 D
x2

kx2k
D

x2sZ 1

0

ˇ̌̌
x2 � x2

ˇ̌̌
dx

D
p
5x2;

and

e2 D

x3 �

�R 1
0

ˇ̌̌p
5x5

ˇ̌̌
dx

�
p
5x2x3 �

 Z 1

0

ˇ̌̌p
5x5

ˇ̌̌
dx

!
p
5x2


D
x3 � 5

6
x2

p
7
ı
42
D 6
p
7x3 � 5

p
7x2:

Hence,

PU .2C 3x/ D

"Z 1

0

.2C 3x/
p
5x2 dx

#
p
5x2

C

"Z 1

0

.2C 3x/
�
6
p
7x3 � 5

p
7x2

�
dx

#�
6
p
7x3 � 5

p
7x2

�
: ut

I Exercise 108 (6.24). Find a polynomial q 2 P2.R/ such that

p

�
1

2

�
D

Z 1

0

p.x/q.x/dx

for every p 2 P2.R/.

Solution. For every p 2 P2.R/, we define a function T W P2.R/ ! R by letting

Tp D p.1=2/. It is clear that T 2 L.P2.R/;R/.

It follows from Exercise 95 that .e1; e2; e3/ D .1;
p
3.2x� 1/;

p
5.6x2� 6xC 1//

is an orthonormal basis of P2.R/. Then, by Theorem,

Tp D T
�
hp; e1i e1 C hp; e2i e2 C hp; e3i e3

�
D hp;T.e1/e1 C T.e2/e2 C T.e3/e3i I

hence,

q.x/ D e1.1=2/e1 C e2.1=2/e2 C e3.1=2/e3

D 1C 0 �

p
5

2

hp
5.6x2 � 6x C 1/

i
D �

3

2
C 15x � 15x2: ut

I Exercise 109 (6.25). Find a polynomial q 2 P2.R/ such that
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0

p.x/.cos�x/dx D

Z 1

0

p.x/q.x/dx

for every p 2 P2.R/.

Solution. As in the previous exercise, we let T W p 7!
R 1
0
p.x/.cos�x/dx for

every p 2 P2.R/. Then T 2 L.P2.R/;R/. Let

q.x/ D T.e1/e1 C T.e2/e2 C T.e3/e3 D 12=�
2
� 24x=�2: ut

I Exercise 110 (6.26). Fix a vector v 2 V and define T 2 L.V; F / by Tu D hu; vi.

For a 2 F , find a formula for T�a.

Proof. Take any u 2 V . We have hTu; ai D
˝
hu; vi; a

˛
D hu; via D hu; avi; thus,

T�a D av. ut

I Exercise 111 (6.27). Suppose n is a positive integer. Define T 2 L.F n/ by

T .z1; : : : ; zn/ D .0; z1; : : : ; zn�1/. Find a formula for T�.z1; : : : ; zn/.

Solution. Take the standard basis of F n, which is also a orgonormal basis of

F n. We then have

T .1; 0; 0; : : : ; 0/ D .0; 1; 0; 0; : : : ; 0/ ;

T .0; 1; 0; : : : ; 0/ D .0; 0; 1; 0; : : : ; 0/ ;

� � �

T .0; 0; : : : ; 0; 1/ D .0; 0; 0; 0; : : : ; 0/ :

Therefore, M .T/ is given by

M .T/ D

�
0 0 � � � 0 0

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

�

;

and so

M.T�/ D

�
0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

0 0 0 � � � 0

�

:

Then T�.z1; : : : ; zn/ DM.T�/M .z1; : : : ; zn/ D .z2; z3; : : : ; zn�1; zn; 0/. ut

I Exercise 112 (6.28). Suppose T 2 L.V / and � 2 F . Prove that � is an eigen-

value of T if and only if x� is an eigenvalue of T�.
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Proof. If � 2 F is an eigenvalue of T, then there exists v ¤ 0 such that Tv D �v.

Take w 2 V with w ¤ 0. Then

hTv;wi D h�v;wi D hv; x�wi D hv;T�wi;

which implies that T�w D x�w; that is, x� is an eigenvalue of T�. With the same

logic, we can show the inverse direction. ut

I Exercise 113 (6.29). Suppose T 2 L.V / and U is a subspace of V . Prove that

U is invariant under T if and only if U? is invariant under T�.

Proof. Take any u 2 U and w 2 U?. If U is invariant under T, then Tu 2 U

and so

0 D hTu;wi D
˝
u;T�w

˛
I

that is, T�w 2 U?. Applying T� then we obtain the inverse direction. ut

I Exercise 114 (6.30). Suppose T 2 L.V;W /. Prove that

a. T is injective if and only if T� is surjective;

b. T is surjective if and only if T� is injective.

Proof. (a) If T is injective, then dim ıT D 0. Then

dim RT� D dim RT D dimV � dim ıT D dimV;

i.e., T 2 L.W; V / is surjective. If T� is surjective, then dim RT� D dimV and so

dim ıT D dimV � dim RT D dimV � dim RT� D 0;

that is, T 2 L.V;W / is injective.

(b) Using the fact that .T�/� D T and the result in part (a) we get (b) immedi-

ately. ut

I Exercise 115 (6.31). Prove that dim ıT� D dim ıT C dimW � dimV and

dim RT� D dim RT for every T 2 L.V;W /.

Proof. It follows from Proposition 6.46 that ıT� D .RT/
?. Since RT is a sub-

space of W , and W D RT ˚ .RT/
?, we thus have

dimV D dim ıT C dim RT

D dim ıT C dimW � dim R?T

D dim ıT C dimW � dim ıT� ;

(6.4)

which proves the first claim. As for the second equality, we first have

dim RT D dimV � dim ıT;

dim RT� D dimW � dim ıT� :
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Thus, dim RT � dim RT� D 0 by (6.4), that is, dim RT D dim RT� . ut

I Exercise 116 (6.32). Suppose A is an m � n matrix of real numbers. Prove

that the dimension of the span of the columns of A (in Rm) equals the dimension

of the span of the rows of A (in Rn).

Proof. Without loss of generality, we can assume that T 2 L.Rn;Rm/ is the

linear map induced by A, where A corresponds to an orthonormal basis of Rn

and an orthonormal basis of Rm; that is, Tx D Ax for all x 2 Rn. By Proposition

6.47, we know that for any y 2 Rm,

T�y D A0y;

where A0 is the (conjugate) transpose of A. Let

A D
�
a1 � � � an

�
D

�
b1
:::

bm

˘

:

Then

A0 D

�
a01
:::

a0n

˘

D

�
b01 � � � b0m

�
:

It is easy to see that

span.a1; : : : ; an/ D RT; and span.a01; : : : ; a
0
n/ D RT� :

It follows from Exercise 115 that dim RT D dim RT� . ut
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OPERATORS ON INNER-PRODUCT SPACES

“As You Should Verify”

Remark (p.131). If T is normal, then T � �Id is normal, too.

Proof. Note that .T � �Id/� D T� � x�Id. For any v 2 V ,

.T � �Id/.T� � x�Id/v D .T � �Id/.T�v � x�v/

D T.T�v � x�v/ � � � .T�v � x�v/

D TT�v � x�Tv � �T�vCj�j2 v;

and

.T� � x�Id/.T � �Id/v D .T� � x�Id/ .Tv � �v/

D T� .Tv � �v/ � x� � .Tv � �v/

D T�Tv � �T�v � x�TvCj�j2 v:

Hence, .T � �Id/.T� � x�Id/ D .T� � x�Id/.T � �Id/ since TT� D T�T. ut

Exercises

I Exercise 117 (7.1). Make P2.R/ into an inner-product space by defining

hp; qi D
R 1
0
p .x/ q .x/ dx. Define T 2 L.P2.R// by T

�
a0 C a1x C a2x

2
�
D a1x.

a. Show that T is not self-adjoint.

b. The matrix of T with respect to the basis
�
1; x; x2

�
is

�
0 0 0

0 1 0

0 0 0

�

:

This matrix equals its conjugate transpose, even though T is not self-adjoint.

Explain why this is not a contradiction.

51
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Proof. (a) Suppose T is self-adjoint, that is, T D T�. Take any p; q 2 P2.R/ with

p .x/ D a0 C a1x C a2x
2 and q .x/ D b0 C b1x C b2x2. Then hTp; qi D hp;T�qi D

hp;Tqi implies thatZ 1

0

.a1x/
�
b0 C b1x C b2x

2
�

dx D

Z 1

0

�
a0 C a1x C a2x

2
�
.b1x/ dx;

that is,
a1b0

2
C
a1b1

3
C
a1b2

4
D
a0b1

2
C
a1b1

3
C
a2b1

4
: (7.1)

Let a1 D 0, then (7.1) becomes 0 D a0b1=2, which fails to hold for any a0b1 ¤ 0.

Therefore, T ¤ T�.

(b)
�
1; x; x2

�
is not an orthonormal basis. See Proposition 6.47. ut

I Exercise 118 (7.2). Prove or give a counterexample: the product of any two

self-adjoint operators on a finite-dimensional inner-product space is self-adjoint.

Proof. The claim is incorrect. Let S;T 2 L.V / be two self-adjoint operators.

Then .ST/� D T�S� D TS. It is not necessarily that ST D TS since multiplication

is not commutable.

For example, let S;T 2 L.R2/ be defined by the following matrices (with

respect to the stand basis of R2):

M.S/ D

 
0 1

1 0

!
M.T/ D

 
1 0

0 0

!
:

Then both S and T are self-adjoint, but ST is not since M.S/M.T/ ¤M.T/M.S/.

ut

I Exercise 119 (7.3). a. Show that if V is a real inner-product space, then the

set of self-adjoint operators on V is a subspace of L.V /.

b. Show that if V is a complex inner-product space, then the set of self-adjoint

operators on V is not a subspace of L.V /.

Proof. (a) Let Lsa.V / be the set of self-adjoint operators. Obviously, 0 D 0�

since for any v;w we have 0 D h0v;wi D hv; 0wi D hv; 0�wi. To see Lsa.V /

is closed under addition, let S;T 2 Lsa.V /. Then .SC T/� D S� C T� D S C T

implies that S C T 2 Lsa.V /. Finally, for any a 2 F and T 2 Lsa.V /, we have

.aT/� D aT� D aT 2 Lsa.V /.

(b) If V is a complex inner-product, then .aT/� D aT� D aT, so Lsa.V / is not

a subspace of L.V /. ut

I Exercise 120 (7.4). Suppose P 2 L.V / is such that P2 D P . Prove that P is

an orthogonal projection if and only if P is self-adjoint.

Proof. If P2 D P , then V D ıP ˚RP (by Exercise 84), and Pw D w for every

w 2 RP (by Exercise 102).
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Suppose first that P D P�. Take arbitrary u 2 ıP and w 2 RP . Then

hu;wi D hu;Pwi D
˝
u;P�w

˛
D hPu;wi D h0;wi D 0:

Hence, ıP ? RP and so P D PRP
.

Now suppose that P is an orthogonal projection. Then there exists a sub-

space U of V such that V D U ˚ U? and Pv D u if v D u C w with u 2 U

and w 2 U?. Take arbitrary v1; v2 2 V with v1 D u1 C w1 and v2 D u2 C w2.

Then hPv1; v2i D hu1;u2 Cw2i D hu1;u2i. Similarly, hv1;Pv2i D hu1 Cw1;u2i D

hu1;u2i. Thus, P D P�. ut

I Exercise 121 (7.5). Show that if dimV > 2, then the set of normal operators

on V is not a subspace of L.V /.

Proof. Let Ln.V / denote the set of normal operators on V and dimV > 2. Let

S;T 2 Ln.V /. It is easy to see that

.SC T/ .SC T/� D .SC T/
�
S� C T�

�
¤
�
S� C T�

�
.SC T/

generally since matrix multiplication is not commutable. ut

I Exercise 122 (7.6). Prove that if T 2 L.V / is normal, then RT D RT� .

Proof. T 2 L.V / is normal if and only if kTvk D kT�vk for all v 2 V (by

Proposition 7.6). Then v 2 ıT () kTvk D 0 () kT�vk D 0 () v 2 ıT� ,

i.e., ıT D ıT� . It follows from Proposition 6.46 that

RT� D ı?T D ı?T� D RT: ut

I Exercise 123 (7.7). Prove that if T 2 L.V / is normal, then ıTk D ıT and

RTk D RT for every positive integer k.

Proof. It is evident that ıT � ıTk . So we take any v 2 ıTk with v ¤ 0 (if

ıTk D f0g, there is nothing to prove). ThenD
T�Tk�1v;T�Tk�1v

E
D

D
TT�Tk�1v;Tk�1v

E
D

D
T�TTk�1v;Tk�1v

E
D

D
T�Tkv;Tk�1v

E
D 0;

and so
�
T�Tk�1

�
v D 0. NowD

Tk�1v;Tk�1v
E
D

D
Tk�2v;T�Tk�1v

E
D 0

implies that Tk�1v D 0, that is, v 2 ıTk�1 . With the same logic, we can show

that v 2 ıTk�2 , : : :, v 2 ıT. ut



54 CHAPTER 7 OPERATORS ON INNER-PRODUCT SPACES

I Exercise 124 (7.8). Prove that there does not exist a self-adjoint operator

T 2 L.R3/ such that T .1; 2; 3/ D .0; 0; 0/ and T .2; 5; 7/ D .2; 5; 7/.

Proof. Suppose there exists such a operator T 2 L.R3/. Then

hT .1; 2; 3/ ; .2; 5; 7/i D h.0; 0; 0/ ; .2; 5; 7/i D 0;

but

h.1; 2; 3/ ;T .2; 5; 7/i D h.1; 2; 3/ ; .2; 5; 7/i ¤ 0: ut

I Exercise 125 (7.9). Prove that a normal operator on a complex inner-product

space is self-adjoint if and only if all its eigenvalues are real.

Proof. It follows from Proposition 7.1 that every eigenvalue of a self-adjoint

operator is real, so the “only if” part is clear.

To see the “if” part, let T 2 L.V / be a normal operator, and all its eigenvalues

be real. Then by the Complex Spectral Theorem, V has an orthonormal basis

consisting of eigenvectors of T. Hence, M.T/ is diagonal with respect this basis,

and so the conjugate transpose of M.T/ equals to M.T/ since all eigenvalues

are real. ut

I Exercise 126 (7.10). Suppose V is a complex inner-product space and T 2

L.V / is a normal operator such that T9 D T8. Prove that T is self-adjoint and

T2 D T.

Proof. Let T 2 L.V / be normal and v 2 V . Then by Exercise 123,

T8.Tv � v/ D 0 H) Tv � v 2 ıT8 D ıT H) T.Tv � v/ D 0 H) T2 D T:

By the Complex Spectral Theorem, there exists an orthonormal basis of V

such that M.T/ is diagonal, and the entries on the diagonal line consists of the

eigenvalues .�1; : : : ; �n/ of T. Now T2 D T implies that M.T/M.T/ DM.T/; that

is,

�2i D �i ; i D 1; : : : ; n:

Then each �i 2 R. It follows from Exercise 125 that T is self-adjoint. ut

I Exercise 127 (7.11). Suppose V is a complex inner-product space. Prove that

every normal operator on V has a square root.

Proof. By the Complex Spectral Theorem, there exists an orthonormal basis

of V such that M.T/ is diagonal, and the entries on the diagonal line consists

of the eigenvalues .�1; : : : ; �n/ of T. Let S 2 L.V / be an operator whose matrix

is
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M.S/ D

�p
�1 0 � � � 0

0
p
�2 � � � 0

:::
:::

: : :
:::

0 0 � � �

p
�n

�

:

Then S2 D T; that is, S is a square root of T. ut

I Exercise 128 (7.12). Give an example of a real inner-product space V and

T 2 L.V / and real numbers ˛; ˇ with ˛2 < 4ˇ such that T2 C ˛T C ˇId is not

invertible.

Proof. We use a normal, but not self-adjoint operator on V (See Lemma 7.15).

Let

M.T/ D

 
0 �1

1 0

!
:

Then

M.T2/ D

 
�1 0

0 �1

!
:

If we let ˛ D 0 and ˇ D 1, then

�
T2 C Id

� �
x; y

�
D

 
�1 0

0 �1

! 
x

y

!
C

 
x

y

!
D

 
0

0

!

for all
�
x; y

�
2 R2. Thus, T2 C Id is not injective, and so is not invertible. ut

I Exercise 129 (7.13). Prove or give a counterexample: every self-adjoint op-

erator on V has a cube root.

