Contents

1 Functions on Euclidean Space .. 1
 1.1 Norm and Inner Product .. 1
 1.2 Subsets of Euclidean Space ... 6
 1.3 Functions and Continuity ... 9

2 Differentiation ... 13
 2.1 Basic Definitions .. 13
 2.2 Basic Theorems .. 18
 2.3 Partial Derivatives ... 26
 2.4 Derivatives ... 34
 2.5 Inverse Functions ... 38
 2.6 Implicit Functions ... 40

3 Integration ... 45
 3.1 Basic Definitions .. 45
 3.2 Measure Zero and Content Zero 51
 3.3 Fubini's Theorem ... 51

4 Integration on Chains ... 55
 4.1 Algebraic Preliminaries .. 55

References ... 57

Index ... 59
1

FUNCTIONS ON EUCLIDEAN SPACE

1.1 Norm and Inner Product

Exercise 1 (1-1). Prove that \(\|x\| \leq \sum_{i=1}^{n} |x^i| \).

Proof. Let \(x = (x^1, \ldots, x^n) \). Then
\[
\left(\sum_{i=1}^{n} |x^i| \right)^2 = \sum_{i=1}^{n} (x^i)^2 + \sum_{i \neq j} |x^i x^j| \geq \sum_{i=1}^{n} (x^i)^2 = \|x\|^2.
\]
Taking the square root of both sides gives the result. \(\square \)

Exercise 2 (1-2). When does equality hold in Theorem 1-1 (3) \(\|x + y\| \leq \|x\| + \|y\| \)?

Proof. We reprove that \(|\langle x, y \rangle| \leq \|x\| \cdot \|y\| \) for every \(x, y \in \mathbb{R}^n \). Obviously, if \(x = 0 \) or \(y = 0 \), then \(\langle x, y \rangle = \|x\| \cdot \|y\| = 0 \). So we assume that \(x \neq 0 \) and \(y \neq 0 \).

We first find some \(w \in \mathbb{R}^n \) and \(\alpha \in \mathbb{R} \) such that \(\langle w, \alpha y \rangle = 0 \). Write \(w = x - \alpha y \). Then
\[
0 = \langle w, \alpha y \rangle = \langle x - \alpha y, \alpha y \rangle = \alpha \langle x, y \rangle - \alpha^2 \|y\|^2
\]
implies that
\[
\alpha = \langle x, y \rangle / \|y\|^2.
\]
Then
\[
\|x\|^2 = \|w\|^2 + \|\alpha y\|^2 \geq \|\alpha y\|^2 = \left(\frac{\langle x, y \rangle}{\|y\|} \right)^2.
\]
Hence, \(|\langle x, y \rangle| \leq \|x\| \cdot \|y\| \). Particularly, the above display holds with equality if and only if \(\|w\| = 0 \), if and only if \(w = 0 \), if and only if \(x - \alpha y = 0 \), if and only if \(x = \alpha y \).

Since
\[
\|x + y\|^2 = \langle x + y, x + y \rangle = \|x\|^2 + \|y\|^2 + 2 \langle x, y \rangle \leq \|x\|^2 + \|y\|^2 + 2 \|x\| \cdot \|y\|
\]
\[
= (\|x\| + \|y\|)^2,
\]

equality holds precisely when \(\langle x, y \rangle = \|x\| \cdot \|y\| \), i.e., when one is a nonnegative multiple of the other.

Exercise 3 (1-3). Prove that \(\|x - y\| \leq \|x\| + \|y\| \). When does equality hold?

Proof. By Theorem 1-1 (3) we have \(\|x - y\| = \|x + (-y)\| \leq \|x\| + \|-y\| = \|x\| + \|y\| \). The equality holds precisely when one vector is a non-positive multiple of the other.

Exercise 4 (1-4). Prove that \(\|x - y\| \leq \|x\| - \|y\| \).

Proof. We have \(\|x - y\|^2 = \sum_{i=1}^{n} (x_i - y_i)^2 = \|x\|^2 + \|y\|^2 - 2 \sum_{i=1}^{n} x_i y_i \geq \|x\|^2 + \|y\|^2 - 2 \|x\| \|y\| = (\|x\| - \|y\|)^2 \). Taking the square root of both sides gives the result.

Exercise 5 (1-5). The quantity \(\|y - x\| \) is called the distance between \(x \) and \(y \). Prove and interpret geometrically the “triangle inequality”: \(\|z - x\| \leq \|z - y\| + \|y - x\| \).

Proof. The inequality follows from Theorem 1-1 (3):

\[
\|z - x\| = \|(z - y) + (y - x)\| \leq \|z - y\| + \|y - x\|.
\]

Geometrically, if \(x, y, \) and \(z \) are the vertices of a triangle, then the inequality says that the length of a side is no larger than the sum of the lengths of the other two sides.

Exercise 6 (1-6). If \(f \) and \(g \) be integrable on \([a, b]\).

a. Prove that \(\left| \int_{a}^{b} f \cdot g \right| \leq \left(\int_{a}^{b} f^2 \right)^{\frac{1}{2}} \cdot \left(\int_{a}^{b} g^2 \right)^{\frac{1}{2}} \).

b. If equality holds, must \(f = \lambda g \) for some \(\lambda \in \mathbb{R} \)? What if \(f \) and \(g \) are continuous?

c. Show that Theorem 1-1 (2) is a special case of (a).

Proof.

a. Theorem 1-1 (2) implies the inequality of Riemann sums:

\[
\left| \sum_{i} f(x_i) g(x_i) \Delta x_i \right| \leq \left(\sum_{i} f(x_i)^2 \Delta x_i \right)^{\frac{1}{2}} \cdot \left(\sum_{i} g(x_i)^2 \Delta x_i \right)^{\frac{1}{2}}.
\]

Taking the limit as the mesh approaches 0, one gets the desired inequality.

b. No. We could, for example, vary \(f \) at discrete points without changing the values of the integrals. If \(f \) and \(g \) are continuous, then the assertion is true. In fact, suppose that for each \(\lambda \in \mathbb{R} \), there is an \(x \in [a, b] \) with
\[f(x) - \lambda g(x) \leq 0. \] Then the inequality holds true in an open neighborhood of \(x \) since \(f \) and \(g \) are continuous. So \(f(b) - \lambda g(x) > 0 \) since the integrand is always non-negative and is positive on some subinterval of \([a,b]\). Expanding out gives \(f(b)^2 - 2\lambda f(a) + \lambda^2 g^2 > 0 \) for all \(\lambda \). Since the quadratic has no solutions, it must be that its discriminant is negative.

c. Let \(a = 0, b = n, f(x) = x_i \) and \(g(x) = y_i \) for all \(x \in [i-1,i) \) for \(i = 1, \ldots, n \).
Then part (a) gives the inequality of Theorem 1-1 (2). Note, however, that the equality condition does not follow from (a).

Exercise 7 (1-7). A linear transformation \(M : \mathbb{R}^n \to \mathbb{R}^n \) is called norm preserving if \(\|Mx\| = \|x\| \), and inner product preserving if \(\langle Mx, My \rangle = \langle x, y \rangle \).

a. Prove that \(M \) is norm preserving if and only if \(M \) is inner product preserving.

b. Prove that such a linear transformation \(M \) is 1-1 and \(M^{-1} \) is of the same sort.

Proof.

(a) If \(M \) is norm preserving, then the polarization identity together with the linearity of \(M \) give:
\[
\langle Mx, My \rangle = \frac{\|Mx + My\|^2 - \|Mx - My\|^2}{4} = \frac{\|M(x + y)\|^2 - \|M(x - y)\|^2}{4} = \frac{\|x + y\|^2 - \|x - y\|^2}{4} = \langle x, y \rangle.
\]

If \(M \) is inner product preserving, then one has by Theorem 1-1 (4):
\[
\|Mx\| = \sqrt{\langle Mx, Mx \rangle} = \sqrt{\langle x, x \rangle} = \|x\|.
\]

(b) Take any \(Mx, My \in \mathbb{R}^n \) with \(Mx = My \). Then \(Mx - My = 0 \) and so
\[
0 = \langle Mx - My, Mx - My \rangle = \langle x - y, x - y \rangle;
\]
but the above equality forces \(x = y \); that is, \(M \) is 1-1.

Since \(M \in \mathcal{L}(\mathbb{R}^n) \) and \(M \) is injective, it is invertible; see Axler (1997, Theorem 3.21). Hence, \(M^{-1} \in \mathcal{L}(\mathbb{R}^n) \) exists. For every \(x, y \in \mathbb{R}^n \), we have
\[
\|M^{-1}x\| = \|M(M^{-1}x)\| = \|x\|,
\]
and
\[
\langle M^{-1}x, M^{-1}y \rangle = \langle M(M^{-1}x), M(M^{-1}y) \rangle = \langle x, y \rangle.
\]
Therefore, \(M^{-1} \) is also norm preserving and inner product preserving. \(\square \)
Exercise 8 (1-8). If \(x, y \in \mathbb{R}^n\) are non-zero, the angle between \(x\) and \(y\), denoted \(\angle (x, y)\), is defined as \(\arccos \left(\frac{x \cdot y}{\|x\| \cdot \|y\|}\right)\), which makes sense by Theorem 1-1 (2). The linear transformation \(T\) is angle preserving if \(T\) is 1-1, and for \(x, y \neq 0\) we have \(\angle (Tx, Ty) = \angle (x, y)\).

a. Prove that if \(T\) is norm preserving, then \(T\) is angle preserving.

b. If there is a basis \((x_1, \ldots, x_n)\) of \(\mathbb{R}^n\) and numbers \(\lambda_1, \ldots, \lambda_n\) such that \(Tx_i = \lambda_i x_i\), prove that \(T\) is angle preserving if and only if all \(|\lambda_i|\) are equal.

c. What are all angle preserving \(T: \mathbb{R}^n \to \mathbb{R}^n\)?

Proof.

(a) If \(T\) is norm preserving, then \(T\) is inner product preserving by the previous exercise. Hence, for \(x, y \neq 0\),

\[
\angle (Tx, Ty) = \arccos \left(\frac{\langle Tx, Ty \rangle}{\|Tx\| \cdot \|Ty\|}\right) = \arccos \left(\frac{x \cdot y}{\|x\| \cdot \|y\|}\right) = \angle (x, y).
\]

(b) We first suppose that \(T\) is angle preserving. Since \((x_1, \ldots, x_n)\) is a basis of \(\mathbb{R}^n\), all \(x_i\)'s are nonzero. Since

\[
\angle (Tx_i, Tx_j) = \arccos \left(\frac{\langle Tx_i, Tx_j \rangle}{\|Tx_i\| \cdot \|Tx_j\|}\right) = \arccos \left(\frac{\langle \lambda_i x_i, \lambda_j x_j \rangle}{\|\lambda_i x_i\| \cdot \|\lambda_j x_j\|}\right)
= \arccos \left(\frac{\lambda_i \lambda_j \langle x_i, x_j \rangle}{|\lambda_i| \cdot |\lambda_j| \cdot \|x_i\| \cdot \|x_j\|}\right)
= \angle (x_i, x_j),
\]

it must be the case that

\[|\lambda_i| \cdot |\lambda_j| = |\lambda_i| \cdot |\lambda_j|\].

Then \(\lambda_i\) and \(\lambda_j\) have the same signs. \(\square\)

Exercise 9 (1-9). If \(0 \leq \theta < \pi\), let \(T: \mathbb{R}^2 \to \mathbb{R}^2\) have the matrix

\[
A = \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}.
\]

Show that \(T\) is angle preserving and if \(x \neq 0\), then \(\angle (x, Tx) = \theta\).

Proof. For every \((x, y) \in \mathbb{R}^2\), we have

\[
T(x, y) = \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
x \cos \theta + y \sin \theta \\
-x \sin \theta + y \cos \theta
\end{pmatrix}.
\]

Therefore,

\[
\|T(x, y)\|^2 = x^2 + y^2 = \|(x, y)\|^2,
\]

that is, \(T\) is norm preserving. Then it is angle preserving by Exercise 8 (a).
Let \(x = (a, b) \neq 0 \). We first have
\[
\langle x, Tx \rangle = a (a \cos \theta + b \sin \theta) + b (-a \sin \theta + b \cos \theta) = \left(a^2 + b^2 \right) \cos \theta.
\]
Hence,
\[
\angle (x, Tx) = \arccos \left(\frac{\langle x, Tx \rangle}{\|x\| \cdot \|Tx\|} \right) = \arccos \left(\frac{(a^2 + b^2) \cos \theta}{a^2 + b^2} \right) = \theta.
\]

Exercise 10 (1-10*). If \(M : \mathbb{R}^m \to \mathbb{R}^n \) is a linear transformation, show that there is a number \(M \) such that \(\|Mh\| \leq M \|h\| \) for \(h \in \mathbb{R}^m \).

Proof. Let \(M \)'s matrix be
\[
A = \begin{pmatrix}
a_{11} & \cdots & a_{1m} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nm}
\end{pmatrix} = \begin{pmatrix}
a^1 \\
\vdots \\
a^n
\end{pmatrix}.
\]
Then
\[
Mh = Ah = \begin{pmatrix}
(a^1, h) \\
\vdots \\
(a^n, h)
\end{pmatrix},
\]
and so
\[
\|Mh\|^2 = \sum_{i=1}^n (a^i, h)^2 \leq \sum_{i=1}^n (\|a^i\| \cdot \|h\|)^2 = \left(\sum_{i=1}^n \|a^i\|^2 \right) \cdot \|h\|^2,
\]
that is,
\[
\|Mh\| \leq \left(\sqrt{\sum_{i=1}^n \|a^i\|^2} \right) \cdot \|h\|.
\]
Let \(M = \sqrt{\sum_{i=1}^n \|a^i\|^2} \) and we get the result.

Exercise 11 (1-11). If \(x, y \in \mathbb{R}^n \) and \(z, w \in \mathbb{R}^m \), show that \(\langle (x, z), (y, w) \rangle = \langle x, y \rangle + \langle z, w \rangle \) and \(\|(x, z)\| = \sqrt{\|x\|^2 + \|z\|^2} \).

Proof. We have \((x, z), (y, w) \in \mathbb{R}^{n+m} \). Then
\[
\langle (x, z), (y, w) \rangle = \sum_{i=1}^n x_i y_i + \sum_{j=1}^m z_j w_j = \langle x, y \rangle + \langle z, w \rangle,
\]
and
\[
\|(x, z)\|^2 = \langle (x, z), (x, z) \rangle = \langle x, x \rangle + \langle z, z \rangle = \|x\|^2 + \|z\|^2.
\]
CHAPTER 1 FUNCTIONS ON EUCLIDEAN SPACE

Exercise 12 (1-12*). Let $(\mathbb{R}^n)^*$ denote the dual space of the vector space \mathbb{R}^n. If $x \in \mathbb{R}^n$, define $\varphi_x \in (\mathbb{R}^n)^*$ by $\varphi_x(y) = \langle x, y \rangle$. Define $M : \mathbb{R}^n \to (\mathbb{R}^n)^*$ by $Mx = \varphi_x$. Show that M is a 1-1 linear transformation and conclude that every $\varphi \in (\mathbb{R}^n)^*$ is φ_x for a unique $x \in \mathbb{R}^n$.

Proof. We first show M is linear. Take any $x, y \in \mathbb{R}^n$ and $a, b \in \mathbb{R}$. Then

$$M(ax + by) = \varphi_{ax + by} = a\varphi_x + b\varphi_y = aMx + bMy,$$

where the second equality holds since for every $z \in \mathbb{R}^n$,

$$\varphi_{ax + by}(z) = \langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle = a\varphi_x(z) + b\varphi_y(z).$$

To see M is 1-1, we need only to show that $\text{null set of } M = \{0\}$, where $\text{null set of } M$ is the null set of M. But this is clear and so M is 1-1. Since $\dim (\mathbb{R}^n)^* = \dim \mathbb{R}^n$, M is also onto. This proves the last claim.

Exercise 13 (1-13*). If $x, y \in \mathbb{R}^n$, then x and y are called perpendicular (or orthogonal) if $\langle x, y \rangle = 0$. If x and y are perpendicular, prove that $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.

