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An advantaged candidate and a disadvantaged candidate compete in a large elec-

tion. Candidates exert effort to improve their valences, and voters cast their votes

costly. This paper characterizes the pure strategy equilibria in this kind of election

games, and gives sufficient conditions for the existence of pure strategy equilibria.

For most instances, there exists at least one and at most two pure strategy equi-

libria. On average a low voting cost causes high campaign efforts, but there also

exists an interval of voting costs such that candidates’ campaign efforts are strictly

increasing on this interval. Moreover, when candidates become similar in terms of

their productivity, their equilibrium valence choices also become similar.
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1. Introduction

Should a candidate spend more money and effort to attract supporters when

voters do not want to cast their ballots? Should a voter do more to support

the candidate whom he prefers when this candidate is disadvantaged in the

campaign? These questions will be answered in this paper. The answer to the

first question is “it depends on the voters’ intention of avoiding voting”, and the

answer to the second question is affirmative: yes, a voter goes out to vote for

his disadvantaged candidate, even if his voting cost is high.

This paper investigates candidates’ non-policy costly activities in large elec-

tions when candidates differ in productivity and voters cast their votes costly.

The motivation of this study is the following stylized facts: (1) Candidates

spend a fair amount of money and effort on campaigns, but the majority of

the money and effort does not involve precise policy statements. (2) Candi-

dates are not symmetric — they differ in their professional background, name

knowing, productivity, etc. (3) Voting is costly, yet in most cases, voluntary,

for voters.
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Scholars have found that under some circumstances candidates “becloud

their policies in a fog of ambiguity” (Downs, 1957). For example, when there

are party primary elections before general elections, candidates usually do not

reveal their policy platforms precisely to voters. In Aragonès and Neeman

(2000), a candidate uses ambiguous strategies because she then enjoys greater

freedom in choosing her policy once she is elected; Meirowitz (2005) treats

primaries as an opportunity of offering voters’ preferences to candidates, and

so candidates have incentive to keep their policy platforms vague. When there

are no primaries, Callander and Wilson (2008) provide a context-dependent

model to explain the ambiguity phenomenon.

A large body of empirical literature addresses that candidates take costly

actions on impressionistic advertising or building reputations for charisma to

build support. These non-policy characteristics of candidates are often re-

ferred to as valence in political economy (Stokes, 1963). Candidates persuade

voters that they should win by emphasizing their professional backgrounds

and previous political experience, by announcing that they have the quality

to change and keep their campaign promise. This competition cannot be cap-

tured by the standard Downsian model (Downs, 1957), where candidates com-

pete for voters by choosing policies from the real line R.

Another feature in electoral competition is that candidates are asymmetric.

They may differ in attracting campaigning contributions and using the con-

tributions. They may also differ in ability to organize and communicate, and

personality, etc. For example, an incumbent often has advantages and they

tend to spend more and win more (Ashworth and Bueno de Mesquita, 2008).

So it is interesting to know how the asymmetry between candidates affects

their campaign behavior and voters’ decisions when voting.

Finally, in most cases voting is costly for voters. If the election is relatively

large, then full participation is a woefully poor approximation to any empirical

reality. The question then arises, does the voting cost influence a candidates’

campaign action?

In order to answer these questions, we need to consider an integrated model

in which candidates and voters are all active: candidates compete with va-

lences, and bear in mind that voting is costly for voters; a voter’s decision is

influenced by candidates’ valence choices. Nevertheless, most existing mod-

els have treated candidates’ behavior and voters’ behavior in isolation. Some

authors assume that voting is costless, and voters all participate and vote sin-

cerely in the election. With this assumption, they consider how candidates

invest to improve their competence in an election (e.g., Meirowitz 2008, Ash-

worth and Bueno de Mesquita 2009, Serra 2010, and Crutzen, Castanheira and

Sahuguet 2010). In other models, candidates’ policy platforms and valences

are exogenously given, and in this setting the authors analyze how the voting

cost influences voters’ decisions (e.g., Börgers 2004, Feddersen and Sandroni
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2006b, Degan and Merlo 2011). This isolated approach leaves the interaction

between candidates and voters unclear.

In this paper I extend the ethical-voters model advocated by Feddersen and

Sandroni (2006b) to an environment in which two candidates endogenously

decide their valences through non-policy activities. These non-policy activities

are costly for candidates and candidates are asymmetric in the sense that they

differ in the marginal costs of implementing their valences. The realized va-

lences together determine each candidate’s fraction of supporters. Thus, can-

didates’ valence competition makes each candidate’s fraction of supporters,

which is fixed in Feddersen and Sandroni (2006b), endogenous in this paper.

However, I suppose that candidates’ valences do not affect voters’ welfare

directly. This modelling method attempts to capture the idea that voters have

preferences over salient and widely agreed upon policy goals, e.g., justice,

equality,1 or human rights. Candidates’ actions, including arguments, adver-

tisements, promises, etc., make some voters believe that a particular candidate

is the one who has the ability to deliver these goals and becomes a supporter

for this candidate.2 Keeping other things constant, if a candidate improves

her valence, she improves the vote share for her, but it never happens that she

attracts all voters unless her opponent’s valence is zero. This is because, for

example, different voters judge rival candidates’ actions differently, or some

voters are hard-core supporters for a particular candidate.