Proof. By the Spectral Theorem, for any self-adjoint operator on V there is a

orthonormal basis .e1; : : : ; en/ such that

M .T/ D

�
�1 0

: : :

0 �n

˘

;

where there may some i with �i D 0. Then it is clear that there exists a matrix

M .S/ with

M .S/ D

˙
3
p
�1 0

: : :

0 3
p
�n

�

such that ŒM.S/�3 DM.T/. Let S be the operator with the matrix M.S/ and so S

is the cube root of T. ut
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I Exercise 130 (7.14). Suppose T 2 L.V / is self-adjoint, � 2 F , and " > 0. Prove

that if there exists v 2 V such that kvk D 1 and kTv � �vk < ", then T has an

eigenvalue �0 such that
ˇ̌
� � �0

ˇ̌
< ".

Proof. By the Spectral Theorem, there exists an orthonormal basis .e1; : : : ; en/

consisting of eigenvectors of T. Write v D
Pn
iD1 aiei , where ai 2 F . Since kvk D

1, we have

1 D


nX
iD1

aiei


2

Dja1j
2
C � � � Cjanj

2 :

Suppose that j� � �i j > " for all eigenvalues �i 2 F . Then

kTv � �vk
2
D

T
0@ nX
iD1

aiei

1A � � nX
iD1

aiei


2

D


nX
iD1

ai�iei �

nX
iD1

ai�ei


2

D


nX
iD1

ai .�i � �/ ei


2

D

nX
iD1

jai j
2
�j�i � �j

2

>
nX
iD1

jai j
2
� "2

D "2;

that is, kTv � �vk > ". A contradiction. Thus, there exists some eigenvalue �0

so that
ˇ̌
� � �0

ˇ̌
< ". ut

I Exercise 131 (7.15). Suppose U is a finite-dimensional real vector space and

T 2 L.U /. Prove that U has a basis consisting of eigenvectors of T if and only if

there is an inner product on U that makes T into a self-adjoint operator.

Proof. Suppose first that U has a basis consisting of eigenvectors .e1; : : : ; en/

of T. Let the corresponding eigenvalues be .�1; : : : ; �n/. Then

M.T/ D

ˇ
�1 0 � � � 0

0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �n



:

Define h�; �i W U � U ! R by letting˝
ei ; ej

˛
D ıij :

Then, for arbitrary u;w 2 U ,
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hTu;wi D

*
nX
iD1

aiTei ;

nX
iD1

biei

+
D

nX
iD1

nX
jD1

aibj
˝
Tei ; ej

˛
D

nX
iD1

nX
jD1

ai�ibj
˝
ei ; ej

˛
D

nX
iD1

ai�ibi :

Similarly, hu;Twi D
Pn
iD1 ai�ibi . Hence T D T�.

The other direction follows from the Real Spectral Theorem directly. ut

I Exercise 132 (7.16). Give an example of an operator T on an inner-product

space such that T has an invariant subspace whose orthogonal complement is

not invariant under T.

Solution. Let .e1; : : : ; em/ be an orthonormal basis of U . Extend to an or-

thonormal basis .e1; : : : ; em;f1; : : : ;fn/ of V . Let U is invariant under T, but

U? is not invariant under T. Then M.T/ takes the following form

M.T/ D

0BBBBBBBBB@

e1 � � � em f1 � � � fn

e1
::: A B

em

f1
::: 0 C

fn

1CCCCCCCCCA
:

Since .f1; : : : ;fn/ is a orthonormal basis of U?, we know that U? is not invari-

ant if C ¤ 0.

For example, let V D R2, U be the x-axis, and U? be the y-axis. Let .e1; e2/

be the standard basis of R2. Let

M.T/ D

 e1 e2

e1 1 1

e2 0 1

!

Notice that T is not normal:

M.T/M.T�/ D

 
2 1

1 1

!
; but M.T�/M.T/ D

 
1 1

1 2

!
: ut

I Exercise 133 (7.17). Prove that the sum of any two positive operators on V

is positive.

Proof. Let S;T 2 L.V / be positive. Then

.SC T/� D S� C T� D SC TI
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that is, SC T is self-adjoint. Also, for an arbitrary v 2 V ,

h.SC T/v; vi D hSv; vi C hTv; vi > 0:

Hence, SC T is positive. ut

I Exercise 134 (7.18). Prove that if T 2 L.V / is positive, then so is Tk for every

positive integer k.

Proof. It is evident that Tk is self-adjoint. Pick an arbitrary v 2 V . If k D 2,

then
˝
T2v; v

˛
D hTv;Tvi D kTvk > 0. Now suppose that

D
T`v; v

E
> 0 for all

integer ` < k. ThenD
Tkv; v

E
D

D
Tk�1v;Tv

E
D

D
Tk�2.Tv/;Tv

E
> 0

by the induction hypothesis. ut

I Exercise 135 (7.19). Suppose that T is a positive operator on V . Prove that T

is invertible if and only if hTv; vi > 0 for every v 2 V X f0g.

Proof. First assume that hTv; vi > 0 for every v 2 V X f0g. Then Tv ¤ 0; that

is, T is injective, which means that T is invertible.

Now suppose that T is invertible. Since T is self-adjoint, there exists an or-

thonormal basis .v1; : : : ; vn/ consisting of eigenvectors of T by the Real Spectral

Theorem. Let .�1; : : : ; �n/ be the corresponding eigenvalues. Since T injective,

we know that Tvi ¤ 0 for all i D 1; : : : ; n; hence, �i ¤ 0 for all i D 1; : : : ; n.

For every v 2 V X f0g, there exists a list .a1; : : : ; an/, not all zero, such that

v D
Pn
iD1 aivi . Then

hTv; vi D

*
nX
iD1

aiTvi ;

nX
iD1

aivi

+
D

*
nX
iD1

ai�ivi ;

nX
iD1

aivi

+
D

nX
iD1

�i jai j
2 > 0: ut

I Exercise 136 (7.20). Prove or disprove: the identity operator on F 2 has in-

finitely many self-adjoint square roots.

Proof. Let

M.S/ D

 
cos � sin �

sin � � cos �

!
:

Then S2 D Id. Hence, there are infinitely many self-adjoint square roots. ut



Part II

Linear Algebra and Its Application (Lax,
2007)





8
FUNDAMENTALS

I Exercise 137 (1.1). Show that the zero of vector addition is unique.

Proof. Suppose that 0 and 00 are both additive identities for some vector. Then

00 D 00 C 0 D 0. ut

I Exercise 138 (1.2). Show that the vector with all components zero serves as

the zero element of classical vector addition.

Proof. Let 0 D .0; : : : ; 0/. Then x C 0 D .x1; : : : ; xn/C .0; : : : ; 0/ D .x1; : : : ; xn/ D

x. ut

Example 1 (Examples of Linear Spaces).

(i) Set of all row vectors: .a1; : : : ; an/, aj 2 K; addition, multiplication defined

componentwise. This space is denoted as Kn.

(ii) Set of all real-valued functions f .x/ defined on the real line, K D R.

(iii) Set of all functions with values in K, defined on an arbitrary set S .

(iv) Set of all polynomials of degree less than n with coefficients in K.

I Exercise 139 (1.3). Show that (i) and (iv) are isomorphic.

Proof. Let Pn�1.K/ denote the set of all polynomials of degree less than n

with coefficients in K, that is,

Pn�1.K/ D
n
a1 C a2x C � � � C anx

n�1
ˇ̌̌
a1; : : : ; an 2 K

o
:

Then, .a1; : : : ; an/ 7! a1 C a2x C � � � C anx
n�1 is an isomorphism. ut

I Exercise 140 (1.4). Show that if S has n elements, (i) and (iii) are isomorphic.

Proof. Let jS j D n. Then any function f 2 KS can be written as�
f .s1/ ; : : : ; f .sn/

�
D .a1; : : : ; an/ ;

where s1; : : : ; sn 2 S . ut

61



62 CHAPTER 8 FUNDAMENTALS

I Exercise 141 (1.5). Show that when K D R, (iv) is isomorphic with (iii) when

S consists of n distinct points of R.

Proof. We need to show that RS is isomorphic to Pn�1.R/. We can write each

f 2 RS as .a1; : : : ; an/, and consider the map .a1; : : : ; an/ 7! a1 C a2x C � � � C

anx
n�1. ut

I Exercise 142 (1.6). Prove that Y C Z is a linear subspace of X if Y and Z

are.

Proof. If y1 C z1;y2 C z2 2 Y C Z, then .y1 C z1/ C .y2 C z2/ D .y1 C y2/ C

.z1 C z2/ 2 Y C Z; if y C z 2 Y C Z and k 2 K, then k .y C z/ D ky C kz 2

Y CZ. ut

I Exercise 143 (1.7). Prove that if Y and Z are linear subspaces of X , so is

Y \Z.

Proof. If x;y 2 Y \ Z, then x C y 2 Y and x C y 2 Z, which imply that

x C y 2 Y \ Z; if x 2 Y \ Z, then x 2 Y and x 2 Z; since both Y and X are

subspaces of X , we have kx 2 Y and ky 2 Z for all k 2 K, that is kx 2 Y \Z. ut

I Exercise 144 (1.8). Show that the set f0g consisting of the zero element of a

linear space X is a subspace of X . It is called the trivial subspace.

Proof. Trial. ut

I Exercise 145 (1.9). Show that the set of all linear combinations of x1; : : : ;xj

is a subspace of X , and that is the smallest subspace of X containing x1; : : : ;xj .

This is called the subspace spanned by x1; : : : ;xj .

Proof. Let span.x1; : : : ;xj / �
n
x W x D

Pj
iD1 kixi

o
. Let x D

Pj
iD1 kixi and x0 DPj

iD1 k
0
ixi . Then

x C x0 D

jX
iD1

�
ki C k

0
i

�
xi ;

and

kx D

jX
iD1

.kki /xi :

Hence, the set of all linear combinations of x1; : : : ;xj is a subspace of X .

Since xi D 1 � xi C
P
`¤i 0 � x`, each xi is a linear combination of

�
x1; : : : ;xj

�
.

Thus, span.x1; : : : ;xj / contains each xi . Conversely, because subspaces are

closed under scalar multiplication and addition, every subspace of V contain-

ing each xi must contain span.x1; : : : ;xj /. ut

I Exercise 146 (1.10). Show that if the vectors x1; : : : ;xj are linearly indepen-

dent, then none of the xi is the zero vector.
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Proof. Suppose that there is a vector xi D 0. Then

ki � 0C
X
`¤i

0 � x` D 0; 8 k ¤ 0;

that is, the list
�
x1; : : : ;xj

�
is linearly dependent. ut

I Exercise 147 (1.11). Prove that if X is finite dimensional and the direct sum

of Y1; : : : ; Ym, then dimX D
Pm
jD1 dimYj .

Proof. Let
�
y11 ; : : : ;y

1
n1

�
be a basis of Y1, : : :,

�
ym1 ; : : : ;y

m
nm

�
be a basis of Ym.

We show that the list B D
�
y11 ; : : : ;y

1
n1
; : : : ;ym1 ; : : : ;y

m
nm

�
is a basis of X D

Y1 ˚ � � � ˚ Ym. To see X D span.B/, note that for any x 2 X , there exists a

unique list .y1; : : : ;ym/ with yi 2 Yi such that x D
Pm
iD1 yi . But each yi can be

uniquely represented as yi D
Pni

jD1 D a
i
jy ij ; thus,

x D

mX
iD1

niX
jD1

aijy ij :

To see that the list B is linearly independent, suppose that there exists a list

of scalars b D
�
b11 ; : : : ; b

1
n1
; : : : ; bm1 ; : : : ; b

m
mn

�
, such that

b11y11 C � � � C b
1
n1

y1n1
C � � � C bm1 ym1 C � � � C b

m
mn

ymmn
D 0X :

But 0X D 0y
1
1C� � �C0y

1
n1
C� � �C0ym1 C� � �C0y

m
mn

and X D Y1˚� � �˚Ym implies that

all the scalars are zero, that is, B is linearly independent. Therefore, dimX DPm
jD1 dimYj . ut

I Exercise 148 (1.12). Show that every finite-dimensional space X over K is

isomorphic to Kn, n D dimX . Show that this isomorphism is not unique when n

is > 1.

Proof. Let .x1; : : : ;xn/ be a basis of X , and .e1; : : : ; en/ be a basis of Kn. Define

a linear map T 2 L.X;Kn/ by letting Txi D ei . Then for any x D
Pn
iD1 aixi 2 X ,

we have

Tx D T

0@ nX
iD1

aixi

1A D nX
iD1

aiTxi D

nX
iD1

aiei :

We first show that T is surjective. For any k 2 Kn, there exists .k1; : : : ; kn/

such that k D
Pn
iD1 kiei , and so there exists xk D

Pn
iD1 kixi 2 X such that

Txk D
Pn
iD1 kiei D k. To see T is injective, let

T

0@ nX
iD1

aixi

1A D T

0@ nX
iD1

bixi

1A ;
that is,
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nX
iD1

aiei D

nX
iD1

biei ()

nX
iD1

.ai � bi / ei D 0 () ai D bi 8 i D 1; : : : ; n

since .e1; : : : ; en/ is linearly independent. Thus,
Pn
iD1 aixi D

Pn
iD1 bixi .

The isomorphism is not unique when n > 1 since there are many, many

basis. ut

I Exercise 149 (1.13). Congruence mod Y is an equivalence relation. Show

further that if x1 � x2, then kx1 � kx2 for every scalar k.

Proof. (i) If x1 � x2, then x1�x2 2 Y , which means that x2�x1 D � .x1 � x2/ 2

Y since Y is a subspace; (ii) x � x D 0 2 Y ; (iii) if x1 � x2 2 Y and x2 � x3 2 Y ,

then x1 � x3 D .x1 � x2/C .x2 � x3/ 2 Y , that is, x1 � x3.

If x1 � x2 mod Y , then x1 � x2 2 Y and so k .x1 � x2/ 2 Y since Y is a

subspace of X . But then kx1 � kx2 2 Y , i.e., kx1 � kx2 mod Y . ut

I Exercise 150 (1.14). Show that two congruence classes are either identical

or disjoint.

Proof. Let x3 2 Œx1� \ Œx2�. Then x1 � x3 and x3 � x2. By transitivity of � we

have x1 � x2, that is, Œx1� D Œx2�. ut

I Exercise 151 (1.15). Show that the above definition of addition and multipli-

cation by scalars is independent of the choice of representatives in the congru-

ence class.1

Proof. By definition, Œx�CŒz� D Œx C z� D .x C z/CY , and k Œx� D Œkx� D kxCY .

Note that
�
x0
�
D Œx� if x0 2 Œx�. ut

I Exercise 152 (1.16). Denote by X the linear space of all polynomials p .t/ of

degree < n, and denote by Y the set of polynomials that are zero at t1; : : : ; tj ,

j < n.

a. Show that Y is a subspace of X .

b. Determine dimY .

c. Determine dimX=Y .

Proof.

a. Any p 2 Pn�1.K/ with roots t1; : : : ; tj can be written in the form

q .t/

jY
iD1

�
t � tj

�
;

where q .t/ 2 Pn�1�j .K/. These clearly form a vector space.

1 We have Œx� D xC Y . Proof: If z 2 Œx�, then there exists y 2 Y such that z� x D y ; then
z D x C y 2 x C Y . Conversely, if z 2 x C Y , then z D x C y for some y 2 Y ; hence,
z� x D y 2 Y , i.e., z 2 Œx�.
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b. dimY D n � j .

c. dimX=Y D dimX � dimY D n �
�
n � j

�
D j .

ut

I Exercise 153 (1.17). A subspace Y of a finite-dimensional linear space X

whose dimension is the same as the dimension of X is all of X .

Proof. Suppose that Y ¨ X , then there exists x 2 X X Y and x ¤ 0X since

0X 2 Y . Let Œx� D xCY . Thus, Œx� 2 X=Y and Œx� ¤ Y D 0X=Y and so dimX=Y >
1, which implies that dimY D dimX � dimX=Y < dimX by Theorem 1.6. A

contradiction. ut

I Exercise 154 (1.18). Show that dimX1 ˚X2 D dimX1 C dimX2.

Proof. X1˚X2 implies that X1\X2 D f0g, that is, dimX1 \X2 D 0. Therefore,

dimX1 ˚X2 D dimX1 C dimX2. See Exercise 147. ut

I Exercise 155 (1.19). X is a linear space, Y a subspace. Show that Y ˚ X=Y

is isomorphic to X .

Proof. According to Exercise 148, we only need to show that dimY ˚X=Y D

dimX . This holds since

dimY ˚X=Y D dimY C dimX=Y D dimX:

ut

I Exercise 156 (1.20). Which of the following sets of vectors x D .x1; : : : ; xn/ 2

Rn are a subspace of Rn? Explain your answer.

a. All x such that x1 > 0.

b. All x such that x1 C x2 D 0.

c. All x such that x1 C x2 C 1 D 0.

d. All x such that x1 D 0.

e. All x such that x1 is an integer.