Proof. If $\langle x, y \rangle = 0$, we have

$$\|x + y\|^2 = \langle x + y, x + y \rangle = \|x\|^2 + 2\langle x, y \rangle + \|y\|^2 = \|x\|^2 + \|y\|^2.$$

1.2 SUBSETS OF EUCLIDEAN SPACE

Exercise 14 (1-14*). Simple. Omitted.

Exercise 15 (1-15). Prove that $\{x \in \mathbb{R}^n : \|x - a\| < r\}$ is open.

Proof. For any $y \in \{x \in \mathbb{R}^n : \|x - a\| < r\} =: B(a; r)$, let $\varepsilon = r - \|a, y\|$. We show that $B(y; \varepsilon) \subseteq B(a; r)$. Take any $z \in B(y; \varepsilon)$. Then

$$\|a, z\| \leq \|a, y\| + \|y, z\| < \|a, y\| + \varepsilon = r.$$

Exercise 17 (1-17). Omitted.
Exercise 18 (1-18). If \(A \subset [0, 1] \) is the union of open intervals \((a_i, b_i)\) such that each rational number in \((0,1)\) is contained in some \((a_i, b_i)\), show that \(\partial A = [0, 1] \setminus A \).

Proof. Let \(X := [0, 1] \). Obviously, \(A \) is open since \(A = \bigcup_i (a_i, b_i) \). Then \(X \setminus A \) is closed in \(X \) and so \(X \setminus \overline{A} = X \setminus A \). Since \(\partial A = \overline{A} \cap X \setminus A = \overline{A} \cap (X \setminus A) \), it suffices to show that

\[
X \setminus A \subset \overline{A} \tag{1.1}
\]

But (1.1) holds if and only if \(\overline{A} = X \). Now take any \(x \in X \) and any open nhood \(U \) of \(x \) in \(X \). Since \(\mathbb{Q} \) is dense, there exists \(y \in U \). Since there exists some \(i \) such that \(y \in (a_i, b_i) \), we know that \(U \cap (a_i, b_i) \neq \emptyset \), which means that \(U \cap A \neq \emptyset \), which means that \(x \in \overline{A} \). Hence, \(X = \overline{A} \), i.e., \(A \) is dense in \(X \). \(\square \)

Exercise 19 (1-19*). If \(A \) is a closed set that contains every rational number \(r \in (0, 1) \), show that \([0, 1] \subset A \).

Proof. Take any \(r \in (0, 1) \) and any open interval \(r \in I \subset (0, 1) \). Then there exists \(q \in \mathbb{Q} \cap (0, 1) \) such that \(q \in I \). Since \(q \in A \), we know that \(r \in \overline{A} = A \). Since \(0, 1 \in A \), the claim holds. \(\square \)

Exercise 20 (1-20). Prove the converse of Corollary 1-7: A compact subset of \(\mathbb{R}^n \) is closed and bounded.

Proof. To show \(A \) is closed, we prove that \(A^c \) is open. Assume that \(x \notin A \), and let \(G_m = \{ y \in \mathbb{R}^n : \|x - y\| > 1/m \} \), \(m = 1, 2, \ldots \). If \(y \in A \), then \(x \neq y \); hence, \(\|x - y\| > 1/m \) for some \(m \); therefore \(y \in G_m \) (see Figure 1.1). Thus, \(A \subseteq \bigcup_{m=1}^{\infty} G_m \), and by compactness we have a finite subcovering. Now observe that the \(G_m \) for an increasing sequence of sets: \(G_1 \subseteq G_2 \subseteq \cdots \); therefore, a finite union of some of the \(G_m \) is equal to the set with the highest index. Thus, \(K \subseteq G_s \) for some \(s \), and it follows that \(\mathbb{B}(x; 1/s) \subseteq A^c \). Therefore, \(A^c \) is open.

![Figure 1.1. A compact set is closed](image)

Let \(A \) be compact. We first show that \(A \) is bounded. Let
an open cover of A. Then there is a finite subcover $\{(-i, i)^n : i \in \mathbb{N}\}$ of A. Let $i' = \max \{i_1, \ldots, i_m\}$. Hence, $A \subset (-i', i')$, that is, A is bounded. □

Exercise 21 (1-21).

a. If A is closed and $x \notin A$, prove that there is a number $d > 0$ such that $\|y - x\| \geq d$ for all $y \in A$.

b. If A is closed, B is compact, and $A \cap B = \emptyset$, prove that there is $d > 0$ such that $\|y - x\| \geq d$ for all $y \in A$ and $x \in B$.

c. Give a counterexample in \mathbb{R}^2 if A and B are closed but neither is compact.

Proof.

(a) A is closed implies that A^c is open. Since $x \in A^c$, there exists an open ball $B(x; d)$ with $d > 0$ such that $x \in B(x; d) \subset A^c$. Then $\|y - x\| \geq d$ for all $y \in A$.

(b) For every $x \in B$, there exists $d_x > 0$ such that $x \in B(x; d_x/2) \subset A^c$ and $\|y - x\| \geq d_x$ for all $y \in A$. Then the family $\{B(x; d_x/2) : x \in B\}$ is an open cover of B. Since B is compact, there is a finite set $\{x_1, \ldots, x_n\}$ such that $\{B(x_1; d_{x_1}/2), \ldots, B(x_n; d_{x_n}/2)\}$ covers B as well. Now let

$$d = \min \{d_{x_1}/2, \ldots, d_{x_n}/2\}/2.$$

Then for any $x \in B$, there is an open ball $B(x; x_i/2)$ containing x and $\|y - x_i\| \geq d_i$. Hence,

$$\|y - x\| \geq \|y - x_i\| - \|x_i - x\| \geq d_i - d_i/2 = d_i/2 \geq d.$$

(c) See Figure 1.2.

Figure 1.2.
EXERCISE 22 (1-22*). If U is open and $C \subset U$ is compact, show that there is a compact set D such that $C \subset D$ and $D \subset U$.

PROOF.

1.3 Functions and Continuity

EXERCISE 23 (1-23). If $f : A \to \mathbb{R}^m$ and $a \in A$, show that $\lim_{x \to a} f(x) = b$ if and only if $\lim_{x \to a} f^i(x) = b^i$ for $i = 1, \ldots, m$.

PROOF. Let $f : A \to \mathbb{R}^m$ and $a \in A$.

If: Assume that $\lim_{x \to a} f^i(x) = b^i$ for $i = 1, \ldots, m$. Then for every $\varepsilon > 0$, there is a number $\delta_i > 0$ such that $\|f^i(x) - b^i\| < \varepsilon/\sqrt{m}$ for all $x \in A$ which satisfy $0 < \|x - a\| < \delta_i$, for every $i = 1, \ldots, m$. Put

$$\delta = \min\{\delta_1, \ldots, \delta_m\}.$$

Then for all $x \in A$ satisfying $0 < \|x - a\| < \delta$,

$$\|f^i(x) - b^i\| < \frac{\varepsilon}{\sqrt{m}}, \quad i = 1, \ldots, m.$$

Therefore, for every $x \in A$ which satisfy $0 < \|x - a\| < \delta$,

$$\|f(x) - b\| = \sqrt{\sum_{i=1}^{m} (f^i(x) - b_i)^2} < \sqrt{\sum_{i=1}^{m} \left(\varepsilon^2/m\right)} = \varepsilon;$$

that is, $\lim_{x \to a} f(x) = b$.

Only if: Now suppose that $\lim_{x \to a} f(x) = b$. Then for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that $\|f(x) - b\| < \varepsilon$ for all $x \in A$ which satisfy $0 < \|x - a\| < \delta$. But then for every $i = 1, \ldots, m$,

$$\|f^i(x) - b^i\| \leq \|f(x) - b\| < \varepsilon,$$

i.e. $\lim_{x \to a} f^i(x) = b^i$. □

EXERCISE 24 (1-24). Prove that $f : A \to \mathbb{R}^m$ is continuous at a if and only if each f^i is.

PROOF. By definition, f is continuous at a if and only if $\lim_{x \to a} f(x) = f(a)$; it follows from Exercise 23 that $\lim_{x \to a} f(x) = f(a)$ if and only if $\lim_{x \to a} f^i(x) = f^i(a)$ for every $i = 1, \ldots, m$; that is, if and only if f^i is continuous at a for each $i = 1, \ldots, m$. □

EXERCISE 25 (1-25). Prove that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is continuous.
PROOF. Take any \(\mathbf{a} \in \mathbb{R}^n \). Then, by Exercise 10 (1-10), there exists \(M > 0 \) such that
\[
T \mathbf{x} - T \mathbf{a} = T (\mathbf{x} - \mathbf{a}) \leq M \| \mathbf{x} - \mathbf{a} \|.
\]
Hence, for every \(\varepsilon > 0 \), let \(\delta = \varepsilon / M \). Then \(T \mathbf{x} - T \mathbf{a} < \varepsilon \) when \(\mathbf{x} \in \mathbb{R}^n \) and \(0 < \| \mathbf{x} - \mathbf{a} \| < \delta = \varepsilon / M \); that is, \(\lim_{\mathbf{x} \to \mathbf{a}} T \mathbf{x} = T \mathbf{a} \), and so \(T \) is continuous. \(\square \)

\textbf{Exercise 26 (1-26).} Let \(A = \{ (x, y) \in \mathbb{R}^2 : x > 0 \text{ and } 0 < y < x^2 \} \).

\textbf{a.} Show that every straight line through \((0, 0)\) contains an interval around \((0, 0)\) which is in \(\mathbb{R}^2 \setminus A \).

\textbf{b.} Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by \(f (x) = 0 \) if \(x \notin A \) and \(f (x) = 1 \) if \(x \in A \). For \(\mathbf{h} \in \mathbb{R}^2 \) define \(g_\mathbf{h} : \mathbb{R} \to \mathbb{R} \) by \(g_\mathbf{h} (t) = f (t \mathbf{h}) \). Show that each \(g_\mathbf{h} \) is continuous at \(0 \), but \(f \) is not continuous at \((0, 0)\).

\textbf{Proof.}

\textbf{(a)} Let the line through \((0, 0)\) be \(y = ax \). If \(a \leq 0 \), then the whole line is in \(\mathbb{R}^2 \setminus A \). If \(a > 0 \), then \(ax \) intersects \(x^2 \) at \((a, a^2)\) and \((0, 0)\) and nowhere else; see Figure 1.3.

\textbf{(b)} We first show that \(f \) is not continuous at \(0 \). Clearly, \(f (0) = 0 \) since \(0 \notin A \). For every \(\delta > 0 \), there exists \(x \in A \) satisfying \(0 < \| x \| < \delta \), but \(|f (x) - f (0)| = 1 \).

We next show \(g_\mathbf{h} (t) = f (t \mathbf{h}) \) is continuous at \(0 \) for every \(\mathbf{h} \in \mathbb{R}^2 \). If \(\mathbf{h} = 0 \), then \(g_0 (t) = f (0) = 0 \) and so is continuous. So we now assume that \(\mathbf{h} \neq 0 \). It is clear that
\[
g_\mathbf{h} (0) = f (0) = 0.
\]
The result is now from (a) immediately. \(\square \)
EXERCISE 27 (1-27). Prove that \(\{ x \in \mathbb{R}^n : \| x - a \| < r \} \) is open by considering the function \(f : \mathbb{R}^n \to \mathbb{R} \) with \(f(x) = \| x - a \| \).

Proof. We first show that \(f \) is continuous. Take a point \(b \in \mathbb{R}^n \). For any \(\varepsilon > 0 \), let \(\delta = \varepsilon \). Then for every \(x \) satisfying \(\| x - b \| < \delta \), we have
\[
| f(x) - f(b) | = \| x - a \| - \| b - a \| \leq \| x - a \| - \| b - a \| \leq \| x - b \| < \delta = \varepsilon.
\]
Hence, \(\{ x \in \mathbb{R}^n : \| x - a \| < r \} = f^{-1}(-\infty, r) \) is open in \(\mathbb{R}^n \). \(\square \)

EXERCISE 28 (1-28). If \(A \subset \mathbb{R}^n \) is not closed, show that there is a continuous function \(f : A \to \mathbb{R} \) which is unbounded.

Proof. Take any \(x \in \partial A \). Let \(f(y) = 1/\| y - x \| \) for all \(y \in A \). \(\square \)

EXERCISE 30 (1-30). Let \(f : [a, b] \to \mathbb{R} \) be an increasing function. If \(x_1, \ldots, x_n \in [a, b] \) are distinct, show that \(\sum_{i=1}^n f(x_i) < f(b) - f(a) \).

Proof. \(\square \)
2

Differentiation

2.1 Basic Definitions

Exercise 31 (2-1*). Prove that if \(f : \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(a \in \mathbb{R}^n \), then it is continuous at \(a \).

Proof. Let \(f \) be differentiable at \(a \in \mathbb{R}^n \); then there exists a linear map \(\lambda : \mathbb{R}^n \to \mathbb{R}^m \) such that

\[
\lim_{h \to 0} \frac{f(a + h) - f(a) - \lambda(h)}{\|h\|} = 0,
\]

or equivalently,

\[
f(a + h) - f(a) = \lambda(h) + r(h),
\]

where the remainder \(r(h) \) satisfies

\[
\lim_{h \to 0} \frac{\|r(h)\|}{\|h\|} = 0.
\]

Let \(h \to 0 \) in (2.1). The error term \(r(h) \to 0 \) by (2.2); the linear term \(\lambda(h) \) also tends to \(0 \) because if \(h = \sum_{i=1}^n h_i e_i \), where \(e_1, \ldots, e_n \) is the standard basis of \(\mathbb{R}^n \), then by linearity we have \(\lambda(h) = \sum_{i=1}^n h_i \lambda(e_i) \), and each term on the right tends to \(0 \) as \(h \to 0 \). Hence,

\[
\lim_{h \to 0} [f(a + h) - f(a)] = 0;
\]

that is, \(\lim_{h \to 0} f(a + h) = f(a) \). Thus, \(f \) is continuous at \(a \). \(\square \)

Exercise 32 (2-2). A function \(f : \mathbb{R}^2 \to \mathbb{R} \) is independent of the second variable if for each \(x \in \mathbb{R} \) we have \(f(x, y_1) = f(x, y_2) \) for all \(y_1, y_2 \in \mathbb{R} \). Show that \(f \) is independent of the second variable if and only if there is a function \(g : \mathbb{R} \to \mathbb{R} \) such that \(f(x, y) = g(x) \). What is \(f'(a, b) \) in terms of \(g' \)?

Proof. The first assertion is trivial: if \(f \) is independent of the second variable, we can let \(g \) be defined by \(g(x) = f(x, 0) \). Conversely, if \(f(x, y) = g(x) \), then \(f(x, y_1) = g(x) = f(x, y_2) \).

If \(f \) is independent of the second variable, then
CHAPTER 2 DIFFERENTIATION

\[
\lim_{\substack{h,k \to 0}} \frac{|f(a + h, b + k) - f(a, b) - g'(a)h|}{\| (h, k) \|} = \lim_{\substack{h,k \to 0}} \frac{|g(a + h) - g(a) - g'(a)h|}{\| (h, k) \|} \\
\leq \lim_{h \to 0} \frac{|g(a + h) - g(a) - g'(a)h|}{|h|} \\
= 0;
\]

hence, \(f'(a, b) = (g'(a), 0) \). \hfill \Box

Exercise 33 (2-3). Define when a function \(f : \mathbb{R}^2 \to \mathbb{R} \) is independent of the first variable and find \(f'(a, b) \) for such \(f \). Which functions are independent of the first variable and also of the second variable?