My treatment for valence is therefore different from the literature, where

valence is treated as something including all the good qualities of a candidate,

and enters a voter’s utility function separable additively. However, this pop-

ular way is questionable. As Miller (2011) convincingly points out, valence is

not necessarily synonymous with universal appeal. For instance, depending

on the status quo, a voter who does not like the current policy is in favor of

a challenger’s quality of change, but another voter who is happy with the im-

plementing policy does not. Because there is no generally accepted ways to

decompose valence, I simply adopt the assumption that candidates’ valences

determine the fraction of each candidate’s supporters, and voters’ utility is

from the election itself.

Throughout the paper, I focus exclusively on pure strategy equilibria. When

valence accumulation is considered, there is usually no pure strategy equilib-

ria and the mixed strategy equilibria is complicated. The only pure strategy

equilibrium for endogenous valence accumulation known is in Ashworth and

Bueno de Mesquita (2009, Lemma 2), where the authors show that when can-

didates’ policy platforms are highly diverged, then each candidate implement-

ing zero valence is a unique pure strategy equilibrium. However, this result

quite contradicts the daily observation. Identifying how candidates use mixed

1de Tocqueville (1860) writes: “The passion of men for equality is ardent, insatiable, eternal,

invincible.”
2As Besley and Reynal-Querol (2011) find, a high quality candidate is easy to be selected.
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strategies in valence choices is difficult. So it is important to know whether

non trivial pure strategy equilibria of valence accumulation exists in election

games? In this paper I show that pure strategy equilibria exists if we take

voters’ cost of voting into account.

The problem in previous literature is that there is no pure strategy equi-

librium when valence choice is considered. This also appears in this model

when voting is costless and voters all participate in the election. Nevertheless,

if voting is costly, then I find that for most instances there exists at least one

and at most two pure strategy equilibria.

As intuition suggests, the voting cost and asymmetry between candidates

does influence candidates’ valence accumulation. On average, a low voting cost

induces high valences, but there exists an interval of voting costs such that

candidates increase their valence accumulation as the voting cost increases

over this interval. More importantly, when the voting cost is low enough or

high enough, then candidates’ valences are constant. On the other hand, when

candidates become similar (in terms of their marginal costs), their equilibrium

valences choices become similar, too.

This paper contributes the large literature of voting games in the following

aspects. First of all, while a candidate’s fraction of supporters, k, is exoge-

nously given in Feddersen and Sandroni (2006b), it is endogenously decided

by candidates here. Since k is an important parameter in Feddersen and San-

droni (2006b), it is meaningful to see how this parameter is decided and what is

the equilibrium value of k. Next, because the previous models either consider

candidates’ campaign behavior by fixing voters’ voting behavior, or consider

voters’ voting behavior by fixing candidates’ campaign behavior, these models

actually provided partial equilibrium analysis for elections. But I consider can-

didates’ and voters’ behavior in a single model, so I analyze elections from the

general equilibrium perspective.

I review the related work in Section 2, then present the basic model in Sec-

tion 3. In Section 4, I show that there exists at least one pure strategy equilib-

rium for most elections and the comparative statics the model delivers. The

paper is concluded in Section 5.

2. Literature Review

Since Stokes (1963) (also Stokes 1992), there have been numerous studies on

the valence issue. Valence has be used to extend the Downisan model (e.g.,

Groseclose (2001), Aragones and Palfrey 2002, 2005, Hummel 2010, etc.), and

to explain primary elections (e.g., Hummel 2009, Snyder and Ting 2011, Serra

2011, etc.) — in those models, a primary election is used to choose candidates

with higher valence.
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My paper is related to the literature of endogenous valence competition.

Meirowitz (2008) considers a campaign in which candidates select effort lev-

els to win. Meirowitz shows that there is no pure strategy in that game and

candidates’ efforts are chosen randomly. Ashworth and Bueno de Mesquita

(2009) consider a game in which candidates first choose platforms and then

choose valences. Recently, Crutzen, Castanheira and Sahuguet (2010) consider

a model where candidates have to win a primary election before they compete

in a general election. In their model, a candidate inputs effort to design the

platform.

The papers that analyze political competition when candidates are asym-

metric are Aragones and Palfrey (2002), Kartik and McAfee (2007), Meirowitz

(2008), Hummel (2009), and Krasa and Polborn (2010), etc. Aragones and Pal-

frey (2002) consider a spatial model of two-candidate elections, in which one

candidate is of high quality. They show that if the location of the median

voter’s ideal point is uncertain, then candidates choose their policy platforms

useing pure strategy equilibria. Kartik and McAfee (2007) consider a model

where a candidate with superior valence is exogenously committed to a policy.

Meirowitz (2008) considers a campaign in which two candidates select effort

levels to win an election, but their productivity is different. Hummel (2009)

considers a model in which candidates with different given valences and they

have to win a primary election before competing in the general election. In an

interesting paper, Krasa and Polborn (2010) model a situation in which candi-

dates with different productivities, in two policy areas, compete for voters by

choosing how much money or effort they would allocate to each area if elected.