Proof.

a. No. �x is not in that set if x1 > 0.

b. Yes.

c. No. kx is not in that set if k ¤ 1.

d. Yes.
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e. No. kx is not in that set if k … Z.

ut

I Exercise 157 (1.21). Let U , V , andW be subspaces of some finite-dimensional

vector space X . Is the statement

dimU C V CW DdimU C dimV C dimW � dimU \ V

� dimU \W � dimV \W C dimU \ V \W ;

true or false? If true, prove it. If false, provide a counterexample.

Proof. It is false. See Exercise 30. ut
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Remark (Theorem 3). The bilinear function hx; `i gives a natural identification

of X with X 00.

Proof. For hx; `i, fix x D x0, then we observe that the function of the vectors

in X 0, whose value at ` is hx0; `i D ` .x0/, is a scalar-valued function that hap-

pens to be linear [Proof: Let z0 2 X 00 be so defined. For any `; `0 2 X 0, we have

z0
�
`C `0

�
D
˝
x0; `C `

0
˛
D
�
`C `0

�
.x0/ D ` .x0/C `

0 .x0/ D z0 .`/C z0
�
`0
�
. For any

k 2 K and ` 2 X 0, we have z0 .k`/ D hx0; k`i D .k`/ .x0/ D k` .x0/ D k � z0 .`/.]

Thus,˝
x0; `

˛
defines a linear functional on X 0, and consequently, and element of X 00.

By this method we have exhibited some linear functionals on X 0; have we exhib-

ited them all? For the finite-dimensional case the following theorem furnishes

the affirmative answer.

If X is a finite-dimensional vector space, then corresponding to every linear func-
tional z0 on X 0 there is a vector x0 2 X such that z0 .`/ D

˝
x0; `

˛
D ` .x0/ for every

` 2 X 0; the correspondence z0 $ x0 between X 00 and X is an isomorphism.

Proof: To every x0 2 X , we make correspond a vector zx0
2 X 00 defined

by zx0
.`/ D ` .x0/ for every ` 2 X 0. We first show that the transformation

x0 7! zx0
is linear. For any x0;x1 2 X , we have x0 C x1 7! zx0Cx1

; by definition,

zx0Cx1
.`/ D ` .x0 C x1/ D ` .x0/ C ` .x1/ D zx0 .`/ C zx1

.`/ for any ` 2 X 0.

For any k 2 K and x0 2 X , we have kx0 7! zkx0
and so zkx0

.`/ D ` .kx0/ D

k � ` .x0/ D k � zx0
for any ` 2 X 0.

We shall show that this transformation is injective. Take any zx1
; zx2

2 X 00

with zx1
D zx2

. To say that zx1
D zx2

means that hx1; `i D hx2; `i for every

` 2 X 0. But then x1 D x2 by Exercise 158 (iii).

Therefore, the set Z � fzx W x 2 Xg is a subspace of X 00 since Z is the range

under a linear map, and Z is isomorphic to X 00, and so dimZ D dimX . Since

dimX D dimX 0 D dimX 00, we have dimZ D dimX 00. It follows that X 00 D Z by

Exercise 153. ut

Remark (p. 16). Y ? is isomorphic to
�
X=Y

�0
.

67
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Proof. Given ` 2 Y ?, we make correspond a linear functional L` 2
�
X=Y

�0
defined by

L` Œx� D ` .x/ :

We show first that L` Œx� D ` .x/ is well defined.1 Let Œx1� D Œx�; then there

exists y1 2 Y such that x1 D x C y1, as depicted in Figure 9.1. Thus,

` .x1/ D ` .x C y1/ D ` .x/C ` .y1/ D ` .y/ ;

that is, L` Œx1� D L` Œx� if Œx1� D Œx�. We then show L` such defined is linear. For

any Œx� ; Œy� 2 X=Y , we have L`
�
Œx�C Œy�

� h1i
D L` Œx C y� D ` .x C y/ D ` .x/ C

` .y/ D L` Œx� C L` Œy�, where h1i holds since Œx� C Œy� D .x C Y / C .y C Y / D

.x C y/CY D Œx C y�. To see L` is homogenous, take any k 2 K and Œx� 2 X=Y .

Then L`
�
k � Œx�

�
D L` Œkx� D ` .kx/ D k` .x/ D k � L` Œx�.

Y

0

Œx� D x C Y

x

y1

x1

y2

x2

z

Œz� D zC Y

Figure 9.1. Y? Š
�
X=Y

�0
Conversely, given any L 2

�
X=Y

�0
, define a linear functional `L on X as

`L .x/ D L Œx� :

It follows from the above definition that `L 2 Y ?: for any y 2 Y , we have Œy� D

yCY D Y and so `L .y/ D L ŒY � D 0. This also proves that the correspondence

between Y ? and
�
X=Y

�0
is surjective. We finally to show that the mapping

` 7! L` is injective. Take two `1; `2 2 Y ? such that L`1
D L`2

, where L`1
; L`2

2�
X=Y

�0
. To say L`1

D L`2
means that L`1

Œx� D L`2
Œx� for all Œx� 2 X=Y , but

which means that `1 .x/ D `2 .x/ for all x 2 X , i.e., `1 D `2. Thus, ` 7! L` is

injective. ut

1 To see the relation between congruence classes and affine sets (linear manifolds), refer
Rockafellar (1970).
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I Exercise 158 (2.1). Given a nonzero vector x1 2 X , show that there is a

linear function ` such that ` .x1/ ¤ 0.

Proof. See Halmos (1974, Sec. 15).

(

i) If X is an n-dimensional vector space, if .x1; : : : ;xn/ is a basis of X , and

if .a1; : : : ; an/ is any list of n scalars, then there is one and only one linear

functional ` on X such that hxi ; `i D ai for i D 1; : : : ; n.

Proof: Every x 2 X can be represented uniquely as x D
Pn
iD1 kixi , where

ki 2 K. If ` is any linear functional, then

hx; `i D

*
nX
iD1

kixi ; `

+
D k1 hx1; `i C � � � C kn hxi ; `i :

From this relation the uniqueness of ` is clear: if hxi ; `i D ai , then the value of

hx; `i is determined, for every x, by hx; `i D
Pn
iD1 kiai . The argument can also

be turned around; if we define ` by

hx; `i D k1a1 C � � � knan;

then ` is indeed a linear functional, and hxi ; `i D ai .

(

ii) If X is an n-dimensional vector space and if B D .x1; : : : ;xn/ is a basis of X ,

then there is a uniquely determined basis B 0 in X 0, B 0 D .`1; : : : ; `n/, with the

property that
˝
xi ; j̀

˛
D ıij . Consequently the dual space of an n-dimensional

space is n-dimensional.

Proof: It follows from (i) that, for each j D 1; : : : ; n, a unique `i 2 X 0 can be

found so that
˝
xi ; j̀

˛
D ıij ; we have only to prove that the list B 0 D .`1; : : : ; `n/

is a basis in X 0. In the first place, B 0 is linearly independent, for if we had

a1`1 C � � � C an`n D 0, in other words, if

hx; a1`1 C � � � C an`ni D a1 hx; `1i C � � � C an hx; `ni D 0

for all x 2 X , then we should have, for x D xi ,

0 D

nX
jD1

aj
˝
xi ; j̀

˛
D

nX
jD1

aj ıij D ai :

In the second place, X 0 D span.`1; : : : ; `n/. To prove this, write hxi ; `i D ai ;

then, for x D
Pn
iD1 kixi , we have
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hx; `i D

*
nX
iD1

kixi ; `

+
D

nX
iD1

ki hxi ; `i D

nX
iD1

kiai :

On the other hand, ˝
x; j̀

˛
D

nX
iD1

ki
˝
xi ; j̀

˛
D kj ;

so that, substituting in the preceding equation, we get

hx; `i D

nX
iD1

kiai D

nX
iD1

ai � hx; `i i D

*
x;

nX
iD1

ai`i

+
:

Consequently ` D
Pn
iD1 ai`i , and the proof of (ii) is complete.

(

iii) For any non-zero vector x 2 X there corresponds a ` 2 X 0 such that hx; `i ¤

0.

Proof: Let .x1; : : : ;xn/ be a basis of X , and let .`1; : : : ; `n/ be the dual basis in

X 0. If x D
Pn
iD1 kixi , then

˝
x; j̀

˛
D kj . Hence if hx; `i D 0 for all `, in particular,

if
˝
x; j̀

˛
D 0 for j D 1; : : : ; n, then kj D 0 and so x D 0X . ut

I Exercise 159 (2.2). Verify that Y ? is a subspace of X 0.

Proof. (i) Obviously that 0 2 Y ? since hx; 0i D 0 for any x 2 X , including

y 2 Y � X . (ii) Let `;m 2 Y ?. Then hy; `i D 0 D hy; mi for all y 2 Y and so

hy; `Cmi D hy; `i C hy; mi D 0, i.e., `Cm 2 Y ?. (iii) If ` 2 Y ?, then k hy; `i D 0

for any y 2 Y , and so k` 2 Y ?. Thus Y ? is a subspace of X 0. ut

I Exercise 160 (2.3). Denote by Y the smallest subspace containing S . Then

S? D Y ?.

Proof. It is clear that Y ? � S?. If S D ¿, then Y D f0g and the conclusion

is obvious. Similarly, the proof is trivial if S D f0g. So we suppose that S ¤ ¿
and S ¤ f0g. Take any y1 2 S with y1 ¤ 0. If S � span.y1/, let Y D span.y1/; if

there is y2 2 S Xspan.y1/, let Y D span.y1;y2/; : : :. Since the embedding vector

space is finite-dimensional, the process will be ended with a list .y1; : : : ;yn/

with y1; : : : ;yn 2 S , and this list is a basis of Y . Then for any ` 2 S? and any

y 2 Y , we have

hy; `i D

*
nX
iD1

kiyi ; `

+
D

nX
iD1

ki hyi ; `i D 0

since ` .yi / D 0. Thus, ` 2 Y ?. ut

I Exercise 161 (2.4). In Theorem 7 take the interval I to be Œ�1; 1�, and take

n D 3. Choose the three points to be t1 D �a, t2 D 0, and t3 D a.
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a. Determine the weights m1; m2; m3 so that
R
I
p .t/ dt D m1p .t1/ C m2p .t2/ C

m3p .t3/ holds for all polynomials p 2 P2.K/.

b. Show that for a >
p
1=3, all three weights are positive.

c. Show that for a D
p
3=5, (9) holds for all p 2 P5.K/.

Proof.

a. If p .t/ D t , then
R 1
�1
t dt D 0 and so 0 D m1 .�a/C m3a, i.e., m1 D m3. Then

(9) can be rewritten asZ 1

�1

p .t/ dt D m1
�
p .�a/C p .a/

�
Cm2p .0/ : (9.1)

Take p .t/ D 1 now. Then 2 D
R 1
�1

dt D 2m1 Cm2, i.e., m2 D 2 .1 �m1/. So we

rewrite (9.1) asZ 1

�1

p .t/ dt D m1
�
p .�a/C p .a/

�
C 2 .1 �m1/ p .0/ : (9.2)

Now let p .t/ D t2 and hence p .0/ D 0. We then have 2
3
D
R 1
�1
t2 dt D m12a

2

implies that

m1 D m3 D
1

3a2
; and m2 D 2 �

2

3a2
:

ut
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LINEAR MAPPINGS

I Exercise 162 (3.1). The image of a subspace of X under a linear map T is

a subspace of U . The inverse image of a subspace of U , that is the set of all

vectors in X mapped by T into the subspace, is a subspace of X .

Proof. Let Y be a subspace of X ; then 0X 2 Y and so 0U D T0X 2 T ŒY �. To

see T ŒY � is closed under addition, take any Tx;Ty 2 T ŒY �. Then xC y 2 Y and

Tx C Ty D T .x C y/ 2 T ŒY �; to see T ŒY � is closed under scalar multiplication,

take any k 2 K and Tx 2 T ŒY �; then k ln 2 Y and kTx D T .kx/ 2 T ŒY �. Thus

T ŒY � is a subspace of U .

We then show that T�1 ŒV � is a subspace of X is V is a subspace of U . (i)

0X 2 T�1 ŒV � since 0U 2 V and T0X D 0U . (ii) For any x;y 2 T�1 ŒV �, we have

Tx;Ty 2 V and so T .x C y/ D Tx C Ty 2 V , i.e., x C y 2 T�1 ŒV �. (iii) For any

k 2 K and x 2 T�1 ŒV �, we have Tx 2 V and kTx 2 V ; then T .kx/ kTx 2 V , that

is, kx 2 kTx. ut

I Exercise 163 (3.3).

a. The composite of linear mappings is also a linear mapping.

b. Composition is distributive with respect to the addition of linear maps, that

is, .RC S/ ı T D R ı TC S ı T and S ı .TC P/ D S ı TC S ı P, where R and S

map U ! V and P and T map X ! U .

Proof.

a. Let S;T 2 L.X;U / and consider S ı T. To see S ı T is additive, take any x;y 2

X ; then .S ı T/ .x C y/ D S
�
T .x C y/

�
D S ŒTx C Ty� D .ST/x C .ST/y D

.S ı T/x C .S ı T/y . To see S ı T is homogenous, take any k 2 K and x 2 X .

Then .S ı T/ .kx/ D S
�
T .kx/

�
D S .kTx/ D kSTx D k .S ı T/x.

b. Let

V
R
 �
S
U

P
 �
T
X:

For any x 2 X , we have
�
.RC S/ ı T

�
.x/ D .RC S/ .Tx/ D R .Tx/C S .Tx/ D

.R ı T/x C .S ı T/x. The other claim is proved similarly.
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ut

I Exercise 164 (3.7). Show that whenever meaningful,

.ST/0 D T0S0; .TC R/0 D T0 C R0; and
�
T�1

�0
D
�
T0
��1

:

Proof. For a generic linear mapping T 2 L.X;U /, we have the following dia-

gram:

X
T
! U;

X 0
T0
 U 0:

For the first equality1, let F
`
 � V

S
 � U

T
 � X , i.e., F

`
 � V

ST
 � X , and so .ST/0 W

V 0 ! X 0. We haveD�
T0S0

�
`;x

E
D

D
T0
�
S0`
�
;x
E
D
˝
S0`;Tx

˛
D h`; .ST/xi D

˝
.ST/0 `;x

˛
;

and this establish the first equality. As for the second equality,D�
T0 C S0

�
`;x

E
D
˝
T0`C S0`;x

˛
D
˝
T0`;x

˛
C
˝
S0`;x

˛
D h`;Txi C h`; Sxi

D h`; .TC S/xi

D
˝
.TC S/0 `;x

˛
:

Finally, let F
`
 � U

T
 � X , then T0 W U 0 ! X 0 and

�
T0
��1
W RT0 ! U 0. Take any

m 2 RT0 ; then there exists ` 2 U 0 such that
�
T0
��1

.m/ D `, or equivalently,

T0` D m. Now consider
�
T�1

�0
.m/. Then�

T�1
�0
.m/ D

�
T�1

�0 �
T0`
�
D

�
TT�1

�0
` D Id0` D `

since Id0 D Id. ut

I Exercise 165 (3.8). Show that if X 00 is identified with X and U 00 with U , then

T00 D T.

Proof. We have

hT`;xi D
˝
`;T0x

˛
D
˝
T00`;x

˛
:

ut

I Exercise 166 (3.9). Show that if A 2 L.X/ is a left inverse of B 2 L.X/, that

is, A B D Id, then it is also a right inverse: B A D Id.

1 Notation Warning: We occasionally use F , instead of K, to denote the field. From now on
we also be back to Lax’s notation of linear mapping, that is, ` .x/ D

˝
`;x

˛
.
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Proof. A B D Id H) A B A D A H) A .B A/ D A H) B A D Id. ut

I Exercise 167 (3.10). Show that if M is invertible, and similar to K, then K also

is invertible, and K�1 is similar to M�1.

Proof. M similar to K means that K D S M S�1; then

K�1 D
h
.S M/ S�1

i�1
D S .S M/�1 D S M�1 S�1;

and

M D S�1 K S H) M�1 D S�1 K�1 S:

ut

I Exercise 168 (3.11). If either A or B in L.X/ is invertible, then A B and B A

are similar.

Proof. Suppose B is invertible. Then

B .A B/B�1 D B A;

i.e., A B similar to B A. ut

I Exercise 169 (3.14). Suppose T is a linear map of rank 1 of a finite dimen-

sional vector space into itself.

a. Show there exists a unique number c such that T2 D cT.

b. Show that if c ¤ 1 then Id � T has an inverse.