Proof. We have \(f'(a, b) = (0, g'(b)) \) with a similar argument as in Exercise 32. If \(f \) is independent of the first and second variable, then for any \((x_1, y_1), (x_2, y_2) \in \mathbb{R}^2\), we have \(f(x_1, y_1) = f(x_2, y_1) = f(x_2, y_2) \); that is, \(f \) is constant. \hfill \Box

Exercise 34 (2-4). Let \(g \) be a continuous real-valued function on the unit circle \(\{x \in \mathbb{R}^2 : \|x\| = 1\} \) such that \(g(0, 1) = g(1, 0) = 0 \) and \(g(-x) = -g(x) \). Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by

\[
f(x) = \begin{cases}
\|x\| \cdot g \left(\frac{x}{\|x\|} \right) & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}
\]

a. If \(x \in \mathbb{R}^2 \) and \(h : \mathbb{R} \to \mathbb{R} \) is defined by \(h(t) = f(tx) \), show that \(h \) is differentiable.

b. Show that \(f \) is not differentiable at \((0, 0)\) unless \(g = 0 \).

Proof. (a) If \(x = 0 \) or \(t = 0 \), then \(h(t) = f(0) = 0 \); if \(x \neq 0 \) and \(t > 0 \),

\[
h(t) = f(tx) = t \|x\| \cdot g \left(\frac{tx}{t \|x\|} \right) = \left[\|x\| \cdot g \left(\frac{x}{\|x\|} \right) \right] \cdot t = f(x)t;
\]

finally, if \(x \neq 0 \) and \(t < 0 \),

\[
h(t) = f(tx) = -t \|x\| \cdot g \left(\frac{tx}{-t \|x\|} \right) = -t \|x\| \cdot g \left(\frac{-x}{\|x\|} \right) = f(x)t.
\]

Therefore, \(h(t) = f(x)t \) for every given \(x \in \mathbb{R}^2 \), and so is differentiable: \(\mathbb{D}h = h \).

(b) Since \(g(1, 0) = 0 \) and \(g(-x) = -g(x) \), we have \(g(-1, 0) = g(-1, 0) = -g(1, 0) = 0 \). If \(f \) is differentiable at \((0, 0)\), there exists a matrix \((a, b)\) such that \(\mathbb{D}f(0, 0)(h, k) = ah + bk \). First consider any sequence \((h, b) \to (0, 0)\). Then
0 = \lim_{h \to 0} \frac{|f(h, 0) - f(0, 0) - ah|}{|h|} = \lim_{h \to 0} \frac{|h| \cdot g(h/|h| \cdot 0) - ah|}{|h|} = \lim_{h \to 0} \frac{|h| \cdot g(\pm 1, 0) - ah|}{|h|} = |a|

implies that \(a = 0 \). Next let us consider \((0, k) \to (0, 0)\). Then

\[
0 = \lim_{k \to 0} \frac{|f(0, k) - f(0, 0) - bk|}{|k|} = \lim_{k \to 0} \frac{|k| \cdot g(0, k/|k|) - bk|}{|k|} = |b|
\]

forces that \(b = 0 \). Therefore, \(f'(0, 0) = (0, 0) \) and \(\partial f(0, 0)(x, y) = 0 \). If \(g(x) \neq 0 \), then

\[
\lim_{x \to 0} \frac{|f(x) - f(0) - 0|}{\|x\|} = \lim_{x \to 0} \frac{\|x\| \cdot g(x/\|x\|)}{\|x\|} = \lim_{x \to 0} \frac{|g(x/\|x\|)|}{\|x\|} \neq 0,
\]

and so \(f \) is not differentiable.

Of course, if \(g(x) = 0 \), then \(f(x) = 0 \) and is differentiable. \(\square \)

Exercise 35 (2-5). Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by

\[
f(x, y) = \begin{cases}
 \frac{|x|}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq 0, \\
 0 & \text{if } (x, y) = 0.
\end{cases}
\]

Show that \(f \) is a function of the kind considered in Exercise 34, so that \(f \) is not differentiable at \((0, 0)\).

Proof. If \((x, y) \neq 0 \), we can rewrite \(f(x, y) \) as

\[
f(x, y) = \frac{x \cdot |y|}{\sqrt{x^2 + y^2}} = \frac{x \cdot |y|}{\|x, y\|} = \|x, y\| \cdot \left(\frac{x}{\|x, y\|} \cdot \frac{|y|}{\|x, y\|} \right).
\]

If we let \(g : \{x \in \mathbb{R}^2 : \|x\| = 1\} \to \mathbb{R} \) be defined as \(g(x, y) = x \cdot |y| \), then (2.3) can be rewritten as

\[
f(x, y) = \|x, y\| \cdot g((x, y)/\|x, y\|).
\]

It is easy to see that

\[
g(0, 1) = g(1, 0) = 0, \quad \text{and} \quad g(-x, -y) = -x \cdot |y| = -x|y| = -f(x, y);
\]

that is, \(g \) satisfies all of the properties listed in Exercise 34. Since \(g(x) \neq 0 \) unless \(x = 0 \) or \(y = 0 \), we know that \(f \) is not differentiable at \(0 \). A direct proof can be found in Berkovitz (2002, Section 1.11). \(\square \)

Exercise 36 (2-6). Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by \(f(x, y) = \sqrt{|xy|} \). Show that \(f \) is not differentiable at \((0, 0)\).
CHAPTER 2 DIFFERENTIATION

Proof. It is clear that
\[
\lim_{h \to 0} \frac{|f(h, 0)|}{|h|} = 0 = \lim_{k \to 0} \frac{|f(0, k)|}{|k|};
\]
hence, if \(f \) is differentiable at \((0, 0)\), it must be that \(\nabla f(0, 0)(x, y) = 0 \) since derivative is unique if it exists. However, if we let \(h = k > 0 \), and take a sequence \(\{(h, h)\} \to (0, 0) \), we have
\[
\lim_{(h,k) \to (0,0)} \frac{|f(h, h) - f(0, 0) - \sqrt{2}h|}{\|(h, h)\|} = \lim_{(h,k) \to (0,0)} \frac{\sqrt{2}h}{\|(h, h)\|} = \frac{1}{\sqrt{2}} \neq 0.
\]
Therefore, \(f \) is not differentiable. \(\square \)

Exercise 37 (2-7). Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be a function such that \(|f(x)| \leq \|x\|^2 \). Show that \(f \) is differentiable at \(0 \).

Proof. \(|f(0)| \leq \|0\|^2 = 0 \) implies that \(f(0) = 0 \). Since
\[
\lim_{x \to 0} \frac{|f(x) - f(0)|}{\|x\|} = \lim_{x \to 0} \frac{|f(x)|}{\|x\|} \leq \lim_{x \to 0} \|x\| = 0,
\]
\(\nabla f(0)(x, y) = 0 \). \(\square \)

Exercise 38 (2-8). Let \(f : \mathbb{R} \to \mathbb{R}^2 \). Prove that \(f \) is differentiable at \(a \in \mathbb{R} \) if and only if \(f^1 \) and \(f^2 \) are, and that in this case
\[
f'(a) = \left(\begin{array}{c} (f^1)'(a) \\ (f^2)'(a) \end{array} \right).
\]

Proof. Suppose that \(f \) is differentiable at \(a \) with \(f'(a) = \left(\begin{array}{c} c^1 \\ c^2 \end{array} \right) \). Then for \(i = 1, 2 \),
\[
0 \leq \lim_{h \to 0} \frac{|f^i(a + h) - f^i(a) - c^i \cdot h|}{|h|} \leq \lim_{h \to 0} \frac{\|f(a + h) - f(a) - \nabla f(a)(h)\|}{|h|} = 0
\]
implies that \(f^i \) is differentiable at \(a \) with \((f^i)'(a) = c^i \).

Now suppose that both \(f^1 \) and \(f^2 \) are differentiable at \(a \), then by Exercise 1,
\[
0 \leq \frac{\|f(a + h) - f(a) - \nabla f(a)(h)\|}{|h|} \leq \sum_{i=1}^{2} \frac{|f^i(a + h) - f^i(a) - (f^i)'(a) \cdot h|}{|h|}
\]
implies that \(f \) is differentiable at \(a \) with \(f'(a) = \left(\begin{array}{c} (f^1)'(a) \\ (f^2)'(a) \end{array} \right) \). \(\square \)

Exercise 39 (2-9). Two functions \(f, g : \mathbb{R} \to \mathbb{R} \) are equal up to \(n \)-th order at \(a \) if
SECTION 2.1 BASIC DEFINITIONS

\[
\lim_{h \to 0} \frac{f(a + h) - g(a + h)}{h} = 0.
\]

a. Show that \(f \) is differentiable at \(a \) if and only if there is a function \(g \) of the form \(g(x) = a_0 + a_1(x - a) \) such that \(f \) and \(g \) are equal up to first order at \(a \).

b. If \(f'(a), \ldots, f^{(n)}(a) \) exist, show that \(f \) and the function \(g \) defined by

\[
g(x) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (x - a)^i
\]

are equal up to \(n \)-th order at \(a \).

Proof. (a) If \(f \) is differentiable at \(a \), then by definition,

\[
\lim_{h \to 0} \frac{f(a + h) - f(a) - f'(a) \cdot h}{h} = 0,
\]

so we can let \(g(x) = f(a) + f'(a) \cdot (x - a) \).

On the other hand, if there exists a function \(g(x) = a_0 + a_1(x - a) \) such that

\[
\lim_{h \to 0} \frac{f(a + h) - a_0 - a_1h}{h} = 0,
\]

then \(a_0 = f(a) \), and so \(f \) is differentiable at \(a \) with \(f'(a) = a_1 \).

(b) By Taylor’s Theorem\(^1\) we rewrite \(f \) as

\[
f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (x - a)^i + \frac{f^{(n)}(y)}{n!} (x - a)^n,
\]

where \(y \) is between \(a \) and \(x \). Thus,

\[
\lim_{x \to a} \frac{f(x) - g(x)}{(x - a)^n} = \lim_{x \to a} \frac{f^{(n)}(y)(x - a)^n - f^{(n)}(a)(x - a)^n}{(x - a)^n}
\]

\[
= \lim_{x \to a} \frac{f^{(n)}(y) - f^{(n)}(a)}{n!} = 0.
\]

\(^1\) (Rudin, 1976, Theorem 5.15) Suppose \(f \) is a real function on \([a, b]\), \(n \) is a positive integer, \(f^{(n-1)} \) is continuous on \([a, b]\), \(f^{(n)} \) exists for every \(t \in (a, b) \). Let \(\alpha, \beta \) be distinct points of \([a, b]\), and define

\[
P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k.
\]

Then there exists a point \(x \) between \(\alpha \) and \(\beta \) such that

\[
f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n.
\]
2.2 Basic Theorems

Exercise 40 (2-10). Use the theorems of this section to find f' for the following:

a. $f(x, y, z) = x^y$.

b. $f(x, y, z) = (x^y, z)$.

c. $f(x, y) = \sin(x \sin y)$.

d. $f(x, y, z) = \sin(x \sin(y \sin z))$.

e. $f(x, y, z) = x^{yz}$.

f. $f(x, y, z) = x^{y+z}$.

g. $f(x, y, z) = (x + y)^z$.

h. $f(x, y) = \sin(xy)$.

i. $f(x, y) = \left[\sin(xy)\right]^{\cos^3}$.

j. $f(x, y) = \left(\sin(xy), \sin(x \sin y) \cdot x^y\right)$.

Solution. Compare this with Exercise 47.

(a) We have $f(x, y, z) = x^y = e^{\ln x^y} = e^{y \ln x} = \exp \circ (\pi^2 \cdot \ln \pi^1)(x, y, z)$. It follows from the Chain Rule that

$$f'(a, b, c) = \exp'\left[(\pi^2 \ln \pi^1)(a, b, c) \cdot \left(\pi^2 \ln \pi^1\right)'(a, b, c)\right] = \exp(b \ln a) \cdot \left[(\ln \pi^1)(\pi^2)' + \pi^2(\ln \pi^1)'\right](a, b, c) = a^b \cdot \left[(0, \ln a, 0) + (b/a, 0, 0)\right] = \left(a^{b-1}b \quad a^b \ln a \quad 0\right)$.

(b) By (a) and Theorem 2-3(3), we have

$$f'(a, b, c) = \left(a^{b-1}b \quad a^b \ln a \quad 0\right)$$.

(c) We have $f(x, y) = \sin \circ (\pi^1 \sin(\pi^2))$. Then, by the chain rule,

$$f'(a, b) = \sin'\left[(\pi^1 \sin(\pi^2))(a, b)\right] \cdot \left[\pi^1 \sin(\pi^2)'\right](a, b) = \cos(a \sin b) \cdot \left[(\sin \pi^2)(\pi^1)' + \pi^1(\sin \pi^2)'\right](a, b) = \cos(a \sin b) \cdot \left[\sin(1, 0) + a(0, \cos b)\right] = \left(\cos(a \sin b) \cdot \sin b \quad a \cdot \cos(a \sin b) \cdot \cos b\right)$.

(d) Let $g(y, z) = \sin(y \sin z)$. Then
\[f(x, y, z) = \sin(x \cdot g(y, z)) = \sin(\pi^1 \cdot g(\pi^2, \pi^3)). \]

Hence,
\[
f'(a, b, c) = \sin'(ag(b, c)) \cdot (\pi^1 \cdot g(\pi^2, \pi^3))'(a, b, c)
= \cos(ag(b, c)) \cdot \left[g(b, c)(\pi^1)' + ag'(\pi^2, \pi^3) \right](a, b, c)
= \cos(ag(b, c)) \cdot \left[(g(b, c), 0, 0) + ag'(\pi^2, \pi^3)(a, b, c) \right].
\]

It follows from (c) that
\[
g'(\pi^2, \pi^3)(a, b, c) = \begin{pmatrix} 0 & \cos(b \sin c) \cdot \sin c & b \cdot \cos(b \sin c) \cdot \cos c \end{pmatrix}.
\]

Therefore,
\[
f'(a, b, c) = \cos(a \sin(b \sin c)) \begin{pmatrix} \sin(b \sin c) & a \cos(b \sin c) \sin c & ab \cos(b \sin c) \cos c \end{pmatrix}.
\]

(e) Let \(g(x, y) = x^y \). Then
\[
f(x, y, z) = x^{g(y, z)} = g(x, g(y, z)) = g(\pi^1, g(\pi^2, \pi^3)).
\]

Then
\[
\mathbb{D} f(a, b, c) = \mathbb{D} g(a, g(b, c)) \circ \left[\mathbb{D} \pi^1, \mathbb{D} g(\pi^2, \pi^3) \right](a, b, c).
\]

By (a),
\[
\mathbb{D} g(a, g(b, c))(x, y, z) = \begin{pmatrix} a^{g(b,c)} g(b, c)/a & a^{g(b,c)} \ln a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}
= \frac{a^{bc}}{a} x + \left(a^{bc} \ln a \right) y,
\]
\[
\mathbb{D} \pi^1(a, b, c)(x, y, z) = x,
\]
and
\[
\mathbb{D} g(\pi^2, \pi^3)(a, b, c)(x, y, z) = \mathbb{D} g(b, c) \circ \left[\mathbb{D} \pi^2, \mathbb{D} \pi^3 \right](a, b, c)(x, y, z)
= \frac{b^c}{b} y + \left(b^c \ln b \right) z.
\]

Hence,
\[
\mathbb{D} f(a, b, c)(x, y, z) = \frac{a^{bc} b^c}{a} x + \left(a^{bc} \ln a \right) \left[\frac{b^c}{b} y + \left(b^c \ln b \right) z \right],
\]
and
20 \hspace{1cm} \text{CHAPTER 2 DIFFERENTIATION} \\

\[f'(a, b, c) = \left(a^{b^c/a} - a^{b^c} \ln a/b \right) \]

(f) Let \(g(x, y) = x^y \). Then \(f(x, y, z) = x^{y+z} = g(x, y + z) = g(\pi^1, \pi^2 + \pi^3) \).