In literature about costly voting,3 Börgers (2004) considers voting in a club

(the number of voters is finite). In his model, the decision of a voter to ap-

pear in the election lowers the probability that any other voter is pivotal and

thus reduces other voters’ benefit from voting. It is this negative externality of

voting that makes the author conclude that compulsory voting is undesirable.

Coate and Conlin (2004), and Feddersen and Sandroni (2006b), follow Harsanyi

(1977, 1980, 1992), consider votings in large elections. They assume that vot-

ers cast their ballot costly and people go out to vote because they are ethical

— they think they should do their part. Most recently, Degan and Merlo (2011)

consider an uncertainty voting model, where the cost of voting is from voters’

uncertainty about candidates’ platforms.

The paper will adopt Feddersen and Sandroni’s ethical-voters model. This

is because, firstly, it fits the empirical evidence (Coate and Conlin, 2004), and

secondly, in this paper I study agents’ behavior in large elections in which

voters’ cost of voting is exogenously given.

The two papers that are most related to mine are Herrera, Levine and Mar-

tinelli (2008) and Degan (2011). In Herrera et al. (2008), turnout is assumed to

3Merlo (2006) is an excellent review on this subject.
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respond to campaign spending. However, in my model, spending determines

supporter share and the turnout is determined by the supporter share and

voting cost in turn. Degan (2011) considers a political advertising model. The

main difference between her paper and mine is that in her paper candidates’

qualities are unknown ex ante to voters and a candidate can spend money or

exert effort in order to communicate her quality to voters; further, candidates

are symmetric in her model. But in my paper, there is no uncertainty about

candidates’ qualities and they are asymmetric.

3. The Model

I consider a two-stage election game. At the first stage, two candidates choose

their valences simultaneously; at the second stage, voters cast their votes,

also simultaneously, after observing candidates’ valence choices. The model is

based on Feddersen and Sandroni (2006b).

This section is divided into two subsections. I present the basic model in

the first subsection; in the next subsection I introduce each candidate’s victory

probability in an election.

Throughout this paper, I always use she to refer a typical candidate and he

a typical voter.

3.1. The Setting

There are two candidates, labeled A and B , who compete in an election. A

typical candidate is denoted by c, and her rival is denoted by �c. There is a

continuum of voters of measure one. Voters have to decide whether to vote or

abstain. If they choose to vote, they vote for the candidate they support. The

electoral outcome is decided by majority rule, where candidate A wins if the

fraction of voters in favor of A exceeds the fraction of voters in favor of B . A

tie is broken by tossing a fair coin.

Each candidate c 2 fA;Bg chooses her valence vc 2 RC before voters cast

their votes. Voters observe candidates’ valences, vA and vB , and decide which

candidate to support; that is, the pair of valences .vA; vB/ divides voters be-

tween supporters of A (type A voters) and supporters of B (type B voters). For-

mally, there is a function  WRC ! RC, such that the fraction of type c 2 fA;Bg

voters is given by

kc.vc ; v�c/ D
 .vc/

 .vc/C  .v�c/
;

with kc.0; 0/ D 1=2. I suppose that  is concave, strictly increasing and satis-

fies  .0/ D 0. Here, kc can be understood as a contest success function; see

Corchón and Dahm (2010) for a discussion.

Each voter has a voting cost, given by Nc > 0 multiplied by an indepen-

dent uniformly distributed random variable supported on the interval .0; 1/.
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Each voter’s cost of voting is independent of any other random variable in this

model. Each voter’s cost of voting is his private information; that is, a voter

knows his own realized voting cost, but not the realization of other voters’

costs of voting.

Some voters are ethical voters and others are abstainers. Ethical voters are

“group rule-utilitarians” (Harsanyi, 1980), where a group of voters are the same

type, i.e., prefer the same candidate; abstainers always abstain. The fraction

of ethical voters in each group type are qA and qB , which are independent and

uniformly distributed over Œ0; 1�.

According to Feddersen and Sandroni (2006b), voters have preferences about

which candidate wins and the social cost of the election. In particular, type

c 2 fA;Bg voters have a utility function given by

(1) w � P Œc wins� � ˚;

where w 2 RCC measures the importance of the election to a typical voter and

˚ is the expected social cost of voting, which will be given later. For further

reference, I define

e´
Nc

w
:

Hence, e is the ratio of voting cost to the importance of election. From now on,

I will call an election e if in which the upper bound of voting cost is Nc, and the

importance of the election for voters is w.

Let ˇc 2 RCC be the marginal cost of accumulating valence for candidate

c. It is assumed that ˇA > ˇB (except in Proposition 10, where I consider

candidates’ optimal valence choices when they have the same marginal cost).