Proof. Let T 2 L.X/. By definition rank .T/ D 1 means that dim RT D 1. Let

dimX D n. Then

dimX D dim ıT C dim RT

implies that

dim ıT D n � 1:

Let .v/, where v ¤ 0X , be a basis of RT , and extend it to a basis .v;u1; : : : ;un�1/

of X . Since ui … span.v/ for all ui , we have Tui D 0X ; since RT D span.v/, there

exists c 2 K such that Tv D av. For any x 2 X , there exists a list of scalars

.b; k1; : : : ; kn�1/ such that x D bvC
Pn�1
iD1 kiui . Then

Tx D bTv D b .cv/ D cbv;

and

T2x D T .Tx/ D T .cbv/ D cbTv D c2bv D c .cbv/ D cTx:

Since the above display holds for any x 2 X , we have T2 D cT. ut
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I Exercise 170 (3.1523). Suppose T and S are linear maps of a finite di-

mensional vector space into itself. Show that rank .ST/ 6 rank .S/. Show that

dim ıST 6 dim ıS C dim ıT.

Proof. Let X
S
 � X

T
 � X . By definition, rank .ST/ 6 rank .S/ if and only if

dim RST 6 dim RS. But this is obvious. As for the second claim, we have

RST D .ST/ ŒX� D S
�
T ŒX�

�
D S ŒRT� ;

so that

rank .ST/ D dim RST D dim S ŒRT�:

If M is a subspace of dimension m, say, and if N is any complement of M so

that X DM CN , then4

RS D S ŒX� D S ŒM �C S ŒN � :

It follows that

rank .S/ D dim RS 6 dim S ŒM �C dim S ŒN � 6 dim S ŒM �C dimN;

and hence that

dimX �ıS 6 dim S ŒM �C dimX �m:

If in particular

M D RT D T ŒX� ;

then the last inequality implies that

rank .T/ �ıS 6 rank .ST/ ;

or, equivalently, that

dimX � dim ıS � dim ıT 6 dimX � dim ıST;

that is,

dim ıST 6 dim ıS C dim ıT:

ut

2 See Exercise 48.
3 See Halmos (1995, Problem 95, p. 270).
4 Theorem 1.5 (b).
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DETERMINANT AND TRACE

I Exercise 171 (5.1). Prove the properties of signature:1

sign .�/ D ˙1: (5-a)

sign .� ı �/ D sign .�/ sign .�/ : (5-b)

Proof. The discriminant of .x1; : : : ;xn/ is P .x1; : : : ;xn/ D
Q
i<j

�
xi � xj

�
.

Thus

.P�/ .x1; : : : ;xn/ D
Y
i<j

�
x�i
� x�j

�
:

A typical factor in P� is x�i
� x�j

. Now if �i < �j , this is also a factor of P ,

while if �i > �j , then �
�
x�i
� x�j

�
is a factor of P . Consequently, P� D CP

if the number of inversions of the natural order in � is even and P� D �P if

it is odd. Then (5-a) holds since

sign .�/ D
P�

P
D ˙1:

We not prove (5-b). Let P D
Q
i<j

�
xi � xj

�
. Then, since P� D sign .�/P , we

have

.P��/ .x1; : : : ;xn/ D
�
.P�/ �

�
.x1; : : : ;xn/

D sign .�/ .P�/ .x1; : : : ;xn/

D sign .�/ sign .�/P .x1; : : : ;xn/ :

But P�� D ���P . Hence, sign .��/ D sign .�/ sign .�/. ut

I Exercise 172 (5.2). Prove that transposition has the following properties:

a. The signature of a transposition t is minus one:

sign .t/ D �1: (5-c)

1 See Robinson (2003, Sec. 3.1) for a detailed discussion of permutation, signature function,
and so on.
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b. Every permutation � can be written as a composition of transpositions:

� D tk ı � � � ı t1: (5-d)

Proof. (5-c) is clear. For (5-d), see Robinson (2003, 3.1.3 & 3.1.4, p. 34-35). ut
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1
SET THEORY AND METRIC SPACES

1.1 Set Theory

1A. Russell’s Paradox

I Exercise 1. The phenomenon to be presented here was first exhibited by

Russell in 1901, and consequently is known as Russell’s Paradox.

Suppose we allow as sets things A for which A 2 A. Let P be the set of all

sets. Then P can be divided into two nonempty subsets, P1 D
˚
A 2 P W A … A

	
and P2 D fA 2 P W A 2 Ag. Show that this results in the contradiction: P1 2

P1 () P1 … P1. Does our (naive) restriction on sets given in 1.1 eliminate the

contradiction?

Proof. If P1 2 P1, then P1 2 P2, i.e., P1 … P1. But if P1 … P1, then P1 2 P1. A

contradiction. ut

1B. De Morgan’s laws and the distributive laws

I Exercise 2. a. A X
�T

�2� B�
�
D
S
�2� .A X B�/.

b. B [
�T

�2� B�
�
D
T
�2�.B [ B�/.

c. If Anm is a subset of A for n D 1; 2; : : : and m D 1; 2; : : :, is it necessarily true

that
1[
nD1

24 1\
mD1

Anm

35 D 1\
mD1

24 1[
nD1

Anm

35‹
Proof. (a) If x 2 A X

�T
�2� B�

�
, then x 2 A and x …

T
�2� B�; thus, x 2 A

and x … B� for some �, so x 2 .A X B�/ for some �; hence x 2
S
�2� .A X B�/.

On the other hand, if x 2
S
�2� .A X B�/, then x 2 A X B� for some � 2 �,

i.e., x 2 A and x … B� for some � 2 �. Thus, x 2 A and x …
T
�2� B�; that is,

x 2 A X
�T

�2� B�
�
.
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2 CHAPTER 1 SET THEORY AND METRIC SPACES

(b) If x 2 B [
�T

�2� B�
�
, then x 2 B� for all �, then x 2 .B [ B�/ for all �, i.e.,

x 2
T
�2�.B [ B�/. On the other hand, if x 2

T
�2�.B [ B�/, then x 2 .B [ B�/

for all �, i.e., x 2 B or x 2 B� for all �; that is, x 2 B [
�T

�2� B�
�
.

(c) They are one and the same set. ut

1C. Ordered pairs

I Exercise 3. Show that, if .x1; x2/ is defined to be
˚
fx1g; fx1; x2g

	
, then

.x1; x2/ D .y1; y2/ iff x1 D y1 and x2 D y2.

Proof. If x1 D y1 and x2 D y2, then, clearly, .x1; x2/ D
˚
fx1g; fx1; x2g

	
D˚

fy1g; fy1; y2g
	
D .y1; y2/. Now assume that

˚
fx1g; fx1; x2g

	
D
˚
fy1g; fy1; y2g

	
.

If x1 ¤ x2, then fx1g D fy1g and fx1; x2g D fy1; y2g. So, first, x1 D y1 and then

fx1; x2g D fy1; y2g implies that x2 D y2. If x1 D x2, then
˚
fx1g; fx1; x1g

	
D
˚
fx1g

	
.

So fy1g D fy1; y2g D fx1g, and we get y1 D y2 D x1, so x1 D y1 and x2 D y2

holds in this case, too. ut

1D. Cartesian products

I Exercise 4. Provide an inductive definition of “the ordered n-tuple .x1; : : : ; xn/

of elements x1; : : : ; xn of a set” so that .x1; : : : ; xn/ and .y1; : : : ; yn/ are equal iff

their coordinates are equal in order, i.e., iff x1 D y1; : : : ; xn D yn.

Proof. Define .x1; : : : ; xn/ D f.1; x1/; : : : ; .n; xn/g as a finite sequence. ut

I Exercise 5. Given sets X1; : : : ; Xn define the Cartesian product X1 � � � � �Xn

a. by using the definition of ordered n-tuple you gave in Exercise 4,

b. inductively from the definition of the Cartesian product of two sets,

and show that the two approaches are the same.

Proof. (a) X1 � � � � �Xn D ff 2 .
Sn
iD1Xi /

n W f .i/ 2 Xig.

(b) From the definition of the Cartesian product of two sets, X1 � � � � � Xn D

f.x1; : : : ; xn/ W xi 2 Xig, where .x1; : : : ; xn/ D ..x1; : : : ; xn�1/; xn/.

These two definitions are equal essentially since there is a bijection between

them. ut

I Exercise 6. Given sets X1; : : : ; Xn let X D X1�� � ��Xn and let X� be the set of

all functions f from f1; : : : ; ng into
Sn
kD1Xk having the property that f .k/ 2 Xk

for each k D 1; : : : ; n. Show that X� is the “same” set as X .

Proof. Each function f can be written as f.1; x1/; : : : ; .n; xn/g. So define F W X� !

X as F.f / D .x1; : : : ; xn/. ut
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I Exercise 7. Use what you learned in Exercise 6 to define the Cartesian prod-

uct X1 � X2 � � � � of denumerably many sets as a collection of certain functions

with domain N.

Proof. X1�X2�� � � consists of functions f W N!
S1
nD1Xn such that f .n/ 2 Xn

for all n 2 N. ut

1.2 Metric Spaces

2A. Metrics on Rn

I Exercise 8. Verify that each of the following is a metric on Rn:

a. �.x;y/ D

p
nX
iD1

.xi � yi /
2.

b. �1.x;y/ D
Pn
iD1 jxi � yi j.

c. �2.x;y/ D maxfjx1 � y1j; : : : ; jxn � ynjg.

Proof. Clearly, it suffices to verify the triangle inequalities for all of the three

functions. Pick arbitrary x;y; z 2 Rn.

(a) By Minkowski’s Inequality, we have

�.x; z/ D

p
nX
iD1

.xi � zi /
2
D

p
nX
iD1

Œ.xi � yi /C .yi � zi /�
2

6

p
nX
iD1

.xi � yi /
2
C

p
nX
iD1

.yi � zi /
2

D �.x;y/C �.y; z/:

(b) We have

�1.x; z/ D

nX
iD1

jxi � zi j D

nX
iD1

.jxi � yi j C jyi � zi j/ D �1.x;y/C �1.y; z/:

(c) We have

�2.x; z/ D maxfjx1 � z1j; : : : ; jxn � znjg

6 maxfjx1 � y1j C jy1 � z1j; : : : ; jxn � ynj C jyn � znjg

6 maxfjx1 � y1j; : : : ; jxn � ynjg Cmaxfjy1 � z1j; : : : ; jyn � znjg

D �2.x;y/C �2.y; z/: ut
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2B. Metrics on C.I/

I Exercise 9. Let C.I/ denote the set of all continuous real-valued functions on

the unit interval I and let x0 be a fixed point of I.

a. �.f; g/ D supx2I jf .x/ � g.x/j is a metric on C.I/.

b. �.f; g/ D
R 1
0
jf .x/ � g.x/jdx is a metric on C.I/.

c. �.f; g/ D jf .x0/ � g.x0/j is a pseudometric on C.I/.

Proof. Let f; g; h 2 C.I/. It is clear that �, � , and � are positive, symmetric; it

is also clear that � and � satisfy M-b.

(a) We have

�.f; h/ D sup
x2I
jf .x/ � h.x/j 6 sup

x2I
.jf .x/ � g.x/j C jg.x/ � h.x/j/

6 sup
x2I
jf .x/ � g.x/j C sup

x2I
jg.x/ � h.x/j

D �.f; g/C �.g; h/:

(b) We have

�.f; h/ D

Z 1

0

jf .x/ � h.x/j 6
Z 1

0

jf .x/ � g.x/j C

Z 1

0

jg.x/ � h.x/j

D �.f; g/C �.g; h/:

(c) For arbitrary f; g 2 C.I/ with f .x0/ D g.x0/ we have �.f; g/ D 0, so �.f; g/ D

0 does not imply that f D g. Further, �.f; h/ D jf .x0/�h.x0/j 6 jf .x0/�g.x0/jC
jg.x0/ � h.x0/j D �.f; g/C �.g; h/. ut

2C. Pseudometrics

I Exercise 10. Let .M; �/ be a pseudometric space. Define a relation � on M

by x � y iff �.x; y/ D 0. Then � is an equivalence relation.

Proof. (i) x � x since �.x; x/ D 0 for all x 2 M . (ii) x � y iff �.x; y/ D 0 iff

�.y; x/ D 0 iff y � x. (iii) Suppose x � y and y � z. Then �.x; z/ 6 �.x; y/ C
�.y; z/ D 0; that is, �.x; z/ D 0. So x � z. ut

I Exercise 11. If M � is he set of equivalence classes in M under the equiva-

lence relation � and if �� is defined on M � by ��.Œx�; Œy�/ D �.x; y/, then �� is a

well-defined metric on M �.

Proof. �� is well-defined since it does not dependent on the representative of

Œx�: let x0 2 Œx� and y0 2 Œy�. Then

�.x0; y0/ 6 �.x0; x/C �.x; y/C �.y; y0/ D �.x; y/:
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Symmetrically, �.x; y/ 6 �.x0; y0/. To verify �� is a metric on M �, it suffices to

show that �� satisfies the triangle inequality. Let Œx�; Œy�; Œz� 2M �. Then

��.Œx�; Œz�/ D �.x; z/ 6 �.x; y/C �.y; z/ D ��.Œx�; Œy�/C ��.Œy�; Œz�/: ut

I Exercise 12. If h W M ! M � is the mapping h.x/ D Œx�, then a set A in M is

closed (open) iff h.A/ is closed (open) in M �.

Proof. Let A be open in M and h.x/ D Œx� 2 h.A/ for some x 2 A. Since A is

open, there exist an "-disk U�.x; "/ contained in A. For each y 2 U�.x; "/, we

have h.y/ D Œy� 2 h.A/, and ��.Œx�; Œy�/ D �.x; y/ 6 ". Hence, for each Œx� 2 h.A/,

there exists an "-disk U��.Œx�; "/ D h.U�.x; "// contained in h.A/; that is, h.A/ is

open in M �. Since h is surjective, it is now easy to see that h.A/ is closed in

M � whenever A is closed in M . ut

I Exercise 13. If f is any real-valued function on a set M , then the distance

function �f .x; y/ D jf .x/ � f .y/j is a pseudometric on M .

Proof. Easy. ut

I Exercise 14. If .M; �/ is any pseudometric space, then a function f W M ! R

is continuous iff each set open in .M; �f / is open in .M; �/.

Proof. Suppose that f is continuous and G is open in .M; �f /. For each x 2 G,

there is an " > 0 such that if jf .y/�f .x/j < " then y 2 G. The continuity of f at

x implies that there exists ı > 0 such that if �.y; x/ < ı then jf .y/ � f .x/j < ",

and so y 2 U . We thus proved that for each x 2 U there exists a ı-disk U�.x; �/

contained in G; that is, G is open in .M; �/.

Conversely, suppose that each set is open in .M; �/ whenever it is open in

.M; �f /. For each x 2 .M; �f /, there is an "-disk U�f .x; "/ contained in M since

M is open under �f ; then U�f .x; "/ is open in .M; �/ since U�f .x; "/ is open in

.M; �f /. Hence, there is an ı-disk U�.x; ı/ such that U�.x; ı/ � U�f .x; "/; that is,

if �.y; x/ < ı, then jf .y/ � f .x/j < ". So f is continuous on M . ut

2D. Disks Are Open

I Exercise 15. For any subset A of a metric space M and any " > 0, the set

U.A; "/ is open.

Proof. Let A � M and " > 0. Take an arbitrary point x 2 U.A; "/; take an

arbitrary point y 2 A such that �.x; y/ < ". Observe that every "-disk U.y; "/ is

contained in U.A; "/. Since x 2 U.y; "/ and U.y; "/ is open, there exists an ı-disk

U.x; ı/ contained in U.y; "/. Therefore, U.A; "/ is open. ut
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2E. Bounded Metrics

I Exercise 16. If � is any metric on M , the distance function ��.x; y/ D

minf�.x; y; /; 1g is a metric also and is bounded.

Proof. To see �� is a metric, it suffices to show the triangle inequality. Let

x; y; z 2M . Then

��.x; z/ D minf�.x; z/; 1g 6 minf�.x; y/C �.y; z/; 1g

6 minf�.x; y/; 1g Cminf�.y; z/; 1g

D ��.x; y/C ��.y; z/:

It is clear that �� is bounded above by 1. ut

I Exercise 17. A function f is continuous on .M; �/ iff it is continuous on

.M; ��/.

Proof. It suffices to show that � and �� are equivalent. If G is open in .M; �/,

then for each x 2 G there is an "-disk U�.x; "/ � G. Since U��.x; "/ � U�.x; "/,

we know G is open in .M; ��/. Similarly, we can show that G is open in .M; ��/

whenever it is open in .M; �/. ut

2F. The Hausdorff Metric

Let � be a bounded metric on M ; that is, for some constant A, �.x; y/ 6 A for

all x and y in M .

I Exercise 18. Show that the elevation of � to the power set P .M/ as defined

in 2.4 is not necessarily a pseudometric on P .M/.

Proof. Let M ´ f.x1; x2/ 2 R2 W x21 C x
2
2 6 1g, and let � be the usual metric.