Hence,

\[
D f(a, b, c)(x, y, z) = D g(a, b + c) \circ \left(D \pi^1, D \pi^2 + D \pi^3 \right)(a, b, c)(x, y, z) \\
= D g(a, b + c) \circ (x, y + z) \\
= a^{b+c} (b + c) \ln a \left(y + z \right).
\]

and

\[
f'(a, b, c) = \left(\frac{a^{b+c}(b+c)}{a} \right) a^{b+c} \ln a - a^{b+c} \ln a.
\]

(g) Let \(g(x, y) = x^y \). Then

\[
f(x, y, z) = (x + y)^z = g(x + y, z) = g(\pi^1 + \pi^2, \pi^3).
\]

Hence,

\[
D f(a, b, c)(x, y, z) = D g(a + b, c) \circ \left[D \pi^1 + D \pi^2, D \pi^3 \right](a, b, c)(x, y, z) \\
= D g(a + b, c) \circ (x + y, z) \\
= (a + b)^c c \ln (a + b) + ((a + b)^c \ln (a + b)) z,
\]

and

\[
f'(a, b, c) = \left(\frac{(a+b)^c c}{a+b} \right) (a+b)^c \ln (a+b).
\]

(h) We have \(f(x, y) = \sin(xy) = \sin \circ (\pi^1 \pi^2) \). Hence,

\[
f'(a, b) = (\sin)'(ab) \left[b(\pi^1)'(a, b) + a(\pi^2)'(a, b) \right] \\
= \cos(ab) \cdot \left[b(1, 0) + a(0, 1) \right] \\
= \cos(ab) \cdot (b, a) \\
= \left(b \cdot \cos(ab) \right) a \cdot \cos(ab).
\]

(i) Straightforward.

(j) By Theorem 2-3 (3), we have

\[
f'(a, b, c) = \begin{pmatrix}
\left[\sin(xy) \right]'(a, b, c) \\
\sin(x \sin y)'(a, b, c) \\
x'y'(a, b, c)
\end{pmatrix} \\
= \begin{pmatrix}
b \cdot \cos(ab) & a \cdot \cos(ab) \\
cos(a \sin b) \cdot \sin b & a \cdot \cos(a \sin b) \cdot \cos b \\
a^{b-1} & a^b \ln a
\end{pmatrix}.
\]

\[\Box\]

\(\triangleright\) \text{EXERCISE 41 (2-11). Find } f' \text{ for the following (where } g : \mathbb{R} \rightarrow \mathbb{R} \text{ is continuous):} \]
Section 2.2 Basic Theorems

a. \(f(x, y) = f_a^{x+y} g. \)

b. \(f(x, y) = f_a^{xy} g. \)

c. \(f(x, y, z) = \int_{xy} \sin(x \sin(y \sin z)) g. \)

Solution. (a) Let \(h(t) = f_a^t g. \) Then \(f(x, y) = \int_a^t \left[h \circ (\pi_1 + \pi_2) \right](x, y), \) and so

\[
f'(a, b) = h' (a + b) \cdot \left[(\pi_1 + \pi_2)'(a, b) \right]
= g (a + b) \cdot (1, 1)
= \left(g (a + b) \ g (a + b) \right).
\]

(b) Let \(h(t) = f_a^t g. \) Then \(f(x, y) = f_a^{xy} g = h(xy) = \left[h \circ (\pi_1 \cdot \pi_2) \right](x, y). \) Hence,

\[
f'(a, b) = h' (ab) \cdot \left[b \cdot (\pi_1)'(a, b) + a \cdot (\pi_2)'(a, b) \right]
= g (ab) \cdot (b, a)
= \left(b \cdot g (ab) \ a \cdot g (ab) \right).
\]

(c) We can rewrite \(f(x, y, z) \) as

\[
f(x, y, z) = \int_a^z g + \int_a^z \int_a^y g = \int_a^z \int_a^y g - \int_a^x g.
\]

Let \(\gamma(x, y, z) = \sin(x \sin(y \sin z)), k(x, y, z) = \int_a^{xy} g, \) and \(h(x, y, z) = \int_a^{xy} g. \) Then \(f(x, y, z) = k(x, y, z) - h(x, y, z), \) and so

\[
f'(a, b, c) = k'(a, b, c) - h'(a, b, c).
\]

It follows from Exercise 40 (d) that

\[
k'(a, b, c) = k' (\gamma(a, b, c)) \cdot \gamma'(a, b, c).
\]

The other parts are easy. \(\Box \)

Exercise 42 (2-12). A function \(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p \) is bilinear if for \(x, x_1, x_2 \in \mathbb{R}^n, y, y_1, y_2 \in \mathbb{R}^m, \) and \(a \in \mathbb{R} \) we have

\[
f (ax, y) = af(x, y) = f (x, ay),
f (x_1 + x_2, y) = f (x_1, y) + f (x_2, y),
f (x, y_1 + y_2) = f (x, y_1) + f (x, y_2).
\]

a. Prove that if \(f \) is bilinear, then

\[
\lim_{{(h,k)\to 0}} \frac{\|f(h,k)\|}{\|(h,k)\|} = 0.
\]
b. Prove that $D f(a, b)(x, y) = f(a, y) + f(x, b)$.

c. Show that the formula for $D p(a, b)$ in Theorem 2-3 is a special case of (b).

PROOF. (a) Let (e_1^n, \ldots, e_n^n) and (e_1^m, \ldots, e_m^m) be the standard bases for \mathbb{R}^n and \mathbb{R}^m, respectively. Then for any $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, we have

$$x = \sum_{i=1}^n x_i e_i^n, \quad \text{and} \quad y = \sum_{j=1}^m y_j e_j^m.$$

Therefore,

$$f(x, y) = f \left(\sum_{i=1}^n x_i e_i^n, \sum_{j=1}^m y_j e_j^m \right) = \sum_{i=1}^n f \left(x_i e_i^n, \sum_{j=1}^m y_j e_j^m \right)$$

$$= \sum_{i=1}^n \sum_{j=1}^m f(x_i e_i^n, y_j e_j^m)$$

$$= \sum_{i=1}^n \sum_{j=1}^m x_i y_j f(e_i^n, e_j^m).$$

Then, by letting $M = \sum_{i,j} \left\| f(e_i^n, e_j^m) \right\|$, we have

$$\| f(x, y) \| = \left\| \sum_{i,j} x_i y_j f(e_i^n, e_j^m) \right\| \leq \sum_{i,j} |x_i y_j| \left\| f(e_i^n, e_j^m) \right\|$$

$$\leq M \left[\max_i \left\{ |x_i| \right\} \max_j \left\{ |y_j| \right\} \right]$$

$$\leq M \| x \| \| y \| .$$

Hence,

$$\lim_{(h,k) \to 0} \frac{\| f(h,k) \|}{\| (h,k) \|} \leq \lim_{(h,k) \to 0} \frac{M \| h \| \| k \|}{\| (h,k) \|}$$

$$= \lim_{(h,k) \to 0} \frac{M \| h \| \| k \|}{\sqrt{\sum_{i,j} \left[(h_i) + (k_j) \right]^2}}$$

$$= \lim_{(h,k) \to 0} \frac{M \| h \| \| k \|}{\sqrt{\| h \|^2 + \| k \|^2}}.$$

Now

$$\| h \| \| k \| \leq \left\{ \begin{array}{ll} \| h \|^2 & \text{if } \| k \| \leq \| h \| \\
\| k \|^2 & \text{if } \| h \| \leq \| k \|. \end{array} \right.$$

Hence $\| h \| \| k \| \leq \| h \|^2 + \| k \|^2$, and so
Exhibit a differentiable function

(a) It is evident that IP is bilinear; hence, by Exercise 42 (b), we have

\[\lim_{(h,k) \to 0} M \|h\| \langle k \rangle \leq \lim_{(h,k) \to 0} M \|h\|^2 + \|k\|^2 = 0. \]

(b) We have

\[\lim_{(h,k) \to 0} \frac{\|f(a + h, b + k) - f(a, b) - f(a, k) - f(h, b)\|}{\|h\| \langle k \rangle} = \lim_{(h,k) \to 0} \frac{\|f(a, b) + f(a, k) + f(h, b) - f(a, b) - f(a, k) - f(h, b)\|}{\|h\| \langle k \rangle} = \lim_{(h,k) \to 0} \frac{\|f(h, k)\|}{\|h\| \langle k \rangle} = 0 \]

by (a); hence, \(Df(a, b)(x, y) = f(a, y) + f(x, b) \).

(c) It is easy to check that \(p : \mathbb{R}^2 \to \mathbb{R} \) defined by \(p(x, y) = xy \) is bilinear. Hence, by (b), we have

\[Dp(a, b)(x, y) = p(a, y) + p(x, b) = ay + xb. \]

\[\square \]

\[\textbf{Exercise 43 (2-13). Define IP: } \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \text{ by IP}(x, y) = (x, y). \]

a. Find \(D(\text{IP})(a, b) \) and \((\text{IP})'(a, b) \).

b. If \(f, g : \mathbb{R} \to \mathbb{R}^n \) are differentiable and \(h : \mathbb{R} \to \mathbb{R} \) is defined by \(h(t) = \langle f(t), g(t) \rangle \), show that

\[h'(a) = \left\langle f'(a)^T, g(a) \right\rangle + \left\langle f(a), g'(a)^T \right\rangle. \]

c. If \(f : \mathbb{R} \to \mathbb{R}^n \) is differentiable and \(\|f(t)\| = 1 \) for all \(t \), show that \(\left\langle f'(t)^T, f(t) \right\rangle = 0. \)

d. Exhibit a differentiable function \(f : \mathbb{R} \to \mathbb{R} \) such that the function \(|f| \) defined by \(|f|(t) = |f(t)| \) is not differentiable.

\[\text{PROOF.} \quad (a) \text{ It is evident that IP is bilinear; hence, by Exercise 42 (b), we have} \]

\[D(\text{IP})(a, b)(x, y) = \text{IP}(a, y) + \text{IP}(x, b) \]

\[= \langle a, y \rangle + \langle x, b \rangle \]

\[= \langle b, x \rangle + \langle a, y \rangle. \]

and so \((\text{IP})'(a, b) = (b, a).\)

(b) Since \(h(t) = \text{IP} \circ (f, g)(t) \), by the chain rule, we have

\[Dh(a)(x) = D(\text{IP}) \left(f(a), g(a) \right) \circ (Df(a)(x), Dg(a)(x)) \]

\[= \left\langle g(a), Df(a)(x) \right\rangle + \left\langle f(a), Dg(a)(x) \right\rangle \]

\[= \left\langle g(a), f'(a) \right\rangle x + \left\langle f(a), g'(a) \right\rangle x. \]

(c) Let \(h(t) = (f(t), f(t)) \) with \(\|f(t)\| = 1 \) for all \(t \in \mathbb{R} \). Then
is constant, and so \(h'(a) = 0 \); that is,

\[0 = \left(f'(a)^\top, f(a) \right) + \left(f(a), f'(a)^\top \right) = 2 \left(f'(a)^\top, f(a) \right), \]

and so \(\left(f'(a)^\top, f(a) \right) = 0 \).

(d) Let \(f(t) = t \). Then \(f \) is linear and so is differentiable: \(Df = t \). However,

\[
\lim_{t \to 0^+} \frac{|t|}{t} = 1, \quad \lim_{t \to 0^-} \frac{|t|}{t} = -1;
\]

that is, \(|f| \) is not differentiable at 0.

\[\square \]

Exercise 44 (2-14). Let \(\mathbb{E}_i, i = 1, \ldots, k \) be Euclidean spaces of various dimensions. A function \(f: \mathbb{E}_1 \times \cdots \times \mathbb{E}_k \to \mathbb{R}^p \) is called multilinear if for each choice of \(x_j \in \mathbb{E}_j, j \neq i \) the function \(g: \mathbb{E}_i \to \mathbb{R}^p \) defined by \(g(x) = f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_k) \) is a linear transformation.

a. If \(f \) is multilinear and \(i \neq j \), show that for \(h = (h_1, \ldots, h_k) \), with \(h_\ell \in \mathbb{E}_\ell \), we have

\[
\lim_{h \to 0} \frac{\|f(a_1, \ldots, h_i, \ldots, h_j, \ldots, a_k)\|}{\|h\|} = 0.
\]

b. Prove that

\[Df(a_1, \ldots, a_k)(x_1, \ldots, x_k) = \sum_{i=1}^k f(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_k). \]

Proof.

(a) To lighten notation, define

\[a_{i-j} := (a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k). \]

Let \(g: \mathbb{E}_i \times \mathbb{E}_j \to \mathbb{R}^p \) be defined as \(g(x, x_j) = f(a_{i-j}, x, x_j) \). Then \(g \) is bilinear and so

\[
\lim_{h \to 0} \frac{\|g(a_{i-j}, h_i, h_j)\|}{\|h\|} \leq \lim_{h \to 0} \frac{\|g(a_{i-j}, h_i, h_j)\|}{\|h_i\|, h_j\|} = 0
\]

by Exercise 42 (a).

(b) It follows from Exercise 42 (b) immediately. \[\square \]

Exercise 45 (2-15). Regard an \(n \times n \) matrix as a point in the \(n \)-fold product \(\mathbb{R}^n \times \cdots \times \mathbb{R}^n \) by considering each row as a member of \(\mathbb{R}^n \).

a. Prove that \(\operatorname{det}: \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R} \) is differentiable and
\[\det(a_1, \ldots, a_n)(x_1, \ldots, x_n) = \sum_{i=1}^n \det x_i. \]

b. If \(a_{ij} : \mathbb{R} \to \mathbb{R} \) are differentiable and \(f(t) = \det(a_{ij}(t)) \), show that
\[
f'(t) = \sum_{j=1}^n \det \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{j1}'(t) & \cdots & a_{jn}'(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}. \]

c. If \(\det(a_{ij}(t)) \neq 0 \) for all \(t \) and \(b_1, \ldots, b_n : \mathbb{R} \to \mathbb{R} \) are differentiable, let \(s_1, \ldots, s_n : \mathbb{R} \to \mathbb{R} \) be the functions such that \(s_1(t), \ldots, s_n(t) \) are the solutions of the equations
\[
\sum_{j=1}^n a_{ji}(t)s_j(t) = b_i(t), \quad i = 1, \ldots, n. \]

Show that \(s_i \) is differentiable and find \(s_i'(t) \).

Proof.

(a) It is easy to see that \(\det : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R} \) is multilinear; hence, the conclusion follows from Exercise 44.

(b) By (a) and the chain rule,
\[
f'(t) = (\det)'(a_{ij}(t)) \circ [a_{ij}'(t), \ldots, a_{ij}'(t)] \\
= \sum_{j=1}^n \det \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{j1}'(t) & \cdots & a_{jn}'(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix}. \]

(c) Let
\[
A = \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{1n}(t) & \cdots & a_{nn}(t) \end{pmatrix}, \quad s = \begin{pmatrix} s_1(t) \\ \vdots \\ s_n(t) \end{pmatrix}, \quad \text{and} \quad b = \begin{pmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{pmatrix}. \]

Then
\[As = b. \]
and so
\[s_i(t) = \frac{\det(B_i)}{\det(A)}. \]
where \(B_i \) is obtained from \(A \) by replacing the \(i \)-th column with the \(b \). It follows from (b) that \(s_i(t) \) is differentiable. Define \(f(t) = \det(A) \) and \(g_i(t) = \det(B_i) \).

Then
\[f'(t) = \sum_{j=1}^{n} \det \begin{pmatrix} a_{11}(t) & \cdots & a_{i-1,j}(t) & b_j(t) & a_{i+1,j}(t) & \cdots & a_{nj}(t) \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{ij}'(t) & \cdots & a_{i-1,j}'(t) & b_j'(t) & a_{i+1,j}'(t) & \cdots & a_{nj}'(t) \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n}(t) & \cdots & a_{i-1,n}(t) & b_n(t) & a_{i+1,n}(t) & \cdots & a_{nn}(t) \end{pmatrix}, \]
and
\[g_i'(t) = \sum_{j=1}^{n} \begin{pmatrix} a_{11}(t) & \cdots & a_{i-1,1}(t) & b_1(t) & a_{i+1,1}(t) & \cdots & a_{nj}(t) \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{ij}'(t) & \cdots & a_{i-1,j}'(t) & b_j'(t) & a_{i+1,j}'(t) & \cdots & a_{nj}'(t) \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n}(t) & \cdots & a_{i-1,n}(t) & b_n(t) & a_{i+1,n}(t) & \cdots & a_{nn}(t) \end{pmatrix}. \]

Therefore,
\[s_i'(t) = \frac{f'(t)g_i'(t) - f(t)g_i'(t)}{f^2(t)}. \]

Exercise 46 (2-16). Suppose \(f: \mathbb{R}^n \to \mathbb{R}^n \) is differentiable and has a differentiable inverse \(f^{-1}: \mathbb{R}^n \to \mathbb{R}^n \). Show that \((f^{-1})'(a) = \left[f'(f^{-1}(a)) \right]^{-1} \).