The benefit from winning office is normalized to be 1. Let the probability that

candidate c wins an election e be pc.vc ; v�c ; e/. Hence, the utility function for

candidate c is of the form

(2) Uc.vc ; v�c ; e/ D pc.vc ; v�c ; e/ � ˇcvc :

I now review the main results in Feddersen and Sandroni (2006b). Suppose

that candidates implement valence vA and vB , so the fraction of each voters

type is kA and kB . The authors introduce the concept of a rule profile, which is

a pair of cutoff points .�A; �B/ 2 Œ0; 1� � Œ0; 1�, such that an ethical type c voter

participates in the election and votes for candidate c, if and only if, his cost

is below �c Nc. In this context, candidate A wins, if and only if, she receives the

majority of votes, that is, kAqA�A > kBqB�B . Or equivalently,

qB

qA
<
kA�A

kB�B
:
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Let F be the cumulative distribution function of qB=qA. It is evident to see

that4

F.z/ D

˚
z=2 if z 6 1
1 � 1=.2z/ if z > 1:

Hence, if ethical voters use the rule profile .�A; �B/, then candidate A is elected

with probability

pA.vA; vB ; e/ D pA.�A; �B/ D F

�
kA�A

kB�B

�
:

Now, the expected social cost of voting from a rule profile .�A; �B/ can be

obtained as follows:

˚.�A; �B/ D Nc

�
kAEŒqA�

Z �A

0

x dx C kBEŒqB �

Z �B

0

x dx

�
D
Nc

4

h
kA�

2
A C kB�

2
B

i
:

Given voters preferences in (1), it follows that if ethical voters act according

to the rule profile .�A; �B/, then the induced expected payoff for voters of type

c 2 fA;Bg is

Vc.�A; �B/ D wpc.�A; �B/ � ˚.�A; �B/:

Feddersen and Sandroni (2006b) introduce the following concept of consis-

tent rules:5

Definition 1 (Feddersen and Sandroni 2006b, Definition 1). The pair .��A ; �
�
B/ 2

.0; 1� � .0; 1� is a consistent rule profile if Vc.��c ; �
�
�c/ > Vc.�c ; ���c/ for all �c 2

Œ0; 1� and every c 2 fA;Bg.

Therefore, if everybody follows the rule profile .��A ; �
�
B/, then each ethical-

voter of the same type achieves the best outcome. The consistent rule profile

.��A ; �
�
B/ obtained in Feddersen and Sandroni (2006b, Table 1) are summarized

in Figure 1, where, for example, the pair

� � D

��
1

e2kAkB

�1=4
;

 
kA

e2k3B

!1=4�

is the consistent rules for a triple .e; kA; kB/ satisfying e > Œ1=.kAkB/�1=2. Those

rules determine candidate A’s (and consequently, candidate B ’s) probabilities

of victory according to the distribution function F ŒkA�
�
A=.kB�

�
B/�, which are

also depicted in Figure 1.

4If z 6 1, the F.z/ D
R 1
0 zqA dqA D z=2; if z > 1, then F.z/ D

R 1=z
0 zqA dqA C

R 1
1=z dqA D

1� 1=.2z/.
5Feddersen and Sandroni (2006a) provide a justification for the concept of consistent rules.
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0 0.5 1 kA

e

e

�
1

kAkB

� 1
2

kA=k
2
B kB=k2

A

�� D

��
1

e2kAkB

� 1
4

;

�
kA

e2k3B

� 1
4

�

pA D
1
2

�
kA
kB

� 1
2

�� D

�
1;

�
kA

ek2B

�1=3�

pA D
1
2

�
ek2
A

kB

�1=3
�� D .1; 1/

pA D
kA
2kB

�� D

��
kB

e2k3A

� 1
4

;

�
1

e2kAkB

� 1
4

�

pA D 1 �
1
2

�
kB
kA

� 1
2

�� D

��
kB

ek2A

�1=3
; 1

�

pA D 1 �
1
2

�
ek2
B

kA

�1=3
�� D .1; 1/

pA D 1 �
kB
2kA

2

Figure 1. The consistent rule profile �� D .��A; �
�
B/, and candidate A’s vic-

tory probabilities, pA.

3.2. Victory Probabilities

To analyze candidates’ equilibrium valence choices, we first need to do some

groundwork, that is, to derive candidate c’s victory probability pc.vc ; v�c ; e/ in

an election e when the pair of valences is .vc ; v�c/.

Notice that Figure 1 is based on kA, the fraction of supporters for candidate

A. Since kA is endogenously determined by a pair of valences .vc ; v�c/, Fig-

ure 1 can be transferred to a new figure based on .vc ; v�c/. Formally, inserting

kc.vc ; v�c/, where v�c > 0, into the function Œ1=.kAkB/�1=2 in Figure 1 yields the

following function � WR2C ! R defined by

� .vc ; v�c/ D
 .vc/C  .v�c/p
 .vc/ .v�c/

:

Similarly, inserting kc.vc ; v�c/ into kc=k2�c we get the function �c WR2C ! R, for

each c 2 fA;Bg, defined by

�c.vc ; v�c/ D
 .vc/

�
 .vc/C  .v�c/

�
 2.v�c/

:

These three functions are depicted in Figure 2.