Then � is a bounded metric on M . We show that the function �� W .E; F / 7!

infx2E;y2F �.x; y/, for all E;F 2 P .M/, is not a pseudometric on P .M/ by

showing that the triangle inequality fails. Let E;F;G 2 P .M/, where E D

U�..�1=4; 0/; 1=4/, G D U�..1=4; 0/; 1=4/, and F meets both E and G. Then

��.E;G/ > 0, but ��.E; F / D ��.F;G/ D 0. ut

I Exercise 19. Let F .M/ be all nonempty closed subsets of M and for A;B 2

F .M/ define

dA.B/ D supf�.A; x/ W x 2 Bg

d.A;B/ D maxfdA.B/; dB.A/g:

Then d is a metric on F .M/ with the property that d.fxg; fyg/ D �.x; y/. It is

called the Hausdorff metric on F .M/.
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Proof. Clearly, d is nonnegative and symmetric. If d.A;B/ D 0, then dA.B/ D

dB.A/ D 0, i.e., supy2B �.A; y/ D supx2A �.B; x/ D 0. But then �.A; y/ D 0 for all

y 2 B and �.B; x/ D 0 for all x 2 A. Since A is closed, we have y 2 A for all

y 2 B ; that is, B � A. Similarly, A � B . Hence, A D B .

We next show the triangle inequality of d . Let A;B;C 2 F .M/. For an ar-

bitrary point a 2 A, take a point b 2 C such that �.a; b/ D �.B; a/ (since B is

closed, such a point exists). Then

�.a; b/ 6 sup
x2A

�.B; x/ D dB.A/ 6 d.A;B/:

For this b 2 B , we take a point c 2 C such that �.b; c/ 6 d.B;C /. Therefore,

�.a; c/ 6 �.a; b/C �.b; c/ 6 d.A;B/C d.B;C /:

We thus proved that for every a 2 A, there exists c 2 C (depends on a), such

that �.a; c/ 6 d.A;B/C d.B;C /. In particular, we have

�.a; C / D inf
z2C

�.a; z/ 6 d.A;B/C d.B;C /:

Since the above inequality holds for all a 2 A, we obtain

dC .A/ D sup
x2A

�.a; C / 6 d.A;B/C d.B;C /: (1.1)

Similarly, for each c 2 C there exists b 2 B with �.c; b/ 6 d.B;C /; for this b,

there exists a 2 A with �.a; b/ 6 d.A;B/. Hence �.a; c/ 6 d.A;B/C d.B;C / for

all c 2 C . The same argument shows that

dA.C / 6 d.A;B/C d.B;C /: (1.2)

Combining (1.1) and (1.2) we get the desired result.

Finally, notice that dfxg.fyg/ D dfyg.fxg/ D �.x; y/; hence, d.fxg; fyg/ D

�.x; y/. ut

I Exercise 20. Prove that closed sets A and B are “close” in the Hausdorff

metric iff they are “uniformly close”; that is, d.A;B/ < " iff A � U�.B; "/ and

B � U�.A; "/.

Proof. If d.A;B/ < ", then supy2B �.A; y/ D �A.B/ < "; that is, �.A; y/ < " for

all y 2 B , so B � U�.A; "/. Similarly, A � U�.B; "/.

Conversely, if A � U�.B; "/, then �.B; x/ < " for all x 2 A. Since A is closed,

we have dB.A/ < "; similarly, B � U�.A; "/ implies that dA.B/ < ". Hence,

d.A;B/ < ". ut
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2G. Isometry

Metric spaces .M; �/ and .N; �/ are isometric iff there is a one-one function f

from M onto N such that �.x; y/ D �.f .x/; f .y// for all x and y in M ; f is

called an isometry.

I Exercise 21. If f is an isometry from M to N , then both f and f �1 are

continuous functions.

Proof. By definition, f is (uniformly) continuous on M : for every " > 0, let

ı D "; then �.x; y/ < ı implies that �.f .x/; f .y// D �.x; y/ < ".

On the other hand, for every " > 0 and y 2 N , pick the unique f �1.y/ 2

M (since f is bijective). For each z 2 N with �.y; z/ < ", we must have

�.f �1.y/; f �1.z// D �.f .f �1.y//; f .f �1.z/// D �.y; z/ < "; that is, f �1 is con-

tinuous. ut

I Exercise 22. R is not isometric to R2 (each with its usual metric).

Proof. Consider S1 D f.x; y/ 2 R2 W x2 C y2 D 1g. Notice that there are only

two points around f �1.0; 0/ with distance 1. ut

I Exercise 23. I is isometric to any other closed interval in R of the same

length.

Proof. Consider the function f W I ! Œa; aC 1� defined by f .x/ D aC x for all

x 2 I. ut



2
TOPOLOGICAL SPACES

2.1 Fundamental Concepts

3A. Examples of Topologies

I Exercise 24. If F is the collection of all closed, bounded subset of R (in its

usual topology), together with R itself, then F is the family of closed sets for a

topology on R strictly weaker than the usual topology.

Proof. It is easy to see that F is a topology. Further, for instance, .�1; 0� is a

closed set of R, but it is not in F . ut

I Exercise 25. If A � X , show that the family of all subsets of X which contain

A, together with the empty set ¿, is a topology on X . Describe the closure and

interior operations. What topology results when A D ¿? when A D X?

Proof. Let

E D fE � X W A � Eg [ f¿g :

Now suppose that E� 2 E for each � 2 �. Then A �
S
�E� � X and soS

E� 2 E . The other postulates are easy to check.

For any set B � X , if A � B , then B 2 E and so BB D B ; if not, then BB D ¿.

If A D ¿, then E is the discrete topology; if A D X , then E D f¿; Xg. ut

3D. Regularly Open and Regularly Closed Sets

An open subset G in a topological space is regular open iff G is the interior of

its closure. A closed subset is regularly closed iff it is the closure of its interior.

I Exercise 26. The complement of a regularly open set is regularly closed and

vice versa.

Proof. Suppose G is regular open; that is, G D . xG/ı. Then

9
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X XG D X X . xG/ı D X X xG D .X XG/ı:

Hence, X XG is regularly closed. If F is regular closed, i.e., F D F ı, then

X X F D X X F ı D .X X F ı/ı D .X X F /ıI

that is, X X F is regularly open. ut

I Exercise 27. There are open sets in R which are not regularly open.

Proof. Consider Q. We have . xQ/ı D Rı D R ¤ Q. So Q is not regularly open.

ut

I Exercise 28. If A is any subset of a topological space, then int.cl.A// is reg-

ularly open.

Proof. Let A be a subset of a topological space X . We then have

int.cl.A// � cl.int.cl.A/// H) int.cl.A// D int.int.cl.A/// � int.cl.int.cl.A////;

and

int.cl.A// � cl.A/ H) cl.int.cl.A/// � cl.cl.A// D cl.A/

H) int.cl.int.cl.A//// � int.cl.A//:

Therefore, int.cl.A// D int.cl.int.cl.A////; that is, int.cl.A// is regularly open.

ut

I Exercise 29. The intersection, but not necessarily the union, of two regularly

open sets is regularly open.

Proof. Let A and B be two regularly open sets in a topological space X . Then

.A \ B/ı � . xA \ xB/ı D . xA/ı \ . xB/ı D A \ B;

and

. xA \ xB/ı D . xA/ı \ . xB/ı D A \ B � A \ B

H) A \ B D . xA \ xB/ı D
h
. xA \ xB/ı

iı
� .A \ B/ı:

Hence, A \ B D .A \ B/ı.

To see that the union of two regularly open sets is not necessarily regularly

open, consider A D .0; 1/ and B D .1; 2/ in R with its usual topology. Then

.A [ B/ı D Œ0; 2�ı D .0; 2/ ¤ A [ B: ut
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3E. Metrizable Spaces

Let X be a metrizable space whose topology is generated by a metric �.

I Exercise 30. The metric 2� defined by 2�.x; y/ D 2 � �.x; y/ generates the

same topology on X .

Proof. Let O� be the collection of open sets in .X; �/, and let O2� be the col-

lection of open sets in .X; 2�/. If O 2 O�, then for every x 2 O , there exists an

open ball B�.x; "/ � O ; but then B2�.x; "=2/ � O . Hence, O 2 O2�. Similarly, we

can show that O2� � O�. In fact, � and 2� are equivalent metrics. ut

I Exercise 31. The closure of a setE � X is given by xE D fy 2 X W �.E; y/ D 0g.

Proof. Denote zE ´ fy 2 X W �.E; y/ D 0g. We first show that zE is closed

(see Definition 2.5, p. 17). Take an arbitrary x 2 X such that for every n 2 N,

there exists yn 2 zE with �.x; yn/ < 1=2n. For each yn 2 zE, take zn 2 E with

�.yn; zn/ < 1=2n. Then

�.x; zn/ 6 �.x; yn/C �.yn; zn/ < 1=n; for all n 2 N:

Thus, �.x;E/ D 0, i.e., x 2 zE. Therefore, zE is closed. It is clear that E � zE, and

so xE � zE.

We next show that zE � xE. Take an arbitrary x 2 zE and a closed set K

containing E. If x 2 XXK, then �.x;K/ > 0 (see Exercise 35). But then �.x;E/ >

0 since E � K and so

inf
y2E

�.x; y/ > inf
z2K

�.x; z/:

Hence, zE � xE. ut

I Exercise 32. The closed disk U.x; x"/ D fy W �.x; y/ 6 "g is closed in X , but

may not be the closure of the open disk U.x; "/.

Proof. Fix x 2 X . We show that the function �.x; �/ W X ! R is (uniformly)

continuous. For any y; z 2 X , the triangle inequality yields

j�.x; y/ � �.x; z/j 6 �.y; z/:

Hence, for every " > 0, take ı D ", and �.x; �/ satisfies the "-ı criterion. There-

fore, U.x; x"/ is closed since U.x; x"/ D ��1.x; Œ0; "�/ and Œ0; "� is closed in R.

To see it is not necessary that U.x; x"/ D U.x; "/, consider " D 1 and the usual

metric on n
.x; y/ 2 R2 W x2 C y2 D 1

o
[

n
.x; 0/ 2 R2 W 0 6 x 6 1

o
I

see Figure 2.1. Observe that .0; 0/ … U.x; 1/, but .0; 0/ 2 U.x;x1/. It follows from

Exercise 31 that .0; 0/ … U.x; 1/. ut
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0
x

Figure 2.1. U.x;x1/ ¤ U.x; 1/.

3H. Gı and F� Sets

I Exercise 33. The complement of a Gı is an F� , and vice versa.

Proof. If A is a Gı set, then there exists a sequence of open sets fUng such

that A D
T1
nD1 Un. Then Ac D

S1
nD1 U

c
n is F� . Vice versa. ut

I Exercise 34. An F� can be written as the union of an increasing sequence

F1 � F2 � � � � of closed sets.

Proof. Let B D
S1
nD1En, where En is closed for all n 2 N. Define F1 D E1

and Fn D
Sn
iD1Ei for n > 2. Then each Fn is closed, F1 � F2 � � � � , andS1

nD1 Fn D
S1
nD1 D B . ut

I Exercise 35. A closed set in a metric space is a Gı .

Proof. For an arbitrary set A � X and a point x 2 X , define

�.x; A/ D inf
y2A
f�.x; y/g:

We first show that �.�; A/ W X ! R is (uniformly) continuous by showing

j�.x; A/ � �.y;A/j 6 �.x; y/; for all x; y 2 X: (2.1)

For an arbitrary z 2 A, we have

�.x; A/ 6 �.x; z/ 6 �.x; y/C �.y; z/:

Take the infimum over z 2 A and we get

�.x; A/ 6 �.x; y/C �.y;A/: (2.2)
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Symmetrically, we have

�.y;A/ 6 �.x; y/C �.x; A/: (2.3)

Hence, (2.1) follows from (2.2) and (2.3). We next show that if A is closed, then

�.x; A/ D 0 iff x 2 A. The “if” part is trivial, so we do the “only if” part. If

�.x; A/ D 0, then for every n 2 N, there exists yn 2 A such that �.x; yn/ < 1=n;

that is, yn ! x. Since fyng � A and A is closed, we must have x 2 A.

Therefore,

A D

1\
nD1

fx 2 X W �.x; A/ < 1=ng :

The continuity of �.�; A/ implies that fx 2 X W �.x; A/ < 1=ng is open for all n.

Thus, A is a Gı set. ut

I Exercise 36. The rationals are an F� in R.

Proof. Q is countable, and every singleton set in R is closed; hence, Q is an

F� . ut

3I. Borel Sets

2.2 Neighborhoods

4A. The Sorgenfrey Line

I Exercise 37. Verify that the set Œx; z/, for z > x, do form a nhood base at x

for a topology on the real line.

Proof. We need only check that for each x 2 R, the family Bx ´ fŒx; z/ W z > xg

satisfies V-a, V-b, and V-c in Theorem 4.5. V-a is trivial. If Œx; z1/ 2 Bx and

Œx; z2/ 2 Bx , then Œx; z1/ \ Œx; z2/ D Œx; z1 ^ z2/ 2 Bx and is in Œx; z1/ \ Œx; z2/.

For V-c, let Œx; z/ 2 Bx . Let z0 2 .x; z�. Then
�
x; z0

�
2 Bx , and if y 2

�
x; z0

�
, the

right-open interval
�
y; z0

�
2 By and

�
y; z0

�
� Œx; z/.

Then, define open sets using V-d: G � R is open if and only if G contains a

set Œx; z/ of each of its points x. ut

I Exercise 38. Which intervals on the real line are open sets in the Sorgenfrey

topology?

Solution.

� Sets of the form .�1; x/, Œx; z/, or Œx;1/ are both open and closed.

� Sets of the form .x; z/ or .x;C1/ are open in R, since

.x; z/ D
[
fŒy; z/ W x < y < zg: ut
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I Exercise 39. Describe the closure of each of the following subset of the Sor-

genfrey line: the rationals Q, the set f1=n W n D 1; 2; : : : ; g, the set f�1=n W n D 1; 2; : : :g,

the integers Z.

Solution. Recall that, by Theorem 4.7, for each E � R, we have

xE D
˚
x 2 R W each basic nhood of x meets E

	
:

Then xQ D R since for any x 2 R, we have Œx; z/ \Q ¤ ¿ for z > x. Similarly,

f1=n W n D 1; 2; : : :g D f1=n W n D 1; 2; : : :g, and xZ D Z. ut

4B. The Moore Plane

I Exercise 40. Verify that this gives a topology on � .

Proof. Verify (V-a)—(V-c). It is easy. ut

4E. Topologies from nhoods

I Exercise 41. Show that if each point x in a set X has assigned a collection

Ux of subsets of X satisfying N-a through N-d of 4.2, then the collection

� D
˚
G � X W for each x in G, x 2 U � G for some U 2 Ux

	
is a topology for X , in which the nhood system at each x is just Ux .

Proof. We need to check G1—G3 in Definition 3.1. Since G1 and G3 are evi-

dent, we focus on G2. Let E1; E2 2 � . Take any x 2 E1 \ E2. Then there exist

some U1; U2 2 Ux such that x 2 U1 � E1 and x 2 U2 � E2. By N-b, we know

that U1 \ U2 2 Ux . Hence,

x 2 U1 \ U2 � E1 \E2;

and so E1 \E2 2 � . The induction principle then means that � is closed under

finite intersections. ut

4F. Spaces of Functions

I Exercise 42. For each f 2 RI , each finite subset F of I and each positive ı,

let

U.f; F; ı/ D
n
g 2 RI

W jg.x/ � f .x/j < ı, for each x 2 F
o
:

Show that the sets U.f; F; ı/ form a nhood base at f , making RI a topological

space.

Proof. Denote
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Bf D
˚
U.f; F; ı/ W F � I; jF j <1; ı > 0

	
:

(V -a) For each U.f; F; ı/ 2 Bf , we have jf .x/ � f .x/j D 0 < ı for all x 2 F ;

hence, f 2 U.f; F; ı/.

(V -b) Let U.f; F1; ı1/; U.f; F2; ı2/ 2 Bf . Define U.f; F3; ı3/ by letting

F3 D F1 [ F2; and ı3 D minfı1; ı2g:

Clearly, U.f; F3; ı3/ 2 Bf . If g 2 U.f; F3; ı3/, then

jg.x/ � f .x/j < minfı1; ı2g; for all x 2 F1 [ F2:

Hence, jg.x/�f .x/j < ı1 for all x 2 F1 and jg.x/�f .x/j < ı2 for all x 2 F2; that

is, g 2 U.f; F1; ı1/ \ U.f; F2; ı2/. Hence, there exists U.f; F3; ı3/ 2 Bf such that

U.f; F3; ı3/ � U.f; F1; ı1/ \ U.f; F2; ı2/.

(V -c) Pick U.f; F; ı/ 2 Bf . We must show that there exists some U.f; F0; ı0/ 2

Bf such that if g 2 U.f; F0; ı0/, then there is some U.g; F 0; ı0/ 2 Bg with

U.g; F 0; ı0/ � U.f; F; ı/.