Proof. We have \(f \circ f^{-1}(x) = x \). On the one hand \(\mathcal{D} \left(f \circ f^{-1} \right)(a)(x) = x \) since \(f \circ f^{-1} \) is linear; on the other hand,
\[\mathcal{D} \left(f \circ f^{-1} \right)(a)(x) = \left[\mathcal{D} f \left(f^{-1}(a) \right) \circ \mathcal{D} f^{-1}(a) \right](x). \]
Therefore, \(\mathcal{D} f^{-1}(a) = \left[\mathcal{D} f \left(f^{-1}(a) \right) \right]^{-1} \).

2.3 Partial Derivatives

Exercise 47 (2-17). Find the partial derivatives of the following functions:

a. \(f(x, y, z) = x^y \).

b. \(f(x, y, z) = z \).

c. \(f(x, y) = \sin(x \sin y) \).

d. \(f(x, y, z) = \sin(x \sin(y \sin z)) \).
e. \(f(x, y, z) = x^y z^z \).

f. \(f(x, y, z) = x^{y+z} \).

g. \(f(x, y, z) = (x + y)^2 \).

h. \(f(x, y) = \sin(xy) \).

i. \(f(x, y) = \left[\sin(xy)\right]^{\cos 3} \).

SOLUTION. Compare this with Exercise 40.

(a) \(\frac{\partial}{\partial x} f(x, y, z) = yx^{y-1}, \quad \frac{\partial}{\partial y} f(x, y, z) = x^y \ln x, \) and \(\frac{\partial}{\partial z} f(x, y, z) = 0. \)

(b) \(\frac{\partial}{\partial x} f(x, y, z) = \frac{\partial}{\partial y} f(x, y, z) = 0, \) and \(\frac{\partial}{\partial z} f(x, y, z) = 1. \)

c. \(\frac{\partial}{\partial x} f(x, y) = (\sin y) \cos(x \sin y), \) and \(\frac{\partial}{\partial y} f(x, y) = x \cos y \cos(x \sin y). \)

d. \(\frac{\partial}{\partial x} f(x, y, z) = \sin(y \sin z) \cos(x \sin(y \sin z)), \quad \frac{\partial}{\partial y} f(x, y, z) = \cos(x \sin(y \sin z)) \cos(y \sin z) \sin z, \) and \(\frac{\partial}{\partial z} f(x, y, z) = \cos(x \sin(y \sin z)) \cos(y \sin z) y \cos z. \)

e. \(\frac{\partial}{\partial x} f(x, y, z) = y^2 x y z^{z-1}, \quad \frac{\partial}{\partial y} f(x, y, z) = x^y z y^{z-1} \ln x, \) and \(\frac{\partial}{\partial z} f(x, y, z) = y^2 \ln y \left(x y^{z-1} \ln x\right). \)

(f) \(\frac{\partial}{\partial x} f(x, y, z) = (y + z) x y^{y+z-1}, \) and \(\frac{\partial}{\partial y} f(x, y, z) \frac{\partial}{\partial z} f(x, y, z) = x^{y+z} \ln x. \)

(g) \(\frac{\partial}{\partial x} f(x, y, z) = \frac{\partial}{\partial y} f(x, y, z) = (x + y)^{y-1}, \) and \(\frac{\partial}{\partial z} f(x, y, z) = (x + y)^2 \ln(x + y). \)

(h) \(\frac{\partial}{\partial x} f(x, y) = y \cos(xy), \) and \(\frac{\partial}{\partial y} f(x, y) = x \cos(xy). \)

(i) \(\frac{\partial}{\partial x} f(x, y) = \cos\left[\sin(xy)\right]^{\cos 3-1} y \cos(xy), \) and \(\frac{\partial}{\partial y} f(x, y) = \cos\left[\sin(xy)\right]^{\cos 3-1} x \cos(xy). \)

Exercise 48 (2-18). Find the partial derivatives of the following functions (where \(g : \mathbb{R} \rightarrow \mathbb{R} \) is continuous):

a. \(f(x, y) = f_a^{x+y} g. \)

b. \(f(x, y) = f_y^x g. \)

c. \(f(x, y) = f_a^{xy} g. \)

d. \(f(x, y) = f_a^{(\ln s)} g. \)

SOLUTION.

(a) \(\frac{\partial}{\partial x} f(x, y) = \frac{\partial}{\partial y} f(x, y) = g(x + y). \)

(b) \(\frac{\partial}{\partial x} f(x, y) = g(x), \) and \(\frac{\partial}{\partial y} f(x, y) = -g(y). \)

c. \(\frac{\partial}{\partial x} f(x, y) = yg(xy), \) and \(\frac{\partial}{\partial y} f(x, y) = xg(xy). \)
\(\textbf{(d)} \quad \frac{\partial}{\partial x} f(x, y) = 0, \quad \text{and} \quad \frac{\partial}{\partial y} f(x, y) = g'(y) \cdot g \left(\int_b^y g \right). \)

Exercise 49 (2-19). If
\[
f(x, y) = x^{x+y} + \left(\ln x \right) \left(\arctan \left(\arctan \left(\sin (\cos xy) - \ln(x + y) \right) \right) \right)
\]
find \(\frac{\partial^2}{\partial x \partial y} f(1, y) \).

Solution. Putting \(x = 1 \) into \(f(x, y) \), we get \(f(1, y) = 1 \). Then \(\frac{\partial^2}{\partial x \partial y} f(1, y) = 0 \).

Exercise 50 (2-20). Find the partial derivatives of \(f \) in terms of the derivatives of \(g \) and \(h \) if
\begin{align*}
\text{a.} & \quad f(x, y) = g(x)h(y) \\
\text{b.} & \quad f(x, y) = g(x)h'(y) \\
\text{c.} & \quad f(x, y) = g(x) \\
\text{d.} & \quad f(x, y) = g(y) \\
\text{e.} & \quad f(x, y) = g(x + y).
\end{align*}

Solution.
\begin{align*}
\text{(a)} & \quad \frac{\partial}{\partial x} f(x, y) = g'(x)h(y), \quad \text{and} \quad \frac{\partial}{\partial y} f(x, y) = g(x)h'(y).
\text{(b)} & \quad \frac{\partial}{\partial x} f(x, y) = h(y)g(x)h'(y) - g'(x)h(y), \quad \text{and} \quad \frac{\partial}{\partial y} f(x, y) = h'(y)g(x)h'(y) \ln g(x).
\text{(c)} & \quad \frac{\partial}{\partial x} f(x, y) = g'(x), \quad \text{and} \quad \frac{\partial}{\partial y} f(x, y) = 0.
\text{(d)} & \quad \frac{\partial}{\partial x} f(x, y) = 0, \quad \text{and} \quad \frac{\partial}{\partial y} f(x, y) = g'(y).
\text{(e)} & \quad \frac{\partial}{\partial x} f(x, y) = \frac{\partial}{\partial y} f(x, y) = g'(x + y).
\end{align*}

Exercise 51 (2-21*). Let \(g_1, g_2 : \mathbb{R}^2 \to \mathbb{R} \) be continuous. Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by
\[
f(x, y) = \int_0^x g_1(t, 0) \, dt + \int_0^y g_2(x, t) \, dt.
\]

\begin{enumerate}
\item Show that \(\frac{\partial}{\partial x} f(x, y) = g_2(x, y) \).
\item How should \(f \) be defined so that \(\frac{\partial}{\partial x} f(x, y) = g_1(x, y) \)?
\item Find a function \(f : \mathbb{R}^2 \to \mathbb{R} \) such that \(\frac{\partial}{\partial x} f(x, y) = x \) and \(\frac{\partial}{\partial y} f(x, y) = y \). Find one such that \(\frac{\partial}{\partial x} f(x, y) = y \) and \(\frac{\partial}{\partial y} f(x, y) = x \).
\end{enumerate}

Proof.
(a) $\mathbb{D}_2 f(x, y) = 0 + g_2(x, y) = g_2(x, y)$.

(b) We should let

\[
f(x, y) = \int_0^x g_1(t, y) \, dt + \int_0^y g_2(a, t) \, dt,
\]

where $t \in \mathbb{R}$ is a constant.

(c) Let

- $f(x, y) = (x^2 + y^2)/2$.
- $f(x, y) = xy$.

Near EXERCISE 52 (2-22*). If $f : \mathbb{R}^2 \to \mathbb{R}$ and $\mathbb{D}_2 f = 0$, show that f is independent of the second variable. If $\mathbb{D}_1 f = \mathbb{D}_2 f = 0$, show that f is constant.

PROOF. Fix any $x \in \mathbb{R}$. By the mean-value theorem, for any $y_1, y_2 \in \mathbb{R}$, there exists a point $y^* \in (y_1, y_2)$ such that

\[
f(x, y_2) - f(x, y_1) = \mathbb{D}_2 f(x, y^*)(y_2 - y_1) = 0.
\]

Hence, $f(x, y_1) = f(x, y_2)$; that is, f is independent of y.

Similarly, if $\mathbb{D}_1 f = 0$, then f is independent of x. The second claim is then proved immediately. \hfill \Box

Near EXERCISE 53 (2-23*). Let $A = \{(x, y) \in \mathbb{R}^2 : x < 0, \text{ or } x > 0 \text{ and } y \neq 0\}$.

a. If $f : A \to \mathbb{R}$ and $\mathbb{D}_1 f = \mathbb{D}_2 f = 0$, show that f is constant.

b. Find a function $f : A \to \mathbb{R}$ such that $\mathbb{D}_2 f = 0$ but f is not independent of the second variable.

PROOF.

(a) As in Figure 2.1, for any $(a, b), (c, d) \in \mathbb{R}^2$, we have

\[
f(a, b) = f(-1, b) = f(-1, d) = f(c, d).
\]

(b) For example, we can let

\[
f(x, y) = \begin{cases}
0 & \text{if } x < 0 \text{ or } y < 0 \\
x & \text{otherwise}.
\end{cases}
\]

Near EXERCISE 54 (2-24). Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

\[
f(x, y) = \begin{cases}
xy \frac{x^2 - y^2}{x^2 + y^2} & (x, y) \neq 0, \\
0 & (x, y) = 0.
\end{cases}
\]

a. Show that $\mathbb{D}_2 f(x, 0) = x$ for all x and $\mathbb{D}_1 f(0, y) = -y$ for all y.

b. Show that $\mathcal{D}_{1,2} f(0,0) \neq \mathcal{D}_{2,1} f(0,0)$.

Proof.

(a) We have

$$\mathcal{D}_2 f(x, y) = \begin{cases} \frac{x(x^4-y^4-4x^2y^2)}{(x^2+y^2)^2} & (x, y) \neq 0, \\ 0 & (x, y) = 0, \end{cases}$$

and

$$\mathcal{D}_1 f(x, y) = \begin{cases} \frac{-y(x^4-y^4-4x^2y^2)}{(x^2+y^2)^2} & (x, y) \neq 0, \\ 0 & (x, y) = 0. \end{cases}$$

Hence, $\mathcal{D}_2 f(x, 0) = x$ and $\mathcal{D}_1 f(0, y) = -y$.

(b) By (a), we have $\mathcal{D}_{1,2} f(0, 0) = \mathcal{D}_2 \left(\mathcal{D}_1 f(0, y) \right)(0) = -1$; but $\mathcal{D}_{2,1} f(0, 0) = \mathcal{D}_1 \left(\mathcal{D}_2 (x, 0) \right)(0) = 1$.

Exercise 55 (2-25*). Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-x^2} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Show that f is a C^∞ function, and $f^{(i)}(0) = 0$ for all i.

Proof. Figure 2.2 depicts $f(x)$. We first show that $f \in C^\infty$.

Let $p_n(y)$ be a polynomial with degree n with respect to y. For $x \neq 0$ and $k \in \mathbb{N}$, we show that $f^{(k)}(x) = p_{3k}(x^{-1}) e^{-x^2}$. We do this by induction.

Step 1 Clearly, $f'(x) = 2x^{-3} e^{-x^2}$.

Step 2 Suppose that $f^{(k)}(x) = p_{3k}(x^{-1}) e^{-x^2}$.

Step 3 Then by the chain rule,
SECTION 2.3 PARTIAL DERIVATIVES

\[f^{(k+1)}(x) = \left[f^{(k)}(x)\right]' = p_{3k}'(x^{-1}) \cdot (-x^{-2}) \cdot e^{-x^{-2}} + p_{3k}(x^{-1}) \cdot 2x^{-3} \cdot e^{-x^{-2}} \]

\[= \left[p_{3k}'(x^{-1}) \cdot (-x^{-2}) + p_{3k}(x^{-1}) \cdot 2x^{-3}\right] \cdot e^{-x^{-2}} \]

\[= \left[q_{3k+1}(x^{-1}) + q_{3k+3}(x^{-1})\right] \cdot e^{-x^{-2}} \]

\[= p_{3(k+1)}(x^{-1}) \cdot e^{-x^{-2}}. \]

where \(q_{3k+1}\) and \(q_{3k+3}\) are polynomials.

Therefore, \(f(x) \in C^\infty\) for all \(x \neq 0\). It remains to show that \(f^{(k)}(x)\) is defined and continuous at \(x = 0\) for all \(k\).

Step 1 Obviously,

\[f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^{-x^{-2}}}{x} = \lim_{x \to 0} \frac{2x^{-3}e^{-x^{-2}}}{x} = 0 \]

by L'Hôpital's rule.

Step 2 Suppose that \(f^{(k)}(0) = 0\).

Step 3 Then,

\[f^{(k+1)}(0) = \lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x} = \lim_{x \to 0} \frac{p_{3k+1}(x^{-1})e^{-x^{-2}}}{x} = \lim_{x \to 0} \frac{p_{3k+1}(x^{-1})}{e^{x^{-2}}}. \]

Hence, if we use L'Hôpital's rule \(3k + 1\) times, we get \(f^{(k+1)}(0) = 0\).

A similar computation shows that \(f^{(k)}(x)\) is continuous at \(x = 0\). \(\Box\)

Exercise 56 (2-26*). Let

\[f(x) = \begin{cases}
 e^{-(x-1)^{-2}} \cdot e^{-(x+1)^{-2}} & x \in (-1, 1), \\
 0 & x \notin (-1, 1).
\end{cases} \]
a. Show that \(f: \mathbb{R} \to \mathbb{R} \) is a \(C^\infty \) function which is positive on \((-1, 1)\) and 0 elsewhere.

b. Show that there is a \(C^\infty \) function \(g: \mathbb{R} \to [0, 1] \) such that \(g(x) = 0 \) for \(x \leq 0 \) and \(g(x) = 1 \) for \(x \geq \varepsilon \).

c. If \(a \in \mathbb{R}^n \), define \(g: \mathbb{R}^n \to \mathbb{R} \) by

\[
g(x) = f \left(\frac{x^1 - a^1}{\varepsilon} \right) \cdots f \left(\frac{x^n - a^n}{\varepsilon} \right).
\]

Show that \(g \) is a \(C^\infty \) function which is positive on

\[
(a^1 - \varepsilon, a^1 + \varepsilon) \times \cdots \times (a^n - \varepsilon, a^n + \varepsilon)
\]

and zero elsewhere.

d. If \(A \subseteq \mathbb{R}^n \) is open and \(C \subseteq A \) is compact, show that there is a non-negative \(C^\infty \) function \(f: A \to \mathbb{R} \) such that \(f(x) > 0 \) for \(x \in C \) and \(f = 0 \) outside of some closed set contained in \(A \).

e. Show that we can choose such an \(f \) so that \(f: A \to [0, 1] \) and \(f(x) = 1 \) for \(x \in C \).

Proof.