Fix an election Oe 2 .2;1/. The constant function e D Oe intersects � .vc ; v�c/

at two points, a1 and a2, respectively. The projections of these two points on

the vc-axis play a crucial role for deriving the victory probability of candidate

c. Denote the projection of a1 on the vc-axis by L.v�c ; Oe/, which is candidate c’s

minimal valence such that the value of the function � .�; v�c/ is Oe. Also, denote

the projection of a2 on the vc-axis by R.v�c ; Oe/, which is candidate c’s maximal

valence such that � .vc ; v�c/ D Oe.
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0 vc

e

� .vc ; v�c/

�c
.vc
; v�

c
/

�
�c .v�c ; vc /

v�c

2
Oe

Qe

a1 a2

L.v�c ; Oe/ R.v�c ; Oe/

a3 a4

`.v�c ; Qe/ r.v�c ; Qe/

Figure 2. Some points, where v�c is given.

Analogously, for some election Qe 2 .0; 2/, the function e D Qe intersects �c at

the point a3 and intersects ��c at the point a4. Call the projection of a3 (a4,

resp.) on the vc-axis `.v�c ; Qe/ (r.v�c ; Qe/, resp.).

The general form of L.�; �/, R.�; �/, `.�; �/ and r.�; �/ are given in Appendix A.

There are pleasant connections between these functions (the proof is also in

Appendix A): for e 2 .2;1/,

(3) vc < L.v�c ; e/ ” R.vc ; e/ < v�c :

and for e 2 .0; 2/,

(4) vc < `.v�c ; e/ ” r.vc ; e/ < v�c :

The above (3) means that for every election e 2 .2;1/ and and every pair

of valences .vc ; v�c/, if vc locates at the left-side of the point L.v�c ; e/, then

v�c must locate at the right-side of the point R.vc ; e/, and vise versa. One can

interpret (4) similarly.

We are now in a position to obtain the victory probability for candidate c

from a pair of valences .vc ; v�c/. For every e 2 .2;1/ and v�c > 0, the points

L.v�c ; e/, v�c and R.v�c ; e/ divides pc.vc ; v�c ; e/ into four parts. As an example,

if vc 2 Œ0; L.v�c ; e/�, then

pc.vc ; v�c ; e/ D
1

2

 
ek2c
k�c

!1=3
D
1

2

"
e 2.vc/=Œ .vc/C  .v�c/�

2

 .v�c/=Œ .vc/C  .v�c/�

#1=3

D
1

2

"
e 2.vc/

 .v�c/
�
 .vc/C  .v�c/

�#1=3 :
Now insert kc.vc ; v�c/ D  .vc/=Œ .vc/C  .v�c/� into the probabilities in Fig-

ure 1, and then define (just for the sake of expression):
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� For vc 6 v�c :

�c.vc ; v�c ; e/´
1

2

"
e 2.vc/

 .v�c/
�
 .vc/C  .v�c/

�#1=3 ;
�c.vc ; v�c/´

1

2

�
 .vc/

 .v�c/

�1=2
;

�c.vc ; v�c/´
1

2

�
 .vc/

 .v�c/

�
:

� For vc > v�c :

z�c.vc ; v�c ; e/´ 1 � ��c.v�c ; vc ; e/;

z�c.vc ; v�c/´ 1 � ��c.v�c ; vc/;

z�c.vc ; v�c/´ 1 � ��c.v�c ; vc/:

Lemma 2. Consider an election e and a pair of valences .vc ; v�c/ with v�c > 0.

� If e 2 Œ2;1/, then candidate c 2 fA;Bg is elected in the election with proba-

bility

pc.vc ; v�c ; e/ D

˚
�c.vc ; v�c ; e/ if vc 2 Œ0; L.v�c ; e/�

�c.vc ; v�c/ if vc 2 .L.v�c ; e/; v�c �

z�c.vc ; v�c/ if vc 2 .v�c ; R.v�c ; e/�

z�c.vc ; v�c ; e/ if vc 2 .R.v�c ; e/;1/:

� If e 2 .0; 2/, then candidate c 2 fA;Bg is elected in the election with probability

pc.vc ; v�c ; e/ D

˚
�c.vc ; v�c ; e/ if vc 2 Œ0; `.v�c ; e/�

�c.vc ; v�c/ if vc 2 .`.v�c ; e/; v�c �

z�c.vc ; v�c/ if vc 2 .v�c ; r.v�c ; e/�

z�c.vc ; v�c ; e/ if vc 2 .r.v�c ; e/;1/:

The victory probabilities for candidate c derived in Lemma 2 are illustrated

in Figure 2, where candidate �c’s campaign effort is fixed at v0�c > 0.

The probability pc.vc ; v�c ; e/ can be reformulated as follows:

Corollary 3. Candidate c wins in an election e with probability

pc.vc ; v�c ; e/ D

˚
min f�c.vc ; v�c ; e/; �c.vc ; v�c/g if e 2 Œ2;1/ and vc 6 v�c
max

˚
z�c.vc ; v�c/; z�c.vc ; v�c ; e/

	
if e 2 Œ2;1/ and vc > v�c

max f�c.vc ; v�c ; e/; �c.vc ; v�c/g if e 2 .0; 2/ and vc 6 v�c
min

˚
z�c.vc ; v�c/; z�c.vc ; v�c ; e/

	
if e 2 .0; 2/ and vc > v�c :

Proof. All proofs are relegated to Appendix B. ut
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(a) Candidate c’s victory probability when e 2 .2;1/.