Let F0 D F , and ı0 D ı=2. Then U.f; F; ı=2/ 2 Bf . For every g 2 U.f; F; ı=2/,

we have

jg.x/ � f .x/j < ı=2; for all x 2 F:

Let U.g; F 0; ı0/ D U.g; F; ı=2/. If h 2 U.g; F; ı=2/, then

jh.x/ � f .x/j < ı=2; for all x 2 F:

Triangle inequality implies that

jh.x/ � f .x/j 6 jh.x/ � g.x/j C jg.x/ � f .x/j < ı=2C ı=2 D ı; for all x 2 F I

that is, h 2 U.f; F; ı/. Hence, U.g; F; ı=2/ � U.f; F; ı/.

Now, G � RI is open iff G is contains a U.f; F; ı/ of each f 2 G. This defines

a topology on RI . ut

I Exercise 43. For each f 2 RI , the closure of the one-point set ff g is just ff g.

Proof. For every g 2 RI X ff g, pick x 2 I with g.x/ ¤ f .x/. Define U.g; F; ı/

with F D fxg and ı < jg.x/ � f .x/j. Then f … U.g; fxg; ı/; that is, U.g; fxg; ı/ 2

RI X ff g. Hence, RI X ff g is open, and so ff g is closed. This proves that ff g D

ff g. ut

I Exercise 44. For f 2 RI and " > 0, let

V.f; "/ D
n
g 2 RI

W jg.x/ � f .x/j < "; for each x 2 I
o
:

Verify that the sets V.f; "/ form a nhood base at f , making RI a topological

space.
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Proof. Denote Vf D fV.f; "/ W " > 0g. We verify the following properties.

(V -a) If V.f; "/ 2 Vf , then jf .x/ � f .x/j D 0 < "; that is, f 2 V.f; "/.

(V -b) Let V.f; "1/; V .f; "2/ 2 Vf . Let "3 D minf"1; "2g. If g 2 V.f; "3/, then

jg.x/ � f .x/j < "3 D minf"1; "2g; for all x 2 I:

Hence, V.f; "3/ � V.f; "1/ \ V.f; "2/.

(V -c) For an arbitrary V.f; "/ 2 Vf , pick V.f; "=2/ 2 Vf . For each g 2 V.f; "=2/,

pick V.g; "=2/ 2 Vg . If h 2 V.g; "=2/, then jh.x/� g.x/j < "=2 for all x 2 I. Hence

jh.x/ � f .x/j 6 jh.x/ � g.x/j C jg.x/ � f .x/j < "I

that is, V.g; "=2/ � V.f; "/. ut

I Exercise 45. Compare the topologies defined in 1 and 3.

Proof. It is evident that for every U.f; F; ı/ 2 Bf , there exists V.f; ı/ 2 Vf

such that V.f; ı/ � U.f; F; ı/. Hence, the topology in 1 is weaker than in 3 by

Hausdorff criterion. ut

2.3 Bases and Subbases

5D. No Axioms for Subbase

I Exercise 46. Any family of subsets of a set X is a subbase for some topology

on X and the topology which results is the smallest topology containing the

given collection of sets.

Proof. Let � be a family of subsets of X . Let �.�/ be the intersection of all

topologies containing � . Such topologies exist, since 2X is one such. Also �.�/

is a topology. It evidently satisfies the requirements “unique” and “smallest.”

The topology �.�/ can be described as follows: It consists of ¿, X , all finite

intersections of the � -sets, and all arbitrary unions of these finite intersections.

To verify this, note that since � � �.�/, then �.�/ must contain all the sets

listed. Conversely, because
S

distributes over
T

, the sets listed actually do

from a topology containing � , and which therefore contains �.�/. ut

5E. Bases for the Closed Sets

I Exercise 47. F is a base for the closed sets in X iff the family of complements

of members of F is a base for the open sets.
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Proof. Let G be an open set in X . Then G D X XE for some closed subset E.

Since E D
T
F 2G�F F , we obtain

G D X X

0@ \
F 2G�F

F

1A D [
F 2G�F

F c :

Thus, fF c W F 2 F g forms a base for the open sets. The converse direction is

similar. ut

I Exercise 48. F is a base for the closed sets for some topology on X iff (a)

whenever F1 and F2 belong to F , F1 [ F2 is an intersection of elements of F ,

and (b)
T
F 2F F D ¿.

Proof. If F is a base for the closed sets for some topology on X , then (a)

and (b) are clear. Suppose, on the other hand, X is a set and F a collection

of subsets of X with (a) and (b). Let T be all intersections of subcollections

from F . Then any intersection of members of T certainly belongs to T , so T

satisfies (F-a). Moreover, if F1 � F and F2 � F , so that
T
E2F1

E and
T
F 2F2

F

are elements of T , then0@ \
E2F1

E

1A [
0@ \
F 2F2

F

1A D \
E2F1

\
F 2F2

.E [ F /:

But by property (a), the union of two elements of F is an intersection of el-

ements of F , so .
T
E2F1

E/ [ .
T
F 2F2

F / is an intersection of elements of F ,

and hence belongs to T . Thus T satisfies (F-b). Finally, ¿ 2 T by (b) and X 2 T

since X is the intersection of the empty subcollection from F . Hence T sat-

isfies (F-c). This completes the proof that T is the collection of closed sets of

X . ut





3
NEW SPACES FROM OLD

3.1 Subspaces

3.2 Continuous Functions

7A. Characterization of Spaces Using Functions

I Exercise 49. The characteristic function of A is continuous iff A is both open

and closed in X .

Proof. Let 1A W X ! R be the characteristic function of A, which is defined by

1A .x/ D

˚
1 if x 2 A

0 if x … A:

First suppose that 1A is continuous. Then, say, 1�1A

��
1=2; 2

��
D A is open,

and 1�1A

��
�1; 1=2

��
D X X A is open. Hence, A is both open and closed in X .

Conversely, suppose that A is both open and closed in X . For any open set

U � R, we have

1�1A .U / D

˚
A if 1 2 U and 0 … U

X X A if 1 … U and 0 2 U

¿ if 1 … U and 0 … U

X if 1 2 U and 0 2 U:

Then 1A is continuous. ut

I Exercise 50. X has the discrete topology iff whenever Y is a topological space

and f W X ! Y , then f is continuous.

Proof. Let Y be a topological space and f W X ! Y . It is easy to see that f

is continuous if X has the discrete topology, so we focus on the sufficiency

19
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direction. For any A � X , let Y D R and f D 1A. Then by Exercise 49 A is

open. ut

7C. Functions Agreeing on A Dense Subset

I Exercise 51. If f and g are continuous functions from X to R, the set of

points x for which f .x/ D g.x/ is a closed subset of X . Thus two continuous

maps on X to R which agree on a dense subset must agree on all of X .

Proof. Denote A D fx 2 X W f .x/ ¤ g.x/g. Take a point y 2 A such that

f .y/ > g.y/ (if it is not true then let g.y/ > f .y/). Take an " > 0 such that

f .y/�" > g.y/C". Since f and g are continuous, there exist nhoods U1 and U2
of y such that f ŒU1� � .�"C f .y/; "C f .y// and gŒU2� � .�"C g.y/; "C g.y//.

Let U D U1 \ U2. Then U is a nhood of x and for every z 2 U we have

f .z/ � g.z/ > Œf .x/ � "� � Œg.x/C "� > 0:

Hence, U � A; that is, U is open, and so fx 2 X W f .x/ D g.x/g D X X U is

closed.

Now suppose that D ´ fx 2 X W f .x/ D g.x/g is dense. Take an arbitrary

x 2 X . Since f and g are continuous, for each n 2 N, there exist nhoods Vf and

Vg such that jf .y/ � f .x/j < 1=n for all y 2 Vf and jg.y/ � g.x/j < 1=n for all

y 2 Vg . Let Vn D Vf \Vg . Then there exists xn 2 Vn\D with jf .xn/�f .x/j < 1=2n

and jg.xn/ � g.x/j < 1=2n. Since f .xn/ D g.xn/, we have

jf .x/ � g.x/j 6 jf .x/ � f .xn/j C jf .xn/ � g.x/j D jf .x/ � f .xn/j C jg.xn/ � g.x/j
< 1=n:

Therefore, f .x/ D g.x/. ut

7E. Range Immaterial

I Exercise 52. If Y � Z and f W X ! Y , then f is continuous as a map from

X to Y iff f is continuous as a map from X to Z.

Proof. Let f W X ! Z be continuous. Let U be open in Y . Then U D Y \ V for

some V which is open in Z. Therefore,

f �1.U / D f �1 .Y \ V / D f �1 .Y / \ f �1 .V / D X \ f �1 .V / D f �1 .V /

is open in X , and so f is continuous as a map from X to Y .

Conversely, let f W X ! Y be continuous and V be open in Z. Then

f �1 .V / D f �1 .Y \ V /. Since Y \ V is open in Y and f is continuous from

X to Y , the set f �1 .Y \ V / is open in X and so f is continuous as a map from

X to Z. ut
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7G. Homeomorphisms within the Line

I Exercise 53. Show that all open intervals in R are homeomorphic.

Proof. We have

� .a; b/ � .0; 1/ by f1.x/ D .x � a/=.b � a/.

� .a;1/ � .1;1/ by f2.x/ D x � aC 1.

� .1;1/ � .0; 1/ by f3.x/ D 1=x.

� .�1;�a/ � .a;1/ by f4.x/ D �x.

� .�1;1/ � .��=2; �=2/ by f5.x/ D arctan x.

Therefore, by compositing, every open interval is homeomorphic to .0; 1/. ut

I Exercise 54. All bounded closed intervals in R are homeomorphic.

Proof. Œa; b� � Œ0; 1� by f .x/ D .x � a/=.b � a/. ut

I Exercise 55. The property that every real-valued continuous function on X

assumes its maximum is a topological property. Thus, I ´ Œ0; 1� is not homeo-

morphic to R.

Proof. Every continuous function assumes its maximum on Œ0; 1�; however, x2

has no maximum on R. Therefore, I 6� R. ut

7K. Semicontinuous Functions

I Exercise 56. If f˛ is a lower semicontinuous real-valued function on X for

each ˛ 2 A, and if sup˛ f˛.x/ exists at each x 2 X , then the function f .x/ D

sup˛ f˛.x/ is lower semicontinuous on X .

Proof. For an arbitrary a 2 R, we have f .x/ 6 a iff f˛.x/ 6 a for all ˛ 2 A.

Hence,

fx 2 X W f .x/ 6 ˛g D
\
˛2A

fx 2 X W f˛.x/ 6 ag ;

and so f �1.�1; a� is closed; that is, f is lower semicontinuous. ut

I Exercise 57. Every continuous function from X to R is lower semicontinuous.

Thus the supremum of a family of continuous functions, if it exists, is lower

semicontinuous. Show by an example that “lower semicontinuous” cannot be

replaced by “continuous” in the previous sentence.

Proof. Suppose that f W X ! R is continuous. Since .�1; x� is closed in R, the

set f �1.�1; x� is closed in X ; that is, f is lower semicontinuous.

To construct an example, let f W Œ0;1/! R be defined as follows:
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fn.x/ D

˚
nx if 0 6 x 6 1=n
1 if x > 1=n:

Then

f .x/ D sup
n
fn.x/ D

˚
0 if x D 0

1 if x > 0;

and f is not continuous. ut

I Exercise 58. The characteristic function of a set A in X is lower semicontin-

uous iff A is open, upper semicontinuous iff A is closed.

Proof. Observe that

1�1A .�1; a� D

„
¿ if a < 0

X X A if 0 6 a < 1
X if a > 1:

Therefore, 1A is LSC iff A is open. Similarly for the USC case. ut

I Exercise 59. If X is metrizable and f is a lower semicontinuous function

from X to I, then f is the supremum of an increasing sequence of continuous

functions on X to I.

Proof. Let d be the metric on X . First assume f is nonnegative. Define

fn.x/ D inf
z2X
ff .z/C nd.x; z/g :

If x; y 2 X , then f .z/Cnd.x; z/ 6 f .z/Cnd.y; z/Cnd.x; y/. Take the inf over z

(first on the left side, then on the right side) to obtain fn.x/ 6 fn.y/C nd.x; y/.
By symmetry,

jfn.x/ � fn.y/j 6 nd.x; y/I

hence, fn is uniformly continuous on X . Furthermore, since f > 0, we have

0 6 fn.x/ 6 f .x/C nd.x; x/ D f .x/. By definition, fn increases with n; we must

show that limn fn is actually f .

Given " > 0, by definition of fn.x/ there is a point zn 2 X such that

fn.x/C " > f .zn/C nd.x; zn/ > nd.x; zn/ (3.1)

since f > 0. But fn.x/ C " 6 f .x/ C "; hence d.x; zn/ ! 0. Since f is LSC, we

have lim infn f .zn/ > f .x/ (Ash, 2009, Theorem 8.4.2); hence

f .zn/ > f .x/ � " ev: (3.2)

By (3.1) and (3.2),

fn.x/ > f .zn/ � "C nd.x; zn/ > f .zn/ � " > f .x/ � 2"
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for all sufficiently large n. Thus, fn.x/! f .x/.

If jf j 6 M < 1, then f CM is LSC, finite-valued, and nonnegative. If 0 6
gn " .f CM/, then fn D .gn �M/ " f and jfnj >M . ut

7M. C.X/ and C �.X/

I Exercise 60. If f and g belong to C.X/, then so do f C g, f � g and a � f , for

a 2 R. If, in addition, f and g are bounded, then so are f C g, f � g and a � f .

Proof. We first do f C g. Since f; g 2 C.X/, for each x 2 X and each " > 0,

there exist nhoods U1 and U2 of x such that f ŒU1� � .�"=2C f .x/; "=2C f .x//

and gŒU2� � .�"=2C g.x/; "=2C g.x//. Let U D U1 \U2. Then U is a nhood of x,

and for every y 2 U , we have

jŒf .y/C g.y/� � Œf .x/C g.x/�j 6 jf .y/ � f .x/j C jg.y/ � g.x/j < "I

that is, f C g is continuous.

We then do a � f . We suppose that a > 0 (all other cases are similar). For

each x 2 X and " > 0, there exists a nhood U of x such that f ŒU � � .�"=a C

f .x/; "=aC f .x//. Then .a � f /ŒU � 2 .�"C a � f .x/; "C a � f .x//. So a � f 2 C.X/.

Finally, to do f � g, we first show that f 2 2 C.X/ whenever f 2 C.X/. For

each x 2 X and " > 0, there is a nhood U of x such that f ŒU � � .�
p
" C

f .x/;
p
"C f .x//. Then f 2ŒU � � .�"C f 2.x/; "C f 2.x//, i.e., f 2 2 C.X/. Since

f .x/ � g.x/ D
1

4

h�
f .x/C g.x/

�2
�
�
f .x/ � g.x/

�2i
;

we know that f � g 2 C.X/ from the previous arguments. ut

I Exercise 61. C.X/ and C �.X/ are algebras over the real numbers.

Proof. It follows from the previous exercise that C.X/ is a vector space on R.

So everything is easy now. ut

I Exercise 62. C �.X/ is a normed linear space with the operations of addition

and scalar multiplication given above and the norm kf k D supx2X jf .x/j.

Proof. It is easy to see that C �.X/ is a linear space. So it suffices to show that

k � k is a norm on C �.X/. We focus on the triangle inequality. Let f; g 2 C �.X/.

Then for every x 2 X , we have jf .x/ C g.x/j 6 jf .x/j C jg.x/j 6 kf k C kgk;
hence, kf C gk 6 kf k C kgk. ut
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3.3 Product Spaces, Weak Topologies

8A. Projection Maps

I Exercise 63. The ˇth projection map �ˇ is continuous and open. The projec-

tion �1 W R2 ! R is not closed.

Proof. Let Uˇ be open in Xˇ . Then ��1
ˇ
.Uˇ / is a subbasis open set of the

Tychonoff topology on�˛ X˛ , and so is open. Hence, �ˇ is continuous.

Take an arbitrary basis open set U in the Tychonoff topology. Denote I ´

f1; : : : ; ng. Then

U D �̨U˛;

where U˛ is open in X˛ for every ˛ 2 A, and U
j̨
D X

j̨
for all j … I . Hence,

�ˇ .U / D

˚
Uˇ if ˇ D ˛i for some i 2 I

Xˇ otherwise.

That is, �ˇ .U / is open in Xˇ in both case. Since any open set is a union of

basis open sets, and since functions preserve unions, the image of any open

set under �ˇ is open.

0

F

Figure 3.1. �1.F / D .0;1/

Finally, let F D epi.1=x/. Then F is closed in R2, but �1.F / D .0;1/ is open

in R; that is, �1 is not closed. See Figure 3.1. ut

I Exercise 64. Show that the projection of I � R onto R is a closed map.