(a) If \(x \in (-1, 1) \), then \(x - 1 \neq 0 \) and \(x + 1 \neq 0 \). It follows from Exercise 55 that \(e^{-(x-1)^2} \in C^\infty \) and \(e^{-(x+1)^2} \in C^\infty \). Then it is straightforward to check that \(f \in C^\infty \). See Figure 2.3

![Figure 2.3](image)

(b) By letting \(z = x + 1 \), we derive a new function \(j: \mathbb{R} \to \mathbb{R} \) from \(f \) as follows:

\[
j(z) = \begin{cases} e^{-(z-2)^2} \cdot e^{-z^2} & z \in (0, 2), \\ 0 & z \notin (0, 2). \end{cases}
\]

By letting \(w = \varepsilon z / 2 \), we derive a function \(k: \mathbb{R} \to \mathbb{R} \) from \(j \) as follows:

\[
k(w) = \begin{cases} e^{-(2w/\varepsilon - 2)^2} \cdot e^{-(2w/\varepsilon)^2} & w \in (0, \varepsilon), \\ 0 & w \notin (0, \varepsilon). \end{cases}
\]
It is easy to see that $k \in C^\infty$, which is positive on $(0, \varepsilon)$ and 0 elsewhere. Now let
\[g(x) = \left(\int_0^x k(x) \right) / \left(\int_0^\varepsilon k(x) \right). \]
Then $g \in C^\infty$; it is 0 for $x \leq 0$, increasing on $(0, \varepsilon)$, and 1 for $x > \varepsilon$.

(c) It follows from (a) immediately.

(d) For every $x \in C$, let $R_x := ((-\varepsilon, \varepsilon))^n$ be a rectangle containing x, and $\overline{R_x}$ is contained in A (we can pick such a rectangle since A is open and $C \subset A$).
Then $\{R_x : x \in C\}$ is an open cover of C. Since C is compact, there exists $\{x_1, \ldots, x_m\} \subset C$ such that $\{R_{x_1}, \ldots, R_{x_m}\}$ covers C. For every $x_i, i = 1, \ldots, n$, we define a function $g_i : R_{x_i} \to \mathbb{R}$ as
\[g_i(x) = f \left(\frac{x_i^1 - a_i^1}{\varepsilon} \right) \cdots f \left(\frac{x_i^n - a_i^n}{\varepsilon} \right), \]
where $(a_1^1, \ldots, a_n^n) \in \mathbb{R}^n$ is the middle point of R_{x_i}.

Finally, we define $g : R_{x_1} \cup \cdots \cup R_{x_m} \to \mathbb{R}$ as follows:
\[g(x) = \sum_{i=1}^m g_i(x). \]
Then $g \in C^\infty$; it is positive on C, and 0 outside $\overline{R_{x_1}} \cup \cdots \cup \overline{R_{x_m}}$.

(e) Follows the hints. \qed

\textbf{Exercise 57 (2-27).} Define $g, h : \{x \in \mathbb{R}^2: \|x\| \leq 1\} \to \mathbb{R}^3$ by
\[g(x, y) = (x, y, \sqrt{1 - x^2 - y^2}), \quad h(x, y) = (x, y, -\sqrt{1 - x^2 - y^2}). \]
Show that the maximum of f on $\{x \in \mathbb{R}^3: \|x\| = 1\}$ is either the maximum of $f \circ g$ or the maximum of $f \circ h$ on $\{x \in \mathbb{R}^2: \|x\| \leq 1\}$.

\textbf{Proof.} Let $A := \{x \in \mathbb{R}^2: \|x\| \leq 1\}$ and $B := \{x \in \mathbb{R}^3: \|x\| = 1\}$. Then $B = g(A) \cup h(A)$. \qed
2.4 DERIVATIVES

- **Exercise 58 (2-28).** Find expressions for the partial derivatives of the following functions:

 a. \(F(x, y) = f \left(g(x)k(y), g(x) + h(y) \right) \).

 b. \(F(x, y, z) = f \left(g(x + y), h(y + z) \right) \).

 c. \(F(x, y, z) = f \left(x^y, y^z, z^x \right) \).

 d. \(F(x, y) = f \left(x, g(x), h(x, y) \right) \).

Proof.

(a) Letting \(a := g(x)k(y), g(x) + h(y) \), we have

\[
\begin{align*}
\mathbb{D}_1 F(x, y) &= \mathbb{D}_1 f(a) \cdot g'(x) \cdot k(y) + \mathbb{D}_2 f(a) \cdot g'(x), \\
\mathbb{D}_2 F(x, y) &= \mathbb{D}_1 f(a) \cdot g(x) \cdot k'(y) + \mathbb{D}_1 f(a) \cdot h'(y).
\end{align*}
\]

(b) Letting \(a := g(x + y), h(y + z) \), we have

\[
\begin{align*}
\mathbb{D}_1 F(x, y, z) &= \mathbb{D}_1 f(a) \cdot g'(x + y), \\
\mathbb{D}_2 F(x, y, z) &= \mathbb{D}_1 f(a) \cdot g'(x + y) + \mathbb{D}_2 f(a) \cdot h'(y + z), \\
\mathbb{D}_3 F(x, y, z) &= \mathbb{D}_2 f(a) \cdot h'(y + z).
\end{align*}
\]

(c) Letting \(a := x^y, y^z, z^x \), we have

\[
\begin{align*}
\mathbb{D}_1 F(x, y, z) &= \mathbb{D}_1 f(a) \cdot y x^{y-1} + \mathbb{D}_3 f(a) \cdot z^x \ln z, \\
\mathbb{D}_2 F(x, y, z) &= \mathbb{D}_1 f(a) \cdot x^y \ln x + \mathbb{D}_2 f(a) \cdot z^x y^{x-1}, \\
\mathbb{D}_3 F(x, y, z) &= \mathbb{D}_2 f(a) \cdot y^z \ln y + \mathbb{D}_3 f(a) \cdot x z^{x-1}.
\end{align*}
\]

(d) Letting \(a := x, g(x), h(x, y) \), we have

\[
\begin{align*}
\mathbb{D}_1 F(x, y) &= \mathbb{D}_1 f(a) + \mathbb{D}_2 f(a) \cdot g'(x) + \mathbb{D}_3 f(a) \cdot \mathbb{D}_1 h(x, y), \\
\mathbb{D}_2 F(x, y) &= \mathbb{D}_3 f(a) \cdot \mathbb{D}_2 h(x, y).
\end{align*}
\]

Exercise 59 (2-29). Let \(f : \mathbb{R}^n \to \mathbb{R} \). For \(x \in \mathbb{R}^n \), the limit

\[
\lim_{t \to 0} \frac{f(a + tx) - f(a)}{t},
\]

if it exists, is denoted \(\mathbb{D}_x f(a) \), and called the directional derivative of \(f \) at \(a \), in the direction \(x \).

a. Show that \(\mathbb{D}_{e_i} f(a) = \mathbb{D}_i f(a) \).

b. Show that \(\mathbb{D}_{tx} f(a) = t \mathbb{D}_x f(a) \).
c. If f is differentiable at a, show that $D_x f(a) = \mathbb{D} f(a)(x)$ and therefore $D_{x+y} f(a) = D_x f(a) + D_y f(a)$.

Proof.

(a) For $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$, we have

$$
D_{e_i} f(a) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t} = \lim_{t \to 0} \frac{f(a_1, \ldots, a_{i-1}, a_i + t, a_{i+1}, \ldots, a_n) - f(a)}{t} = D_i f(a)
$$

by definition.

(b) We have

$$
D_{tx} f(a) = \lim_{s \to 0} \frac{f(a + stx) - f(a)}{s} = \lim_{st \to 0} \frac{f(a + stx) - f(a)}{st} = t D_x f(a).
$$

(c) If f is differentiable at a, then for any $x \neq 0$ we have

$$
0 = \lim_{t \to 0} \frac{f(a + tx) - f(a) - D f(a)(t x)}{\|t x\|} = \lim_{t \to 0} \frac{|f(a + tx) - f(a) - t \cdot D f(a)(x)|}{|t|} \cdot \frac{1}{\|x\|}
$$

and so

$$
D_x f(a) = \lim_{t \to 0} \frac{f(a + tx) - f(a)}{t} = D f(a)(x).
$$

The case of $x = 0$ is trivial. Therefore,

$$
D_{x+y} f(a) = D f(a)(x + y) = D f(a)(x) + D f(a)(y) = D_x f(a) + D_y f(a).
$$

Exercise 60 (2-30). Let f be defined as in Exercise 34. Show that $D_x f(0,0)$ exists for all x, but if $g \neq 0$, then $D_{x+y} f(0,0) \neq D_x f(0,0) + D_y f(0,0)$ for all x, y.

Proof. Take any $x \in \mathbb{R}^2$.

$$
\lim_{t \to 0} \frac{f(tx) - f(0,0)}{t} = \lim_{t \to 0} \frac{|t| \cdot \|x\| \cdot g \left(t x / \|t \cdot \|x\| \right)}{t}.
$$

Therefore, $D_x f(0,0)$ exists for any x.

Now let $g \neq 0$; then, $D_{(0,1)} f(0,0) = D_{(1,0)} f(0,0) = 0$, but $D_{(1,0) + (0,1)} f(0,0) = D_{(1,1)} f(0,0) \neq 0$.

Exercise 61 (2-31). Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined as in Exercise 26. Show that \(\nabla_x f(0,0) \) exists for all \(x \), although \(f \) is not even continuous at \((0,0)\).

Proof. For any \(x \in \mathbb{R}^2 \), we have

\[
\lim_{t \to 0} \frac{f(tx) - f(0)}{t} = \lim_{t \to 0} \frac{f(tx)}{t} = 0
\]

by Exercise 26 (a).

Exercise 62 (2-32).

(a) Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by

\[
f(x) = \begin{cases}
x^2 \sin \frac{1}{x} & x \neq 0 \\
0 & x = 0.
\end{cases}
\]

Show that \(f \) is differentiable at 0 but \(f' \) is not continuous at 0.

(b) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by

\[
f(x, y) = \begin{cases}
(x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & (x, y) \neq 0 \\
0 & (x, y) = 0.
\end{cases}
\]

Show that \(f \) is differentiable at \((0,0)\) but \(\mathbb{D}_i f \) is not continuous at \((0,0)\).

Proof.

(a) We have

\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0.
\]

Hence, \(f'(0) = 0 \). Further, for any \(x \neq 0 \), we have

\[
f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}.
\]

It is clear that \(\lim_{x \to 0} f'(x) \) does not exist. Therefore, \(f' \) is not continuous at 0.

(b) Since

\[
\lim_{(x,y) \to (0,0)} \frac{(x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} = \lim_{(x,y) \to (0,0)} \sqrt{x^2 + y^2} \sin \frac{1}{\sqrt{x^2 + y^2}} = 0,
\]

we know that \(f'(0,0) = (0,0) \). Now take any \((x, y) \neq (0,0)\). Then

\[
\mathbb{D}_1 f(x, y) = 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - 2x \cos \frac{1}{\sqrt{x^2 + y^2}}.
\]
As in (a), \(\lim_{x \to 0} D_1 f(x, 0) \) does not exist. Similarly for \(D_2 f \).

\[\square \]

Exercise 63 (2-33). Show that the continuity of \(D_1 f \) at \(a \) may be eliminated from the hypothesis of Theorem 2-8.

Proof. It suffices to see that for the first term in the sum, we have, by letting \((a^2, \ldots, a^n) =: a_{-1}, \)

\[\lim_{h \to 0} \frac{|f(a^1 + h^1, a_{-1}) - f(a) - D_1 f(a) \cdot h^1|}{\|h\|} \]

\[\leq \lim_{h^1 \to 0} \frac{|f(a^1 + h^1, a_{-1}) - f(a) - D_1 f(a) \cdot h^1|}{|h^1|} = 0. \]

See also Apostol (1974, Theorem 12.11).

Exercise 64 (2-34). A function \(f : \mathbb{R}^n \to \mathbb{R} \) is homogeneous of degree \(m \) if \(f(tx) = t^m f(x) \) for all \(x \). If \(f \) is also differentiable, show that

\[\sum_{i=1}^{n} x^i D_i f(x) = m f(x). \]

Proof. Let \(g(t) = f(tx) \). Then, by Theorem 2-9,

\[g'(t) = \sum_{i=1}^{n} D_i f(tx) \cdot x^i. \] \hspace{1cm} (2.4)

On the other hand, \(g(t) = f(tx) = t^m f(x) \); then

\[g'(t) = m t^{m-1} f(x). \] \hspace{1cm} (2.5)

Combining (2.4) and (2.5), and letting \(t = 1 \), we then get the result.

Exercise 65 (2-35). If \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable and \(f(0) = 0 \), prove that there exist \(g_i : \mathbb{R}^n \to \mathbb{R} \) such that
\[f(x) = \sum_{i=1}^{n} x^i g_i(x). \]

Proof. Let \(h_x(t) = f(tx) \). Then

\[
\int_0^1 h'_x(t) \, dt = h_x(1) - h_x(0) = f(x) - f(0) = f(x).
\]

Hence,

\[
f(x) = \int_0^1 h'_x(t) \, dt = \int_0^1 f'(tx) \, dt = \int_0^1 \left[\sum_{i=1}^{n} x^i \partial_i f(tx) \right] \, dt
\]

\[
= \sum_{i=1}^{n} x^i \int_0^1 \partial_i f(tx) \, dt
\]

\[
= \sum_{i=1}^{n} x^i g_i(x).
\]

where \(g_i(x) = \int_0^1 \partial_i f(tx) \, dt \). \(\square \)

2.5 Inverse Functions

For this section, Rudin (1976, Section 9.3 and 9.4) is a good reference.

Exercise 66 (2-36). Let \(A \subset \mathbb{R}^n \) be an open set and \(f : A \to \mathbb{R}^n \) a continuously differentiable 1-1 function such that \(\det (f'(x)) \neq 0 \) for all \(x \). Show that \(f(A) \) is an open set and \(f^{-1} : f(A) \to A \) is differentiable. Show also that \(f(B) \) is open for any open set \(B \subset A \).

Proof. For every \(y \in f(A) \), there exists \(x \in A \) such that \(f(x) = y \). Since \(f \in \mathcal{C}'(A) \) and \(\det (f'(x)) \neq 0 \), it follows from the Inverse Function Theorem that there is an open set \(V \subset A \) containing \(x \) and an open set \(W \subset \mathbb{R}^n \) containing \(y \) such that \(W = f(V) \). This proves that \(f(A) \) is open.

Since \(f : V \to W \) has a continuous inverse \(f^{-1} : W \to V \) which is differentiable, it follows that \(f^{-1} \) is differentiable at \(y \); since \(y \) is chosen arbitrary, it follows that \(f^{-1} : f(A) \to A \) is differentiable.

Take any open set \(B \subset A \). Since \(f \upharpoonright B \in \mathcal{C}'(B) \) and \(\det \left((f \upharpoonright B)'(x) \right) \neq 0 \) for all \(x \in B \subset A \), it follows that \(f(B) \) is open. \(\square \)

Exercise 67 (2-37).

a. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be a continuously differentiable function. Show that \(f \) is not 1-1.
b. Generalize this result to the case of a continuously differentiable function

\[f : \mathbb{R}^n \to \mathbb{R}^m \text{ with } m < n. \]

PROOF.

(a) Let \(f \in C' \). Then both \(D_1 f \) and \(D_2 f \) are continuous. Assume that \(f \) is 1-1; then both \(D_1 f \) and \(D_2 f \) cannot not be constant and equal to 0. So suppose that there is \((x_0, y_0) \in \mathbb{R}^2\) such that \(D_1 f (x_0, y_0) \neq 0 \). The continuity of \(D_1 f \) implies that there is an open set \(A \subset \mathbb{R}^2 \) containing \((x_0, y_0)\) such that \(D_1 f(x) \neq 0 \) for all \(x \in A \).