0 vc

pc.vc ; v
0
�c ; e/

0.5

`.v0�c ; e/ v0�c r.v0�c ; e/

� c
.v
c
; v
0
�
c
; e
/ �

c
.vc
; v
0
�c
/ z�c.vc

; v
0
�c
/

z�c.vc ; v
0
�c; e/

(b) Candidate c’s victory probability when e 2 .0; 2/.

Figure 3. Candidate c’s victory probabilities in an election e when her op-

poent’s campaign effort is v0�c .

According to Corollary 3, Figure 3 illustrates candidate c’s victory probabil-

ities, where candidate �c’s actions is fixed as v0�c > 0.

Notation. Let f .x1; x2; �/ be a real-valued function, where .x1; x2/ 2 R2; let a

be a point in the domain of f ; let .i; j / 2 f1; 2g � f1; 2g. I denote Dif .a/ the

i th partial derivative of f at a if it exists, and Dijf .a/´ Dj ŒDif .a/� the mixed

partial derivative of f at a if it exists. Therefore, in terms of the Leibnitz

notation, Dif .a/ D @f .a/=@xi , and Dijf .a/ D @2f .a/=@xi@xj .

It will be useful to characterize the properties of D1pc.vc ; v�c ; e/, the mar-

ginal probability that candidate c 2 fA;Bg wins in an election e 2 .0;1/. These

properties are summarized in the following Lemma 4.
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Lemma 4. Consider an election e. For every v�c > 0, the partial derivative

D1pc.vc ; v�c ; e/ exists except for the points L.v�c ; e/ and R.v�c ; e/ if e 2 .2;1/,

or `.v�c ; e/ and r.v�c ; e/ if e 2 .0; 2/. Whenever pc.vc ; v�c ; e/ is differentiable,

the following properties hold:

� D1pc.vc ; v�c ; e/ > 0 and D11pc.vc ; v�c ; e/ < 0.

� D12pc.vc ; v�c ; e/ < 0 if vc 6 v�c .

� D12pc.vc ; v�c ; e/ > 0 if vc > v�c .

4. Results

The appropriate equilibrium concept for the election game is the modified

subgame perfect Nash equilibrium, which consists of a pair of valences .v�c ; v
�
�c/

chosen by the two candidates, and a pair of consistent rules .��A ; �
�
B/ chosen

by voters. Since the consistent rules have been derived by Feddersen and

Sandroni (2006b), in the remainder of this paper I use the term equilibrium to

mean a pair of valences .v�c ; v
�
�c/ such that for each candidate c 2 fA;Bg, her

choice v�c maximizes the expected utility Uc.vc ; v��c ; e/ given her opponent’s

choice v��c and voters’ consistent rules .��A ; �
�
B/.

In this section, I first characterize the pure strategy equilibria in the election

game. Then I identify sufficient conditions so that there exists at least one

pure strategy equilibrium. The major finding of this section is that in most

environments there exists at least one pure strategy equilibrium.

4.1. Existence of Equilibrium

With the interpretation of equilibrium at the beginning of this section, an

election e can be represented by a normal form game Ge D .S 0c ; Uc/c2fA;Bg,

where S 0c is candidate c’s action space. For each v�c > 0, candidate c’s ex-

pected payoff is Uc.vc ; vc ; e/ D pc.vc ; v�c ; e/ � ˇcvc . Since pc 2 Œ0; 1�, we have

Uc.vc ; v�c ; e/ 6 1 � ˇcvc ; therefore, candidate c never chooses vc > 1=ˇc . So we

can restrict S 0c D Œ0; 1=ˇc �, a convex and compact subset in R.

Two significant features of the game Ge is that (i) Uc is not upper semicon-

tinuous at the point .0; 0/ and (ii) Uc is not quasiconcave.

Claim 1. The function Uc.�; �; e/WS
0
c � S

0
�c ! R is not upper semicontinuous at

.0; 0/ for each candidate c 2 fA;Bg.

To see this, notice that pc.0; 0; e/ D 1=2 by assumption.6 Then Uc.0; 0; e/ D

pc.0; 0; e/ D 1=2. Take a sequence f1=ng1nD1. Then f.1=n; 0/g ! .0; 0/. For each

6The assumption that each candidate wins with equal probability if vc D v�c D 0 is non-

essential.
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n, candidate c wins with probability 1; hence,

Uc.1=n; 0; e/ D 1 �
ˇc

n
! 1:

Claim 2. Uc.�; v�c ; e/WS 0c ! R is not quasiconcave for each candidate c 2 fA;Bg

when e ¤ 2 and v�c > 0.

Perhaps the easiest way to see that Uc fails to be quasiconcave is to notice

that when e 2 .2;1/ and vc > v�c > 0, candidate c’s expected utility function

Uc.�; v�c ; e/ is a concatenation of two strictly concave functions.