Proof. Let � W I � R ! R be the projection. Suppose A � I � R is closed, and

suppose y0 2 R X �ŒA�. For every x 2 I, since .x; y0/ … A and A is closed,

we find a basis open subset U.x/ � V.x/ of I � R that contains .x; y0/, and

ŒU.x/ � V.x/� \ A D ¿. The collection fU.x/ W x 2 Ig covers I, so finitely many

of them cover I by compactness, say U.x1/; : : : ; U.xn/ do. Now define V D
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iD1 V.xi /, and note that V is an open nhood of y0, and V \ �ŒA� D ¿. So �ŒA�

is closed; that is, � is closed. See Lee (2011, Lemma 4.35, p. 95) for the Tube

Lemma.

Generally, if � W X � Y ! X is a projection may where Y is compact, then �

is a closed map. ut

8B. Separating Points from Closed Sets

I Exercise 65. If f˛ is a map (continuous function) of X to X˛ for each ˛ 2 A,

then ff˛ W ˛ 2 Ag separates points from closed sets in X iff ff �1˛ ŒV � W ˛ 2

A; V open in X˛g is a base for the topology on X .

Proof. Suppose that ff �1˛ ŒV � W ˛ 2 A; V open in X˛g consists of a base for the

topology on X . Let B be closed in X and x … B . Then x 2 X X B and X X B is

open in X . Hence there exists f �1˛ ŒV � such that x 2 f �1˛ ŒV � � X X B ; that is,

f˛.x/ 2 V . Since V \ f˛ŒB� D ¿, i.e., f˛ŒB� � X˛ X V , and X˛ X V is closed, we

get f˛ŒB� � X˛ X V . Thus, f˛.x/ … f˛ŒB�.

Next assume that ff˛ W ˛ 2 Ag separates points from closed sets in X . Take

an arbitrary open subset U � X and x 2 U . Then B ´ X X U is closed in X ,

and hence there exists ˛ 2 A such that f˛.x/ … f˛ŒB�. Then f˛.x/ 2 X˛ X f˛ŒB�

and, since X˛ X f˛ŒB� is open in X˛ , there exists an open set V of X˛ such that

f˛.x/ 2 V � X˛ X f˛ŒB�. Therefore,

x 2 f �1˛ ŒV � � f �1˛

h
X˛ X f˛ŒB�

i
D X X f �1˛

h
f˛ŒB�

i
� X X f �1˛ Œf˛ŒB��

� X X B

D U:

Hence, ff �1˛ ŒV � W ˛ 2 A; V open in X˛g is a base for the topology on X . ut

8D. Closure and Interior in Products

Let X and Y be topological spaces containing subsets A and B , respectively. In

the product space X � Y :

I Exercise 66. .A � B/B D AB � BB.

Proof. Since AB � A is open in A and BB � B is open in B , the set AB � BB �

A � B is open in A � B ; hence, AB � BB � .A � B/B.

For the converse inclusion, let x D .a; b/ 2 .A � B/B. Then there is an basis

open set U1 � U2 such that x 2 U1 � U2 � A � B , where U1 is open in A and U2
is open in B . Hence, a 2 U1 � A and b 2 U2 � B ; that is, a 2 AB and b 2 BB.

Then x 2 AB � BB. ut
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I Exercise 67. A � B D xA � xB .

Proof. See Exercise 68. ut

I Exercise 68. Part 2 can be extended to infinite products, while part 1 can be

extended only to finite products.

Proof. Assume that y D
�
y˛
�
2�A˛ ; we show that y˛ 2 SA˛ for each ˛; that

is, y 2� SA˛ . Let y˛ 2 U˛ , where U˛ is open in Y˛ ; since y 2 ��1˛ .U˛/, we must

have

¿ ¤ ��1˛ .U˛/ \�A˛ D .U˛ \ A˛/ �

 
�̌
¤˛

Aˇ

!
;

and so U˛\A˛ ¤ ¿. This proves y˛ 2 SA˛ . The converse inclusion is established

by reversing these steps: If y 2� SA˛ , then for any open nhood

B ´ U˛1 � � � � � U˛n �
�
�

˚
Yˇ W ˇ ¤ ˛1; : : : ; ˛n

	�
;

each U˛i \ A˛i ¤ ¿ so that B \�A˛ ¤ ¿. ut

I Exercise 69. Fr.A � B/ D Œ xA � Fr.B/� [ ŒFr.A/ � xB�.

Proof. We have

Fr.A � B/ D A � B \ .X � Y / X .A � B/

D . xA � xB/ \
�
.X � Y / X .Aı � Bı/

�
D . xA � xB/ \

h�
X � .Y X Bı/

�
[
�
.X X Aı/ � Y

�i
D Œ xA � Fr.B/� [ ŒFr.A/ � xB�: ut

I Exercise 70. If X˛ is a nonempty topological space and A˛ � X˛ , for each

˛ 2 A, then�A˛ is dense in�X˛ iff A˛ is dense in X˛ , for each ˛.

Proof. It follows from Exercise 68 that

�A˛ D� xA˛I

that is,�A˛ is dense in�X˛ iff A˛ is dense in X˛ , for each ˛. ut

8E. Miscellaneous Facts about Product Spaces

Let X˛ be a nonempty topological space for each ˛ 2 A, and let X D�X˛ .

I Exercise 71. If V is a nonempty open set in X , then �˛.V / D X˛ for all but

finitely many ˛ 2 A.

Proof. Let T˛ be the topology on X˛ for each ˛ 2 A. Let V be an arbitrary open

set in X . Then V D
S
k2K Bk , where for each k 2 K we have Bk D�˛2AE˛k ,
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and for each ˛ 2 A we have E˛k 2 T˛ while

Ak ´ f˛ 2 A W E˛k ¤ X˛g

is finite. Then
T
k2K Ak is finite. If ˛0 …

T
k2K Ak , then there exists k0 2 K such

that E˛0k0 D X˛0 . Then

��1˛0 .Bk0/ D �
�1
˛0

 
�̨
2A

E˛k0

!
D X˛0 ;

and so X˛0 D �
�1
˛0
.Bk0/ � �

�1
˛0
.V / implies that ��1˛0 .V / D X˛0 . ut

I Exercise 72. If b˛ is a fixed point in X˛ , for each ˛ 2 A, then X 0˛0 D fx 2 X W

x˛ D b˛ whenever ˛ ¤ ˛0g is homeomorphic to X˛0 .

Proof. Write an element in X 0˛0 as .x˛0 ;b�˛0/. Then consider the mapping

.x˛0 ;b�˛0/ 7! x˛0 . ut

8G. The Box Topology

Let X˛ be a topological space for each ˛ 2 A.

I Exercise 73. In�X˛ , the sets of the form�U˛ , where U˛ is open in X˛
for each ˛ 2 A, form a base for a topology.

Proof. Let B ´
˚
�U˛ W ˛ 2 A;U˛ open in X˛

	
. Then it is clear that�X˛ 2

B since X˛ is open for each ˛ 2 A. Now take any B1; B2 2 B, with B1 D�U 1˛
and B2 D�U 2˛ . Let

p D
�
p1; p2; : : :

�
2 B1 \ B2 D�

�
U 1˛ \ U

2
˛

�
:

Then p˛ 2 U 1˛ \ U
2
˛ , and so there exists an open set B˛ � X˛ such that p˛ 2

B˛ � U
1
˛ \ U

2
˛ . Hence,�B˛ 2 B and p 2 B � B1 \ B2. ut

8H. Weak Topologies on Subspaces

Let X have the weak topology induced by a collection of maps f˛ W X ! X˛ ,

for ˛ 2 A.

I Exercise 74. If each X˛ has the weak topology given by a collection of maps

g˛� W X˛ ! Y˛�, for � 2 �˛ , then X has the weak topology given by the maps

g˛� B f˛ W X ! Y˛� for ˛ 2 A and � 2 �˛ .

Proof. A subbase for the weak topology on X˛ induced by fg˛� W � 2 �˛g isn
g�1˛� .U˛�/ W � 2 �˛; U˛� open in Y˛�

o
:
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Then a subbasic open set in X for the weak topology on X induced by

ff˛ W ˛ 2 Ag is n
f �1˛ Œg�1˛� .U˛�/� W ˛ 2 A; � 2 �˛; U˛� open in Y˛�

o
:

Since f �1˛ .g�1
˛�
.U˛�// D .g˛� B f˛/

�1.U˛�/, we get the result. ut

I Exercise 75. Any B � X has the weak topology induced by the maps f˛�B .

Proof. As a subspace of X , the subbase on B isn
B \ f �1˛ .U˛/ W ˛ 2 A;U˛ open in X˛

o
:

On the other hand, .f˛�B/�1.U˛/ D B \ f �1˛ .U˛/ for every ˛ 2 A and U˛ open

in X˛ . Hence, the above set is also the subbase for the weak topology induced

by ff˛�B W ˛ 2 Ag. ut

3.4 Quotient Spaces

9B. Quotients versus Decompositions

I Exercise 76. The process given in 9.5 for forming the topology on a decom-

position space does define a topology.

Proof. Let .X; T / be a topological space; let D be a decomposition ofX . Define

F � D is open in D ()

[
fF W F 2 F g is open in X: (3.3)

Let T be the collection of open sets defined by (3.3). We show that .D ;T / is a

topological space.

� Take an arbitrary collection fFigi2I � T ; then
S
fF W F 2 Fig is open in X

for each i 2 I . Hence,
S
i2I Fi 2 T since

[
F 2

S
i2I Fi

F D
[
i2I

0@ [
F 2Fi

F

1A
is open in X .

� Let F1;F2 2 T ; then
S
E2F1

E and
S
F 2F2

F are open in X . Therefore, F1 \

F2 2 T since [
F 2F1\F2

F D

0@ [
E2F1

E

1A \
0@ [
F 2F2

F

1A
is open in X .

� ¿ 2 T since
S
¿ D ¿ is open in X ; finally, D 2 T since

S
D D X . ut
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I Exercise 77. The topology on a decomposition space D of X is the quotient

topology induced by the natural map P W X ! D . (See 9.6.)

Proof. Let T be the decomposition topology of D , and let TP be the quotient

topology induced by P . Take an open set F 2 T ; then
S
F 2F F is open in X .

Hence,

P�1.F / D P�1

0@ [
F 2F

F

1A D [
F 2F

P�1.F / D
[
F 2F

F

is open in X , and so F 2 TP . We thus proved that T � TP .

Next take an arbitrary F 2 TP . By definition, we have P�1.F / D
S
F 2F F is

open in X . But then F 2 T .

We finally prove Theorem 9.7 (McCleary, 2006, Theorem 4.18): Suppose

f W X ! Y is a quotient map. Suppose � is the equivalence relation defined

on X by x � x0 if f .x/ D f .x0/. Then the quotient space X= � is homeomorphic

to Y .

By the definition of the equivalence relation, we have the diagram:

X

X= �

Y

Y

h B P
D
f

f

P

h

Define h W X= �! Y by letting h.Œx�/ D f .x/. It is well-defined. Notice that

h B P D f since for each x 2 X we obtain

.h B P /.x/ D h.P.x// D h.Œx�/ D f .x/:

Both f and P are quotient maps so h is continuous by Theorem 9.4. We show

that h is injective, subjective and h�1 is continuous, which implies that h is a

homeomorphism. If h.Œx�/ D h.Œx0�/, then f .x/ D f .x0/ and so x � x0; that is,

Œx� D Œx0�, and h is injective. If y 2 Y , then y D f .x/ since f is surjective and

h.Œx�/ D f .x/ D y so h is surjective. To see that h�1 is continuous, observe that

since f is a quotient map and P is a quotient map, this shows P D h�1 Bf and

Theorem 9.4 implies that h�1 is continuous. ut





4
CONVERGENCE

4.1 Inadequacy of Sequences

10B. Sequential Convergence and Continuity

I Exercise 78. Find spaces X and Y and a function F W X ! Y which is not

continuous, but which has the property that F.xn/! F.x/ in Y whenever xn !

x in X .

Proof. Let X D RR and Y D R. Define F W RR ! R by letting F.f / D

supx2R jf .x/j. Then F is not continuous: Let

E D
n
f 2 RR

W f .x/ D 0 or 1 and f .x/ D 0 only finitely often
o
;

and let g 2 RR be the function which is 0 everywhere. Then g 2 xE. However,

0 2 F Œ xE� since F.g/ D 0, and F ŒE� D f1g. ut

10C. Topology of First-Countable Spaces

Let X and Y be first-countable spaces.

I Exercise 79. U � X is open iff whenever xn ! x 2 U , then .xn/ is eventually

in U .

Proof. If U is open and xn ! x 2 U , then x has a nhood V such that x 2 V �

U . By definition of convergence, there is some positive integer n0 such that

n > n0 implies xn 2 V � U ; hence, .xn/ is eventually in U .

Conversely, suppose that whenever xn ! x 2 U , then .xn/ is eventually in

U . If U is not open, then there exists x 2 U such that for every nhood of V of

x we have V \ .X XU/ ¤ ¿. Since X is first-countable, we can pick a countable

nhood base fVn W n 2 Ng at x. Replacing Vn D
Tn
iD1 Vi where necessary, we

may assume that V1 � V2 � � � � . Now Vn \ .X X U/ ¤ ¿ for each n, so we

can pick xn 2 Vn \ .X X U/. The result is a sequence .xn/ contained in X X U

31
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which converges to x 2 U ; that is, xn ! x but .xn/ is not eventually in U . A

contradiction. ut

I Exercise 80. F � X is closed iff whenever .xn/ is contained in F and xn ! x,

then x 2 F .

Proof. Let F be closed; let .xn/ be contained in F and xn ! x. Then x 2 xF D

F .

Conversely, assume that whenever .xn/ is contained in F and xn ! x, then

x 2 F . It follows from Theorem 10.4 that x 2 xF with the hypothesis; therefore,
xF � F , i.e., xF D F and so F is closed. ut

I Exercise 81. f W X ! Y is continuous iff whenever xn ! x in X , then

f .xn/! f .x/ in Y .

Proof. Suppose f is continuous and xn ! x. Since f is continuous at x,

for every nhood V of f .x/ in Y , there exists a nhood U of x in X such that

f .U / � V . Since xn ! x, there exists n0 such that n > n0 implies that xn 2 U .

Hence, for every nhood V of f .x/, there exists n0 such that n > n0 implies that

f .xn/ 2 V ; that is, f .xn/! f .x/.

Conversely, let the criterion hold. Suppose that f is not continuous. Then

there exists x 2 X and a nhood V of f .x/, such that for every nhood base

Un, n 2 N, of x, there is xn 2 Un with f .xn/ … V . By letting U1 � U2 � � � � ,

we have xn ! x and so f .xn/ ! f .x/; that is, eventually, f .xn/ is in V . A

contradiction. ut

4.2 Nets

11A. Examples of Net Converence

I Exercise 82. In RR, let

E D
n
f 2 RR

W f .x/ D 0 or 1; and f .x/ D 0 only finitely often
o
;

and g be the function in RR which is identically 0. Then, in the product topology

on RR, g 2 xE. Find a net .f�/ in E which converges to g.

Proof. Let Ug D fU.g; F; "/ W " > 0; F � R a finite setg be the nhood base of g.

Order Ug as follows:

U.g; F1; "1/ 6 U.g; F2; "2/ () U.g; F2; "2/ � U.g; F; "2/

() F1 � F2 and "2 6 "1:

Then Ug is a directed set. So we have a net .fF;"/ converging to g. ut
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11B. Subnets and Cluster Points

I Exercise 83. Every subnet of an ultranet is an ultranet.

Proof. Take an arbitrary subset E � X . Let .x�/ be an ultranet in X , and

suppose that .x�/ is residually in E, i.e., there exists some �0 2 � such that

� > �0 implies that x� 2 E. If .x��/ is a subnet of .x�/, then there exists some

�0 such that ��0 > �0. Then for every � > �0, we have �� > �0, and so � > �0
implies that x�� 2 E; that is, .x��/ is residually in E. ut

I Exercise 84. Every net has a subnet which is an ultranet.

Proof. See Adamson (1996, Exercise 127, p. 40). ut

I Exercise 85. If an ultranet has x as a cluster point, then it converges to x.

Proof. Let .x�/ be an ultranet, and x be a cluster point of .x�/. Let U be a

nhood of x. Then .x�/ lies in U eventually since for any �0 there exists � > �0
such that x� 2 U . ut

11D. Nets Describe Topologies

I Exercise 86. Nets have the following four properties:

a. if x� D x for each � 2 �, then x� ! x,

b. if x� ! x, then every subnet of .x�/ converges to x,

c. if every subnet of .x�/ has a subnet converging to x, then .x�/ converges to

x,

d. (Diagonal principal) if x� ! x and, for each � 2 �, a net .x��/u2M� converges

to x�, then there is a diagonal net converging to x; i.e., the net .x��/�2�;�2M� ,

ordered lexicographically by �, then by M�, has a subnet which converges to

x.