Define a function \(g : A \to \mathbb{R}^2 \) with

\[g(x, y) = (f(x, y), y). \]

Then for all \((x, y) \in A\),

\[g'(x, y) = \begin{pmatrix} D_1 f(x, y) & D_2 f(x, y) \\ 0 & 1 \end{pmatrix}, \]

and so \(\det(g'(x, y)) = D_1 f(x, y) \neq 0 \); furthermore, \(g \in C'(A) \) and \(g \) is 1-1. Then by Exercise 66, we know that \(g(A) \) is open. We now show that \(g(A) \) cannot be open actually.

Take a point \((f(x_0, y_0), \tilde{y}) \in g(A) \) with \(y \neq y_0 \). Then for any \((x, y) \in A\), we must have

\[g(x, y) = (f(x, y), y) = (f(x_0, y_0), \tilde{y}) \implies (x, y) = (x_0, y_0); \]

that is, there is no \((x, y) \in A\) such that \(g(x, y) = (f(x_0, y_0), \tilde{y}) \). This proves that \(f \) cannot be 1-1.

(b) We can write \(f : \mathbb{R}^n \to \mathbb{R}^m \) as \(f = (f^1, \ldots, f^m) \), where \(f^i : \mathbb{R}^n \to \mathbb{R} \) for every \(i = 1, \ldots, m \). As in (a), there is a mapping, say, \(f^1 \), a point \(a \in \mathbb{R}^n \), and an open set \(A \) containing \(a \) such that \(D_1 f^1(x) \neq 0 \) for all \(x \in A \). Define \(g : A \to \mathbb{R}^m \) as

\[g \left(x^1, x^{-1} \right) = (f(x), x^{-1}), \]

where \(x^{-1} := (x^2, \ldots, x^n) \). Then as in (a), it follows that \(f \) cannot be 1-1. \(\square \)

EXERCISE 68 (2-38).

a. If \(f : \mathbb{R} \to \mathbb{R} \) satisfies \(f'(a) \neq 0 \) for all \(a \in \mathbb{R} \), show that \(f \) is 1-1 (on all of \(\mathbb{R} \)).

b. Define \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) by \(f(x, y) = (e^x \cos y, e^x \sin y) \). Show that \(\det(f'(x, y)) \neq 0 \) for all \((x, y) \) but \(f \) is not 1-1.

PROOF.
(a) Suppose that \(f \) is not 1-1. Then there exist \(a, b \in \mathbb{R} \) with \(a < b \) such that \(f(a) = f(b) \). It follows from the mean-value theorem that there exists \(c \in (a, b) \) such that
\[
0 = f(b) - f(a) = f'(c) (b - a),
\]
which implies that \(f'(c) = 0 \). A contradiction.

(b) We have
\[
f'(x, y) = \begin{pmatrix}
\mathbb{D}_x e^x \cos y & \mathbb{D}_y e^x \cos y \\
\mathbb{D}_x e^x \sin y & \mathbb{D}_y e^x \sin y
\end{pmatrix} = \begin{pmatrix}
e^x \cos y & -e^x \sin y \\
e^x \sin y & e^x \cos y
\end{pmatrix}.
\]
Then
\[
\det (f'(x, y)) = e^{2x} \left(\cos^2 y + \sin^2 y \right) = e^{2x} \neq 0.
\]
However, \(f(x, y) \) is not 1-1 since \(f(x, y) = f(x, y + 2k\pi) \) for all \((x, y) \in \mathbb{R}^2 \) and \(k \in \mathbb{N} \).

This exercise shows that the non-singularity of \(\mathcal{D} f \) on \(A \) implies that \(f \) is locally 1-1 at each point of \(A \), but it does not imply that \(f \) is 1-1 on all of \(A \). See Munkres (1991, p. 69).

\[\Box\]

- Exercise 69 (2-39). Use the function \(f : \mathbb{R} \to \mathbb{R} \) defined by
\[
f(x) = \begin{cases}
\frac{\pi}{2} + x^2 \sin \frac{1}{x} & x \neq 0 \\
0 & x = 0
\end{cases}
\]
to show that continuity of the derivative cannot be eliminated from the hypothesis of Theorem 2-11.

Proof. If \(x \neq 0 \), then
\[
f'(x) = \frac{1}{2} + 2x \sin \frac{1}{x} - \cos \frac{1}{x}.
\]
If \(x = 0 \), then
\[
f'(0) = \lim_{h \to 0} \frac{h/2 + h^2 \sin (1/h)}{h} = \frac{1}{2}.
\]
Hence, \(f'(x) \) is not continuous at 0. It is easy to see that \(f \) is not injective for any neighborhood of 0 (see Figure 2.6).

2.6 Implicit Functions

- Exercise 70 (2-40). Use the implicit function theorem to re-do Exercise 45 (c).

Proof. Define \(f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \) by
SECTION 2.6 IMPLICIT FUNCTIONS

Figure 2.6.

\[f^i(t, s) = \sum_{j=1}^{n} a_{ji}(t)s^j - b_i(t), \]

for \(i = 1, \ldots, n \). Then

\[M := \begin{pmatrix}
\mathbb{D}_2 f^1(t, s) & \cdots & \mathbb{D}_{1+n} f^1(t, s) \\
\vdots & \ddots & \vdots \\
\mathbb{D}_2 f^n(t, s) & \cdots & \mathbb{D}_{1+n} f^n(t, s)
\end{pmatrix} \begin{pmatrix}
a_{11}(t) & \cdots & a_{n1}(t) \\
\vdots & \ddots & \vdots \\
a_{1n}(t) & \cdots & a_{nn}(t)
\end{pmatrix}, \]

and so \(\det(M) \neq 0 \).

It follows from the Implicit Function Theorem that for each \(t \in \mathbb{R} \), there is a unique \(s(t) \in \mathbb{R}^n \) such that \(f(t, s(t)) = 0 \), and \(s \) is differentiable.

\[\square \]

\[\text{Exercise 71 (2-41).} \ Let f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \ be differentiable. For each x \in \mathbb{R} define g_x: \mathbb{R} \to \mathbb{R} by g_x(y) = f(x, y). Suppose that for each x there is a unique y with g'_x(y) = 0; let c(x) be this y. \]

a. If \(\mathbb{D}_{2,2} f(x, y) \neq 0 \) for all \(x, y \), show that \(c \) is differentiable and

\[c'(x) = -\frac{\mathbb{D}_{2,1} f(x, c(x))}{\mathbb{D}_{2,2} f(x, c(x))}. \]

b. Show that if \(c'(x) = 0 \), then for some \(y \) we have

\[\mathbb{D}_{2,1} f(x, y) = 0, \quad \mathbb{D}_{2} f(x, y) = 0. \]

c. Let \(f(x, y) = x (y \log y - y) - y \log x. \) Find
\[
\max_{1/2 \leq x \leq 2} \left[\min_{1/3 \leq y \leq 1} f(x, y) \right].
\]

Proof.

(a) For every \(x \), we have \(g'_x (y) = D_2 f(x, y) \). Since for every \(x \) there is a unique \(y = c(x) \) such that \(D_2 f(x, c(x)) = 0 \), the solution \(c(x) \) is the same as obtained from the Implicit Function Theorem; hence, \(c(x) \) is differentiable, and by differentiating \(D_2 f(x, c(x)) = 0 \) with respect to \(x \), we have

\[
D_{2,1} f(x, c(x)) + D_{2,2} f(x, c(x)) \cdot c'(x) = 0;
\]

that is,

\[
c'(x) = -\frac{D_{2,1} f(x, c(x))}{D_{2,2} f(x, c(x))}.
\]

(b) It follows from (a) that if \(c'(x) = 0 \), then \(D_{2,1} f(x, c(x)) = 0 \). Hence, there exists some \(y = c(x) \) such that \(D_{2,1} f(x, y) = 0 \). Furthermore, by definition, \(D_2 (x, c(x)) = D_2 f(x, y) = 0 \).

(c) We have

\[
D_2 f(x, y) = x \ln y - \ln x.
\]

Let \(D_2 f(x, y) = 0 \) we have \(y = c(x) = x^{1/x} \). Also, \(D_{2,2} f(x, y) = x/y > 0 \) since \(x, y > 0 \). Hence, for every fixed \(x \in [1/2, 2] \),

\[
\min_y f(x, y) = f(x, c(x)).
\]

![Figure 2.7](image_url)

Figure 2.7.

It is easy to see that \(c'(x) > 0 \) on \([1/2, 2]\), \(c(1) = 1 \), and \(c(a) = 1/3 \) for some \(a > 1/2 \) (see Figure 2.7). Therefore,

\[
\min_{1/3 \leq y \leq 1} f(x, y) = f(x, y^*(x)),
\]

where (see Figure 2.8)
\[y^* (x) = \begin{cases}
1/3 & \text{if } 1/2 \leq x \leq a \\
c(x) = x^{1/x} & \text{if } a < x \leq 1 \\
1 & \text{if } 1 < x \leq 2.
\end{cases} \]

Figure 2.8.

\[\frac{1}{2} \leq x \leq a \quad \text{In this case, our problem is} \]
\[
\max_{1/2 \leq x \leq a} f(x, 1/3) = -\left(\frac{1 + \ln 3}{3}\right)x - \frac{1}{3}\ln x.
\]

It is easy to see that \(x^* = 1/2 \), and so \(f(x^*, 1/3) = \ln (4/3e) /6 \).

\[a < x \leq 1 \quad \text{In this case, our problem is} \]
\[
\max_{a < x \leq 1} f(x, x^{1/x}) = -x^{1+1/x}.
\]

It is easy to see that the maximum of \(f \) occurs at \(x^* = a \) and \(y^*(x^*) = 1/3 \).

\[1 < x \leq 2 \quad \text{In this case, our problem is} \]
\[
\max_{1 < x \leq 2} f(x, 1) = -x - \ln x.
\]

The maximum of \(f \) occurs at \(x^* = 1 \).

Now, as depicted in Figure 2.9, we have \(x^* = 1/2 \), \(y^* = 1/3 \), and \(f(x^*, y^*) = \ln (4/3e) /6 \).

\(\Box \)
\[f(x, y^*(x)) \]
3

INTEGRATION

3.1 Basic Definitions

- **Exercise 72 (3-1).** Let \(f : [0, 1] \times [0, 1] \rightarrow \mathbb{R} \) be defined by
 \[
 f(x, y) = \begin{cases}
 0 & \text{if } 0 \leq x < 1/2 \\
 1 & \text{if } 1/2 \leq x \leq 1.
 \end{cases}
 \]

 Show that \(f \) is integrable and \(\int_{[0,1] \times [0,1]} f = 1/2 \).

Proof. Consider a partition \(P = (P_1, P_2) \) with \(P_1 = P_2 = (0, 1/2, 1) \). Then \(L(f, P) = U(f, P) = 1/2 \). It follows from Theorem 3-3 (the Riemann condition) that \(f \) is integrable and \(\int_{[0,1] \times [0,1]} f = 1/2 \).

- **Exercise 73 (3-2).** Let \(f : A \rightarrow \mathbb{R} \) be integrable and let \(g = f \) except at finitely many points. Show that \(g \) is integrable and \(\int_A f = \int_A g \).

Proof. Fix an \(\varepsilon > 0 \). It follows from the Riemann condition that there is a partition \(P \) of \(A \) such that
 \[
 U(f, P) - L(f, P) < \frac{\varepsilon}{2}.
 \]

Let \(P' \) be a refinement of \(P \) such that:

- for every \(x \in A \) with \(g(x) \neq f(x) \), it belongs to \(2^n \) subrectangles of \(P' \), i.e., \(x \) is a corner of each subrectangle.
- for every subrectangle \(S \) of \(P' \),
 \[
 v(S) < \frac{\varepsilon}{2^n d(u-\ell)},
 \]

where
\[d = \left| \{ x : f (x) \neq g (x) \} \right|. \]

\[u = \sup_{x \in A} \{ g (x) \} - \inf_{x \in A} \{ f (x) \}. \]

\[\ell = \inf_{x \in A} \{ g (x) \} - \sup_{x \in A} \{ f (x) \}. \]

\[\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{figure3.1.png}
\caption{Figure 3.1.}
\end{figure} \]

With such a choice of partition of \(A \), we have

\[
U (g, P') - U (f, P') = \sum_{i=1}^{d} \left[\sum_{j=1}^{2^n} \left[M_{S_{ij}} (g) - M_{S_{ij}} (f) \right] v (S_{ij}) \right]
\]

\[
\leq d 2^n u v. \]

where \(v := \sup_{S \in P} \{ v (S) \} \) is the least upper bound of the volumes of the subrectangles of \(P' \). Similarly,

\[
L (g, P') - L (f, P') = \sum_{i=1}^{d} \left[\sum_{j=1}^{2^n} \left[m_{S_{ij}} (g) - m_{S_{ij}} (f) \right] v (S_{ij}) \right]
\]

\[
\geq d 2^n \ell v. \]

Therefore,

\[
U (g, P') - L (g, P') \leq \left[U (f, P') + d 2^n u v \right] - \left[L (f, P') + d 2^n \ell v \right]
\]

\[
\leq \frac{\varepsilon}{2} + d 2^n (u - \ell) v
\]

\[
= \frac{\varepsilon}{2} + d 2^n (u - \ell) \frac{\varepsilon}{2^{n+1} d (u - \ell)}
\]

\[= \varepsilon; \]

that is, \(g \) is integrable. It is easy to see now that \(\int_A g = \int_A f. \)

\[\square \]

Exercise 74 (3-3). Let \(f, g : A \to \mathbb{R} \) be integrable.

a. For any partition \(P \) of \(A \) and subrectangle \(S \), show that \(m_S (f) + m_S (g) \leq m_S (f + g) \) and \(M_S (f + g) \leq M_S (f) + M_S (g) \) and therefore \(L (f, P) + L (g, P) \leq L (f + g, P) \) and \(U (f + g, P) \leq U (f, P) + U (g, P). \)
b. Show that \(f + g \) is integrable and \(\int_A (f + g) = \int_A f + \int_A g \).

c. For any constant \(c \), show that \(\int_A cf = c \int_A f \).

Proof.

(a) We show that \(m_S (f) + m_S (g) \) is a lower bound of \(\{ (f + g) (x) : x \in S \} \). It is clear that \(m_S (f) \leq f (x) \) and \(m_S (g) \leq g (x) \) for any \(x \in S \). Then for every \(x \in S \) we have

\[
m_S (f) + m_S (g) \leq f (x) + g (x) = (f + g) (x).
\]

Hence, \(m_S (f) + m_S (g) \leq m_S (f + g) \).

Similarly, for every \(x \in S \) we have \(M_S (f) \geq f (x) \) and \(M_S (g) \geq g (x) \); hence, \((f + g) (x) = f (x) + g (x) \leq M_S (f) + M_S (g) \) and so \(M_S (f + g) \leq M_S (f) + M_S (g) \).

Now for any partition \(P \) of \(A \) we have

\[
L (f, P) + L (g, P) = \sum_{S \in P} m_S (f) v (S) + \sum_{S \in P} m_S (g)
= \sum_{S \in P} [m_S (f) + m_S (g)] v (S) \tag{3.1}
\leq \sum_{S \in P} m_S (f + g) v (S)
= L (f + g, P).
\]

and

\[
U (f, P) + U (g, P) = \sum_{S \in P} M_S (f) v (S) + \sum_{S \in P} M_S (g) v (S)
= \sum_{S \in P} [M_S (f) + M_S (g)] v (S) \tag{3.2}
\geq \sum_{S \in P} M_S (f + g) v (S)
= U (f + g, P).
\]

(b) It follows from (3.1) and (3.2) that for any partition \(P \),

\[
U (f + g, P) - L (f + g, P) \leq \left[U (f, P) + U (g, P) \right] - \left[L (f, P) + L (g, P) \right] \]
\[
= \left[U (f, P) - L (f, P) \right] + \left[U (g, P) - L (g, P) \right].
\]

Since \(f \) and \(g \) are integrable, there exist \(P' \) and \(P'' \) such that for any \(\varepsilon > 0 \), we have \(U (f, P') - L (f, P') < \varepsilon /2 \) and \(U (g, P'') - L (g, P'') < \varepsilon /2 \). Let \(\bar{P} \) refine both \(P' \) and \(P'' \). Then

\[
U \left(f, \bar{P} \right) - L \left(f, \bar{P} \right) < \frac{\varepsilon}{2} \quad \text{and} \quad U \left(g, \bar{P} \right) - L \left(g, \bar{P} \right) < \frac{\varepsilon}{2}.
\]

Hence,
U \left(f + g, \bar{P} \right) - L \left(f + g, \bar{P} \right) < \varepsilon,

and so \(f + g \) is integrable.