These two features mean the classical existence theorems cannot be ap-

plied here. For example, Dasgupta and Maskin (1986) require Uc to be upper

semicontinuous, and (Reny, 1999) and its strengthening form in McLennan,

Monteiro and Tourky (2011) require Uc to be quasiconcave.

To make things as simple as possible, I adopt a mild assumption:

Assumption 1. A candidate c 2 fA;Bg has to implement a valence at least

�c > 0, where D1�c.�c ; v�c ; e/ > ˇc .

The above Assumption 1 is actually a moderate and natural assumption. It

just says that a candidate cannot quit the electoral competition once she has

participated in: she has to take part in at least one campaign debate, make an

advertisement, etc.

Now, candidate c’s action space is Sc D Œ�c ; 1=ˇc �, which is compact (by

Heine-Borel Theorem). Furthermore, for each e 2 .0;1/, candidate c’s payoff

function Uc.�; �; e/ is continuous on Œ�c ; 1=ˇc � � Œ��c ; 1=ˇ�c �. It follows from the

Glicksberg-Fan Fixed Point Theorem (Glicksberg, 1952; Fan, 1952) that:

Lemma 5. There exists at least one equilibrium (possibly mixed) in the election

game for every e 2 .0;1/.

An equilibrium I consider hereafter is a pure strategy equilibrium otherwise

stated explicitly.

4.2. Preliminaries

In this subsection, I derive some primary results and consider the equilibria

under special environments. In particular, I show that there is no pure strat-

egy equilibrium when voting is costless and there is a unique pure strategy

equilibrium when e D 2.

I first analyze candidates’ behavior in the setting where voters cast their

votes without cost and all participate in the election. Under this setting, candi-

date c 2 fA;Bg wins with probability 1 if and only if she receives the majority
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of votes, that is, if and only if

kc.vc ; v�c/ > k�c.v�c ; vc/ ”
 .vc/

 .vc/C  .v�c/
>

 .v�c/

 .vc/C  .v�c/

” vc > v�c :

Proposition 6. There exists no pure strategy equilibrium if voting is costless.

Remark. When valences are decided by candidates endogenously, there is usu-

ally no pure strategy equilibrium; see Groseclose (2001), Meirowitz (2008), and

Ashworth and Bueno de Mesquita (2008), etc.

From now on, I suppose that Nc > 0. In what follows, I show that when the

voting cost is taken into account, there exists pure strategy equilibria for most

instances.

For a candidate c 2 fA;Bg, let BRc WS�c � RCC � Sc be her best response

correspondence, where BRc.v�c ; e/ is the set of candidate c’s optimal valence

choices in an election e 2 .0;1/ when her opponent’s choice is v�c . The fol-

lowing Lemma 7 establishes some useful properties of BRc .

Lemma 7. For every candidate c 2 fA;Bg and every v�c > 0, (i) if e 2 .2;1/,

then R.v�c ; e/ … BRc.v�c ; e/, and (ii) if e 2 .0; 2/, then L.v�c ; e/ … BRc.v�c ; e/.

Hence, if a pair of valences .v�A; v
�
B/ consists of an equilibrium for an election

e 2 .0;1/, then D1pc.v�c ; v
�
�c ; e/ exists for each candidate c 2 fA;Bg.

In an election e 2 .0;1/, candidate c 2 fA;Bg chooses vc , given her oppo-

nent’s valence choice v�c , to maximize her expected payoff; that is,

max
vc2RC

fpc.vc ; v�c ; e/ � ˇcvcg :

If pc.vc ; v�c ; e/ is differentiable at .vc ; v�c/, then the first-order condition for

candidate c’s objective function yields

(5) D1pc.vc ; v�c ; e/ D ˇc :

The following Lemma 8 gives the necessary condition for the existence of

equilibrium. Let �´  0= . Notice that �.x/ is well-defined, strictly decreas-

ing with x, limx!1�.x/ D 0, and limx!0C �.x/ D1.7

Lemma 8. If a pair of valences .vA; vB/ consists of an equilibrium, then .vA; vB/ ¤

.0; 0/, vA < vB , and

(6)
�.vA/

�.vB/
D
ˇA

ˇB
:

The following inequality will be used frequently, so it is relevant to present

it here now.

7The notation limx!0C denotes x approaches 0 across through the positive values.
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Figure 4. Best response functions and equilibrium for e D 2.

Lemma 9. For every election e 2 .2;1/ and every valence v�c > 0, the following

inequality holds:

(7) D1 z�c
�
R.v�c ; e/; v�c ; e

�
< D1z�c .v�c ; v�c/ :

The above inequality (7) simply says that the partial derivative of z�c at the

indifferentiable point R.v�c ; e/
8 is strictly less than the partial derivative of z�c

at the point where candidate c chooses the same valence as her opponent �c. It

is this inequality that facilitates the characterization of incentive compatiblility

conditions later.