Proof. (a) If the net .x�/ is trivial, then for each nhood U of x, we have x� 2 U

for all � 2 �. Hence, x� ! x.

(b) Let .x'.�//�2M be a subnet of .x�/. Take any nhood U of x. Then there

exists �0 2 � such that � > �0 implies that x� 2 U since x� ! x. Since ' is

cofinal in �, there exists �0 2 M such that '.�0/ > �0; since ' is increasing,

� > �0 implies that '.�/ > '.�0/ > �0. Hence, there exists �0 2 M such that

� > �0 implies that x'.�/ 2 U ; that is, x'.�/ ! x.

(c) Suppose by way of contradiction that .x�/ does not converge to x. Then

there exists a nhood U of x such that for any � 2 �, there exists some '.�/ > �
with x'.�/ … U . Then .x'.�// is a subnet of .x�/, but which has no converging

subnets.
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(d) Order f.�; �/ W � 2 �;� 2M�g as follows:

.�1; �1/ 6 .�2; �2/ () �1 6 �2, or �1 D �2 and �1 6 �2:

Let U be the nhood system of x which is ordered by U1 6 U2 iff U2 � U1 for all

U1; U2 2 U. Define

� D
n
.�; U / W � 2 �;U 2 U such that x� 2 U

o
:

Order � as follows: .�1; U1/ 6 .�2; U2/ iff �1 6 �2 and U2 � U1. For each

.�; U / 2 � pick �� 2 M� so that x�� 2 U for all � > �� (such a �� exists since

x�� ! x� and x� 2 U ). Define ' W .�; U / 7! x��� for all .�; U / 2 � . It now easy to

see that this subnet converges to x. ut

4.3 Filters

12A. Examples of Filter Convergence

I Exercise 87. Show that if a filter in a metric space converges, it must con-

verge to a unique point.

Proof. Suppose a filter F in a metric space .X; d/ converges to x; y 2 X . If

x ¤ y, then there exists r > 0 such that B.x; r/ \ B.y; r/ D ¿. But since F ! x

and F ! y, we must have B.x; r/ 2 F and B.y; r/ 2 F . This contradicts the

fact that the intersection of every two elements in a filter is nonempty. Thus,

x D y. ut

12C. Ultrafilters: Uniqueness

I Exercise 88. If a filter F is contained in a unique ultrafilter F 0, then F D F 0.

Proof. We first show: Every filter F on a non-empty set X is the intersection of

the family of ultrafilters which include F .

Let E be a set which does not belong to F . Then for each set F 2 F we

cannot have F � E and hence we must have F \Ec ¤ ¿. So F [fEcg generates

a filter on X , which is included in some ultrafilter FE . Since Ec 2 FE we must

have E … FE . Thus E does not belong to the intersection of the set of all

ultrafilters which include F . Hence this intersection is just the filter F itself.

Now, if F is contained in a unique ultrafilter F 0, we must have F D F 0. ut
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12D. Nets and Filters: The Translation Process

I Exercise 89. A net .x�/ has x as a cluster point iff the filter generated by

.x�/ has x as a cluster point.

Proof. Suppose x is a cluster point of the net .x�/. Then for every nhood U of

x, we have x� 2 U i:o: But then U meets every B�0 ´ fx� W � > �0g, the filter

base of the filter F generated by .x�/; that is, x is a cluster point of F . The

converse implication is obvious. ut

I Exercise 90. A filter F has x as a cluster point iff the net based on F has x

as a cluster point.

Proof. Suppose x is a cluster point of F . If U is a nhood of x, then U meets

every F 2 F . Then for an arbitrary .p; F / 2 �F , pick q 2 F \ U so that

.q; F / 2 �F , .q; F / > .p; F /, and P.p; F / D p 2 U ; that is, x is a cluster point

of the net based on F .

Conversely, suppose the net based on F has x as a cluster point. Let U be

a nhood of x. Then for every .p0; F0/ 2 �F , there exists .p; F / > .p0; F0/ such

that p 2 U . Then F0 \ U ¤ ¿, and so x is a cluster point of F . ut

I Exercise 91. If .x��/ is a subnet of .x�/, then the filter generated by .x��/ is

finer than the filter generated by .x�/.

Proof. Suppose .x��/ is a subnet of .x�/. Let F�� is the filter generated by

.x��/, and F� be the filter generated by .x�/. Then the base generating F��
is the sets B��0 D fx�� W � > �0g, and the base generating F� is the sets

B�0 D fx� W � > �0g. For each such a B�0 , there exists �0 such that ��0 > �0;
that is, B��0 � B�0 . Therefore, F� � F�� . ut

I Exercise 92. The net based on an ultrafilter is an ultranet and the filter

generated by an ultranet is an ultrafilter.

Proof. Suppose F is an ultrafilter. Let E � X and we assume that E 2 F . Pick

p 2 E. If .q; F / > .p;E/, then q 2 E; that is, P.p; F / 2 E ev: Hence, the net

based on F is an ultranet.

Conversely, suppose .x�/ is an ultranet. Let E � X and we assume that there

exists �0 such that x� 2 E for all � > �0. Then B�0 D fx� W � > �0g � E and so

E 2 F , where F is the filter generated by .x�/. Hence, F is an ultrafilter. ut

I Exercise 93. The net based on a free ultrafilter is a nontrivial ultranet.

Hence, assuming the axiom of choice, there are nontrivial ultranets.

Proof. Let F be a free ultrafilter, and .x�/ be the net based on F . It follows

from the previous exercise that .x�/ is an ultranet. If .x�/ is trivial, i.e., x� D x

for some x 2 X and all � 2 �F , then for all F 2 F , we must have F D fxg. But

then
T

F D fxg ¤ ¿; that is, F is fixed. A contradiction.
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Now, for instance, the Frechet filter F on R is contained in some free ultra-

filter G by Example (b) when the Axiom of Choice is assumed. Hence, the net

based on G is a nontrivial ultranet. ut



5
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5.1 The Separation Axioms

13B. T0- and T1-Spaces

I Exercise 94. Any subspace of a T0- or T1-space is, respectively, T0 or T1.

Proof. Let X be a T0-space, and A � X . Let x and y be distinct points in A.

Then, say, there exists an open nhood U of x such that y … U . Then U \ A

is relatively open in A, contains x, and y … A \ U . The T1 case can be proved

similarly. ut

I Exercise 95. Any nonempty product space is T0 or T1 iff each factor space

is, respectively, T0 or T1.

Proof. If X˛ is a T0-space, for each ˛ 2 A, and x ¤ y in�X˛ , then for some

coordinate ˛ we have x˛ ¤ y˛ , so there exists an open set U˛ containing, say,

x˛ but not y˛ . Now ��1˛ .U˛/ is an open set in�X˛ containing x but not y.

Thus,�X˛ is T0.

Conversely, if�X˛ is a nonempty T0-space, pick a fixed point b˛ 2 X˛ , for

each ˛ 2 A. Then the subspace B˛ ´ fx 2�X˛ W xˇ D bˇ unless ˇ D ˛g is T0,

by Exercise 94, and is homeomorphic to X˛ under the restriction to B˛ of the

projection map. Thus X˛ is T0, for each ˛ 2 A. The T1 case is similar. ut

13C. The T0-Identification

For any topological space X , define � by x � y iff fxg D fyg.

I Exercise 96. � is an equivalence relation on X .

Proof. Straightforward. ut

I Exercise 97. The resulting quotient space X= �D �X is T0.

37
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Proof. We first show that X is T0 iff whenever x ¤ y then fxg ¤ fyg. If X is

T0 and x ¤ y, then there exists an open nhood U of x such that y … U ; then

y … fxg. Since y 2 fyg, we have fxg ¤ fyg. Conversely, suppose that x ¤ y

implies that fxg ¤ fyg. Take any x ¤ y in X and we show that there exists an

open nhood of one of the two points such that the other point is not in U . If

not, then y 2 fxg; since fxg is closed, we have fyg � fxg; similarly, fxg � fyg. A

contradiction.

Now take any fxg ¤ fyg in X= �. Then fxg D fxg ¤ fyg D fyg. Hence, X= � is

T0. ut

13D. The Zariski Topology

For a polynomial P in n real variables, let Z.P / D f.x1; : : : ; xn/ 2 Rn W

P.x1; : : : ; xn/ D 0g. Let P be the collection of all such polynomials.

I Exercise 98. fZ.P / W P 2 P g is a base for the closed sets of a topology (the

Zariski topology) on Rn.

Proof. Denote Z ´ fZ.P / W P 2 P g. If Z.P1/ and Z.P2/ belong to Z, then

Z.P1/ [ Z.P2/ D Z.P1 � P2/ 2 Z since P1 � P2 2 P . Further,
T
P2P Z.P / D ¿

since there are P 2 P with Z.P / D ¿ (for instance, P D 1 C X21 C � � � C X
2
n ).

It follows from Exercise 48 that Z is a base for the closed sets of the Zariski

topology on Rn. ut

I Exercise 99. The Zariski topology on Rn is T1 but not T2.

Proof. To verify that the Zariski topology is T1, we show that every single-

ton set in Rn is closed (by Theorem 13.4). For each .x1; : : : ; xn/ 2 Rn, define a

polynomial P 2 P as follows:

P D .X1 � x1/
2
C � � � .Xn � xn/

2:

Then Z.P / D f.x1; : : : ; xn/g; that is, f.x1; : : : ; xn/g is closed.

To see the Zariski topology is not T2, consider the R case. In R, the Zariski

topology coincides with the cofinite topology (see Exercise 100). It is well know

that the cofinite topology is not Hausdorff (Example 13.5(a)). ut

I Exercise 100. On R, the Zariski topology coincides with the cofinite topology;

in Rn, n > 1, they are different.

Proof. On R, every Z.P / is finite. So on R every closed set in the Zariski topol-

ogy is finite since every closed set is an intersection of some subfamily of Z.

However, if n > 1, then Z.P / can be infinite: for example, consider the polyno-

mial X1X2 (let X1 D 0, then all X2 2 R is a solution). ut
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13H. Open Images of Hausdorff Spaces

I Exercise 101. Given any set X , there is a Hausdorff space Y which is the

union of a collection fYx W x 2 Xg of disjoint subsets, each dense in Y .

Proof. ut

5.2 Regularity and Complete Regularity

Theorem 5.1 (Dugundji 1966). a. Let P W X ! Y be a closed map. Given any

subset S � Y and any open U containing P�1.S/, there exists an open V � S

such that P�1.V / � U .

b. Let P W X ! Y be an open map. Given any subset S � Y , and any closed A

containing P�1S , there exists a closed B � S such that P�1.B/ � A.

Proof. It is enough to prove (a). Let V D Y X P.X X U/. Then

P�1.S/ � U H) X X U � X X P�1.S/ D P�1.Y X S/

H) P.X X U/ � P ŒP�1.Y X S/�

H) Y X P ŒP�1.Y X S/� � V:

Since P ŒP�1.Y X S/� � Y X S , we obtain

S D Y X .Y X S/ � Y X P ŒP�1.Y X S/� � V I

that is, S � V . Because P is closed, V is open in Y . Observing that

P�1.V / D X X P�1ŒP.X X U/� � X X .X X U/ D U

completes the proof. ut

Theorem 5.2 (Theorem 14.6). If X is T3 and f is a continuous, open and closed

map of X onto Y , then Y is T2.

Proof. By Theorem 13.11, it is sufficient to show that the set

A´ f.x1; x2/ 2 X �X W f .x1/ D f .x2/g

is closed in X � X . If .x1; x2/ … A, then x1 … f
�1Œf .x2/�. Since a T3-space is

T1, the singleton set fx2g is closed in X ; since f is closed, ff .x2/g is closed in

Y ; since f is continuous, f �1Œf .x2/� is closed in X . Because X is T3, there are

disjoint open sets U and V with

x1 2 U; and f �1Œf .x2/� � V:
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Since f is closed, it follows from Theorem 5.1 that there exists open setW � Y

such that ff .x2/g � W , and f �1.W / � V ; that is,

f �1Œf .x2/� � f
�1.W / � V:

Then U � f �1.W / is a nhood of .x1; x2/. We finally show that ŒU � f �1.W /� \

A D ¿. If there exists .y1; y2/ 2 A such that .y1; y2/ 2 U � f �1.W /, then y1 2

f �1Œf .y2/� � f �1.W /; that is, y1 2 U � f �1.W /. However, U \ V D ¿ and

f �1.W / � V imply that U \ f �1.W / D ¿. A contradiction. ut

Definition 5.3. If X is a space and A � X , then X=A denotes the quotient

space obtained via the equivalence relation whose equivalence classes are A

and the single point sets fxg, x 2 X X A.

Theorem 5.4. If X is T3 and Y is obtained from X by identifying a single closed

set A in X with a point, then Y is T2.

Proof. Let A be a closed subset of a T3-space X . Then X XA is an open subset

in both X and X=A and its two subspace topologies agree. Thus, points in

XXA � X=A are different from ŒA� and have disjoint nhoods as X is Hausdorff.

Finally, for x 2 X X A, there exist disjoint open nhoods V.x/ and W.A/. Their

images, f .V / and f .W /, are disjoint open nhoods of x and ŒA� in X=A, because

V D f �1Œf .V /� and W D f �1Œf .W /� are disjoint open sets in X . ut

5.3 Normal Spaces

15B. Completely Normal Spaces

I Exercise 102. X is completely normal iff whenever A and B are subsets of

X with A\ xB D xA\B D ¿, then there are disjoint open sets U � A and V � B .

Proof. Suppose that whenever A and B are subsets of X with A\ xB D xA\B D

¿, then there are disjoint open sets U � A and V � B . Let Y � X , and C;D � Y

be disjoint closed subsets of Y . Hence,

¿ D clY .C / \ clY .D/ D Œ xC \ Y � \ Œ xD \ Y � D xC \ Œ xD \ Y �:

Since D � clY .D/, we have xC \D D ¿. Similarly, C \ xD D ¿. Hence there are

disjoint open sets U 0 and V 0 in X such that C � U 0 and D � V 0. Let U D U 0\Y

and V D V 0 \ Y . Then U and V are open in Y , C � U , and D � V ; that is, Y is

normal, and so X is completely normal.

Now suppose that X is completely normal and consider the subspace Y ´

X X . xA\ xB/. We first show that A;B � Y . If A š Y , then there exists x 2 A with

x … Y ; that is, x 2 xA \ xB . But then x 2 A \ xB . A contradiction. Similarly for B .

In the normal space Y , we have
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clY .A/ \ clY .B/ D Œ xA \ Y � \ Œ xB \ Y � D . xA \ xB/ \ ŒX X . xA \ xB/� D ¿:

Therefore, there exist disjoint open sets U � clY .A/ and V � clY .B/. Since

A � clY .A/ and B � clY .B/, we get the desired result. ut

I Exercise 103. Why can’t the method used to show every subspace of a reg-

ular space is regular be carried over to give a proof that every subspace of a

normal space is normal?

Proof. In the first proof, if A � Y � X is closed in Y and x 2 Y XA, then there

must exists closed set B in X such that x … B . This property is not applied if

fxg is replaced a general closed set B in Y . ut

I Exercise 104. Every metric space is completely normal.

Proof. Every subspace of a metric space is a metric space; every metric space

is normal Royden and Fitzpatrick (2010, Proposition 11.7). ut

5.4 Countability Properties

16A. First Countable Spaces

I Exercise 105. Every subspace of a first-countable space is first countable.

Proof. Let A � X . If x 2 A, then V is a nhood of x in A iff V D U \ A, where

U is a nhood of x 2 X (Theorem 6.3(d)). ut

I Exercise 106. A product�X˛ of first-countable spaces is first countable

iff each X˛ is first countable, and all but countably many of the X˛ are trivial

spaces.

Proof. If�X˛ is first-countable, then each X˛ is first countable since it is

homeomorphic to a subspace of�X˛ . If the number of the family of untrivial

sets fX˛g is uncountable, then for x 2 �X˛ the number of nhood bases is

uncountable. ut

I Exercise 107. The continuous image of a first-countable space need not be

first countable; but the continuous open image of a first-countable space is first

countable.

Proof. Let X be a discrete topological space. Then any function defined on X

is continuous.

Now suppose that X is first countable, and f is a continuous open map of

X onto Y . Pick an arbitrary y 2 Y . Let x 2 f �1.y/, and Ux be a countable

nhood base of x. If W is a nhood of y, then there is a nhood V of x such that
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f .V / � W since f is continuous. So there exists U 2 Ux with f .U / � W . This

proves that ff .U / W U 2 Uxg is a nhood base of y. Since ff .U / W U 2 Uxg is ut