Now, by definition, for any \(\varepsilon > 0 \), there exists a partition \(P \) (by using a common refinement partition if necessary) such that \(\int_A f < L \left(f, P \right) + \varepsilon/2 \), \(\int_A g < L \left(g, P \right) + \varepsilon/2 \), \(U \left(f, P \right) < \int_A f + \varepsilon/2 \), and \(U \left(g, P \right) < \int_A g + \varepsilon/2 \). Therefore,

\[
\int_A f + \int_A g - \varepsilon < L \left(f, P \right) + L \left(g, P \right) \leq \int_A \left(f + g \right) \\
\leq U \left(f + g, P \right) \\
\leq U \left(f, P \right) + U \left(g, P \right) \\
< \int_A f + \int_A g + \varepsilon.
\]

Hence, \(\int_A (f + g) = \int_A f + \int_A g \).

(c) First, suppose that \(c > 0 \). Then for any partition \(P \) and any subrectangle \(S \), we have \(m_S (cf) = cm_S (f) \) and \(M_S (cf) = cM_S (f) \). But then \(L \left(cf, P \right) = cl \left(f, P \right) \) and \(U \left(cf, P \right) = cU \left(f, P \right) \). Since \(f \) is integrable, for any \(\varepsilon > 0 \) there exists a partition \(P \) such that \(U \left(f, P \right) - L \left(f, P \right) < \varepsilon/c \). Therefore,

\[
U \left(cf, P \right) - L \left(cf, P \right) = c \left[U \left(f, P \right) - L \left(f, P \right) \right] < \varepsilon;
\]

that is, \(cf \) is integrable. Further,\n
\[
c \int_A f - \frac{\varepsilon}{c} < cL \left(f, P \right) = L \left(cf, P \right) \leq \int_A cf \leq U \left(cf, P \right) = cU \left(f, P \right) \\
< c \int_A f + \frac{\varepsilon}{c};
\]

i.e., \(\int_A cf = c \int_A f \).

Now let \(c < 0 \). Then for any partition \(P \) of \(A \), we have \(m_S (cf) = cM_S (f) \) and \(M_S (cf) = cm_S (f) \). Hence \(L \left(cf, P \right) = cU \left(f, P \right) \) and \(U \left(cf, P \right) = cL \left(f, P \right) \). Since \(f \) is integrable, for every \(\varepsilon > 0 \), choose \(P \) such that \(U \left(f, P \right) - L \left(f, P \right) < -\varepsilon/c \). Then

\[
U \left(cf, P \right) - L \left(cf, P \right) = -c \left[U \left(f, P \right) - L \left(f, P \right) \right] < \varepsilon;
\]

that is, \(cf \) is integrable. Furthermore,\n
\[
-c \int_A f + \frac{\varepsilon}{c} < -cL \left(f, P \right) = -U \left(cf, P \right) \leq -\int_A cf \leq -L \left(cf, P \right) = -cL \left(f, P \right) \\
< -c \int_A f - \frac{\varepsilon}{c};
\]

i.e., \(\int_A cf = c \int_A f \). \(\square \)
Exercise 75 (3-4). Let \(f : A \rightarrow \mathbb{R} \) and let \(P \) be a partition of \(A \). Show that \(f \) is integrable if and only if for each subrectangle \(S \) the function \(f \upharpoonright S \) is integrable, and that in this case \(\int_A f = \sum_S \int_S f \upharpoonright S \).

Proof. Let \(P \) be a partition of \(A \), and \(S \) be a subrectangle with respect to \(P \).

Only if: Suppose that \(f \) is integrable. Then there exists a partition \(P_1 \) of \(A \) such that \(U(f, P_1) - L(f, P_1) < \varepsilon \) for any given \(\varepsilon > 0 \). Let \(P_2 \) be a common refinement of \(P \) and \(P_1 \). Then
\[
U(f, P_2) - L(f, P_2) \leq U(f, P_1) - L(f, P_1) < \varepsilon,
\]
and there are rectangles \(\{S_2^1, \ldots, S_2^n\} = S_2(S) \) with respect to \(P_2 \), such that \(S = \bigcup_{i=1}^n S_2^i \). Therefore,
\[
U(f, P_2) - L(f, P_2) = \sum_{S_2^i} \left[M_{S_2^i}(f) - m_{S_2^i}(f) \right] v(S_2^i) \\
\geq \sum_{S_2 \in S_2(S)} \left[M_{S_2}(f) - m_{S_2}(f) \right] v(S_2) \\
= U(f \upharpoonright S, P_2) - L(f \upharpoonright S, P_2);
\]
that is, \(f \upharpoonright S \) is integrable.

If: Now suppose that \(f \upharpoonright S \) is integrable for each \(S \). For each partition \(P' \), let \(|P'| \) be the number of subrectangles induced by \(P' \). Let \(P_S \) be a partition such that
\[
U(f \upharpoonright S, P_S) - L(f \upharpoonright S, P_S) < \frac{\varepsilon}{2|P'|}.
\]
Let \(P' \) be the partition of \(A \) obtained by taking the union of all the sub-sequences defining the partitions of the \(P_S \); see Figure 3.2. Then there are

![Figure 3.2](image-url)
refinements P'_S of P_S whose rectangles are the set of all subrectangles of P' which are contained in S. Hence,

$$\sum_S \int_S f \upharpoonright S - \varepsilon < \sum_S L(f \upharpoonright S, P_S) \leq \sum_S L(f \upharpoonright S, P'_S) = L(f, P') \leq U(f, P') = \sum_S U(f \upharpoonright S, P'_S) \leq \sum_S U(f \upharpoonright S, P_S) < \sum_S \int_S f \upharpoonright S + \varepsilon.$$

Therefore, f is integrable, and $\int_A f = \sum_S \int_S f \upharpoonright S$. □

Exercise 76 (3-5). Let $f, g: A \to \mathbb{R}$ be integrable and suppose $f \leq g$. Show that $\int_A f \leq \int_A g$.

Proof. Since f is integrable, the function $-f$ is integrable by Exercise 74 (c); then $g - f$ is integrable by Exercise 74 (b). It is easy to see $\int_A (g - f) \geq 0$ since $g \geq f$. It follows from Exercise 74 that $\int_A (g - f) = \int_A (g + (-f)) = \int_A g + \int_A (-f) = \int_A g - \int_A f$; hence, $\int_A f \leq \int_A g$. □

Exercise 77 (3-6). If $f: A \to \mathbb{R}$ is integrable, show that $|f|$ is integrable and $|\int_A f| \leq \int_A |f|$.

Proof. Let $f^+ = \max\{f, 0\}$ and $f^- = \max\{-f, 0\}$. Then

$$f = f^+ - f^- \quad \text{and} \quad |f| = f^+ + f^-.$$

It is evident that for any partition P of A, both $U(f^+, P) - L(f^+, P) \leq U(f, P) - L(f, P)$ and $U(f^-, P) - L(f^-, P) \leq U(f, P) - L(f, P)$; hence, both f^+ and f^- are integrable if f is. Further,

$$|\int_A f| = |\int_A (f^+ - f^-)| = |\int_A f^+ - \int_A f^-| \leq \int_A f^+ + \int_A f^- = \int_A (f^+ + f^-) = \int_A |f|.$$

Exercise 78 (3-7). Let $f: [0, 1] \times [0, 1] \to \mathbb{R}$ be defined by
SECTION 3.3 FUBINI'S THEOREM

51

\[f(x, y) = \begin{cases}
0 & \text{if } x \text{ irrational} \\
0 & \text{if } x \text{ rational, } y \text{ irrational} \\
1/q & \text{if } x \text{ rational, } y = p/q \text{ is lowest terms.}
\end{cases} \]

Show that \(f \) is integrable and \(\int_{[0,1] \times [0,1]} f = 0. \)

PROOF. \(\square \)

3.2 Measure Zero and Content Zero

Exercise 79 (3-8). Prove that \([a_1, b_1] \times \cdots \times [a_n, b_n]\) does not have content 0 if \(a_i < b_i\) for each \(i\).

PROOF. Similar to the \([a, b]\) case. \(\square \)

Exercise 80 (3-9).

a. Show that an unbounded set cannot have content 0.

b. Give an example of a closed set of measure 0 which does not have content 0.

PROOF.

(a) Finite union of bounded sets is bounded.

(b) \(\mathbb{Z}\) or \(\mathbb{N}\). \(\square \)

Exercise 81 (3-10).

a. If \(C\) is a set of content 0, show that the boundary of \(C\) has content 0.

b. Give an example of a bounded set \(C\) of measure 0 such that the boundary of \(C\) does not have measure 0.

PROOF. \(\square \)

3.3 Fubini's Theorem

Exercise 82 (3-27). If \(f : [a, b] \times [a, b] \to \mathbb{R} \) is continuous, show that

\[\int_a^b \int_a^y f(x, y) \, dx \, dy = \int_a^b \int_x^b f(x, y) \, dy \, dx. \]

PROOF. As illustrated in Figure 3.3,
CHAPTER 3 INTEGRATION

$$C = \{(x,y) \in [a,b]^2 : a \leq x \leq y \text{ and } a \leq y \leq b\}$$
$$= \{(x,y) \in [a,b]^2 : a \leq x \leq b \text{ and } x \leq y \leq b\}.$$

Figure 3.3. Fubini’s Theorem

Exercise 83 (3-30). Let C be the set in Exercise 17. Show that

$$\int_{[0,1]} \left(\int_{[0,1]} 1_C(x,y) \, dx \right) \, dy = \int_{[0,1]} \left(\int_{[0,1]} 1_C(x,y) \, dy \right) \, dx = 0.$$

Proof. There must be typos. □

Exercise 84 (3-31). If $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ and $f : A \to \mathbb{R}$ is continuous, define $F : A \to \mathbb{R}$ by

$$F(x) = \int_{[a_1,x_1] \times \cdots \times [a_n,x_n]} f.$$

What is $\partial_i F(x)$, for $x \in \text{int}(A)$?

Solution. Let $c \in \text{int}(A)$. Then
\[\mathbb{D}_1 f (c) = \lim_{h \to 0} \frac{F (c^i, c^i + h) - F (c)}{h} \]

\[= \lim_{h \to 0} \frac{\int_{a_1 c^i}^{c^i + h} \left(f \left(\left[a_1 c^i \right] \times \left[a_i, c^i + h \right] \times \cdots \times [a_n, c^n] \right) \right) \, dx_i - F (c)}{h} \]

\[= \lim_{h \to 0} \frac{\int_{a_1 c^i}^{c^i + h} \left(f \left(\left[a_1 c^i \right] \times \cdots \times [a_i, c^i + h] \times \cdots \times [a_n, c^n] \right) \right) \, dx_i}{h} \]

\[= \int_{a_1 c^i}^{c^i + h} \left(f \left(\left[a_1 c^i \right] \times \cdots \times [a_i, c^i + h] \times \cdots \times [a_n, c^n] \right) \right) \, dx_i. \]

\[\therefore \]

Exercise 85 (3-32). Let \(f : [a, b] \times [c, d] \to \mathbb{R} \) be continuous and suppose \(\mathbb{D}_2 f \) is continuous. Define \(F (y) = \int_a^b f (x, y) \, dx \). Prove Leibnitz’s rule: \(F' (y) = \int_a^b \mathbb{D}_2 f (x, y) \, dx \).

Proof. We have

\[F' (y) = \lim_{h \to 0} \frac{F (y + h) - F (y)}{h} \]

\[= \lim_{h \to 0} \frac{\int_a^b f (x, y + h) \, dx - \int_a^b f (x, y) \, dx}{h} \]

\[= \lim_{h \to 0} \frac{\int_a^b f (x, y + h) - f (x, y) \, dx}{h} \]

By DCT, we have

\[F' (y) = \int_a^b \left[\lim_{h \to 0} \frac{f (x, y + h) - f (x, y)}{h} \right] \, dx \]

\[= \int_a^b \mathbb{D}_2 f (x, y) \, dx. \]

\[\therefore \]

Exercise 86 (3-33). If \(f : [a, b] \times [c, d] \to \mathbb{R} \) is continuous and \(\mathbb{D}_2 f \) is continuous, define \(F (x, y) = \int_a^x f (t, y) \, dt \).

a. Find \(\mathbb{D}_1 F \) and \(\mathbb{D}_2 F \).

b. If \(G (x) = \int_a^x f (t, x) \, dt \), find \(G' (x) \).

Solution.

(a) \(\mathbb{D}_1 F (x, y) = f (x, y) \), and \(\mathbb{D}_2 F = \int_a^x \mathbb{D}_2 f (t, y) \, dt \).

(b) It follows that \(G (x) = F (g (x), x) \). Then

\[G' (x) = g' (x) \mathbb{D}_1 F (g (x), x) + \mathbb{D}_2 F (g (x), x) \]

\[= g' (x) f (g (x), x) + \int_a^x \mathbb{D}_2 f (t, x) \, dt. \]

\[\therefore \]
4

INTEGRATION ON CHAINS

4.1 Algebraic Preliminaries

Exercise 87 (4-1*). Let \(e_1, \ldots, e_n\) be the usual basis of \(\mathbb{R}^n\) and let \(\varphi_1, \ldots, \varphi_n\) be the dual basis.

a. Show that \(\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_k}(e_{i_1}, \ldots, e_{i_k}) = 1\). What would the right side be if the factor \((k + \ell)!/k!\ell!\) did not appear in the definition of \(\wedge\)?

b. Show that \(\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_k}(v_1, \ldots, v_k)\) is the determinant of the \(k \times k\) minor of

\[
\begin{pmatrix}
v_1 \\
\vdots \\
v_k
\end{pmatrix}
\]

obtained by selecting columns \(i_1, \ldots, i_k\).

Proof.

(a) Since \(\varphi_{ij} \in \mathcal{T}(\mathbb{R}^n)\), for every \(j = 1, \ldots, k\), we have

\[
\varphi_{i_1} \wedge \cdots \wedge \varphi_{i_k}(e_{i_1}, \ldots, e_{i_k}) = \frac{k!}{1! \cdots 1!} \text{Alt} \left(\varphi_{i_1} \otimes \cdots \otimes \varphi_{i_k}(e_{i_1}, \ldots, e_{i_k}) \right) = \sum_{\sigma \in S_k} (\text{sgn}(\sigma)) \varphi_{i_1}(e_{\sigma(i_1)}) \cdots \varphi_{i_k}(e_{\sigma(i_k)})
\]

If the factor \((k + \ell)!/k!\ell!\) did not appear in the definition of \(\wedge\), then the solution would be \(1/k!\).

(b) □

Exercise 88 (4-9*). Deduce the following properties of the cross product in \(\mathbb{R}^3\).

\[
e_1 \times e_1 = 0 \quad e_2 \times e_1 = -e_3 \quad e_3 \times e_1 = e_2
\]
a. \(e_1 \times e_2 = e_3 \quad e_2 \times e_2 = 0 \quad e_3 \times e_2 = -e_1\)
\(e_1 \times e_3 = -e_2 \quad e_2 \times e_3 = e_1 \quad e_3 \times e_3 = 0\)

Proof.
(a) We just do the first line.

\[
\begin{align*}
(w, z) &= \begin{vmatrix} e_1 \\ e_1 \\ w \end{vmatrix} = 0 \implies z = e_1 \times e_1 = \mathbf{0}, \\
(w, z) &= \begin{vmatrix} e_2 \\ e_1 \\ w \end{vmatrix} = -w_3 \implies e_2 \times e_1 = -e_3, \\
(w, z) &= \begin{vmatrix} e_3 \\ e_1 \\ w \end{vmatrix} = w_2 \implies e_3 \times e_1 = e_2.
\end{align*}
\]
References

Index

Directional derivative, 24