Before leaving this subsection, I consider the special case that e D 2. In this

case, candidate c 2 fA;Bg is elected with probability

pc.vc ; v�c ; 2/ D

˚
�c.vc ; v�c ; 2/ if vc 6 v�c
z�c.vc ; v�c ; 2/ if vc > v�c :

Therefore, pc.vc ; v�c ; 2/ is differentiable everywhere for each c 2 fA;Bg, and

so it is straightforward to characterize the best response functions BRc . In

Figure 4 the best response functions and the unique equilibrium are depicted,

where the shapes of BRA and BRB follow from ?? immediately, and their shapes

induce the conclusion that they must intersect at one and only one point,

.v�A; v
�
B/ — the equilibrium for e D 2.

8Some comments about the term indifferentiability is in order. Clearly, D1 z�c.vc ; v�c ; e/

always exists. What I mean of indifferentiablity is that at some point D1pc.vc ; v�c ; e/ fails to

exist. For instance, at R.v�c ; e/ we have D1z�c.R.v�c ; e/; v�c/ ¤ D1 z�c.R.v�c ; e/; v�c/.
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Proposition 10. In the election e D 2, there exists a unique equilibrium .v�A; v
�
B/,

where v�A < v
�
B , and .D1�A.v�A; v

�
B ; 2/;D1 z�B.v

�
B ; v

�
A; 2// D .ˇA; ˇB/.

4.3. Equilibria for e 2 .2;1/

In this subsection I discuss the sufficient conditions so that pure strategy equi-

libria exist for elections e 2 .2;1/. Let vc;e be candidate c’s valence choice in

an election e.

Notation. Since the notation vc;e already indicates clearly which election we

are talking about, I will simply denote f .vc;e; e/ as f .vc;e/ for a function f

which also depends on e. But where there is a possibility of confusion, then I

shall revert back to the more descriptive notation f .vc;e; e/.

Obviously, for an election e 2 .2;1/ and a pair of valences .vc ; v�c/, if can-

didate c wins with probability �c.vc ; v�c ; e/, then candidate �c wins with prob-

ability 1 � �c.vc ; v�c ; e/ D z��c.v�c ; vc ; e/. Similarly, if candidate c wins with

probability �c.vc ; v�c/, then candidate �c wins with probability 1��c.vc ; v�c/ D

z��c.v�c ; vc/. Therefore, for an election e 2 .2;1/, there are two possible pure

strategy equilibria. In the first equilibrium .v�A;e; v
�
B;e/, candidate A and B wins

with probability �A.v
�
A;e; v

�
B;e/ and z�B.v�B;e; v

�
A;e/, respectively. In the second

equilibrium .v�A; v
�
B/, candidate A and B wins with probability �A.v�A; v

�
B/ and

z�B.v
�
B ; v

�
A/, respectively. I denote the first equilibrium Ez�e , and the second

equilibrium E� (it will be shown shortly that this equilibrium is independent

of the particular election e). Let

U z�B .vB ; vA/´ z�B .vB ; vA/ � ˇBvB ;

U
z�
B .vB ; vA; e/´ z�B .vB ; vA; e/ � ˇBvB :

The next proposition characterizes these two equilibria:

Proposition 11. Consider an election e 2 .2;1/.

1. A pair of valences .v�A;e; v
�
B;e/ is an Ez�e-equilibrium if and only if the following

three conditions are satisfied:

(Ez�e-a)

�
D1�A

�
v�A;e; v

�
B;e

�
;D1 z�B

�
v�B;e; v

�
A;e

��
D
�
ˇA; ˇB

�
:

(Ez�e-b) v�A;e < L
�
v�B;e

�
:

(Ez�e-c) U
z�
B

�
v�B;e; v

�
A;e

�
> max
vB2

�
v�
A;e

;R.v�
A;e

/
�
�
U z�B

�
vB ; v

�
A;e

��
:

In this equilibrium, both v�A;e and v�B;e are continuous and strictly increasing

with e.
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2. A pair of valences .v�A; v
�
B/ is an E� -equilibrium if and only if the following

three conditions are satisfied:

(E� -a)
�
D1�A

�
v�A; v

�
B

�
;D1z�B

�
v�B ; v

�
A

��
D
�
ˇA; ˇB

�
:

(E� -b) v�A > L
�
v�B ; e

�
:

(E� -c) U z�B
�
v�B ; v

�
A

�
> max
vB>R.v

�
A
;e/

n
U
z�
B

�
vB ; v

�
A; e

�o
:

In this equilibrium, both v�A and v�B are independent of e.

In Proposition 11, the condition (Ez�e-a) is just the first-order conditions and

(Ez�e-b) says that given e and v�B;e , candidate A’s optimal valence choice v�A;e
locates at the left-side of the indifferentiable point L.v�B;e/. Finally, (Ez�e-c) is

candidate B ’s incentive compatibility condition: given e and v�A;e , candidate B

does not want to decrease her valence to any point in the interval .v�A;e; R.v
�
A;e//.

When conditions (Ez�e-a) — (Ez�e-c) hold, no candidate has incentive to deviate

unilaterally. The interpretation of conditions (E� -a) — (E� -c) is similar.

Remark. Some comments on the unique profitable deviation for candidate B

in Ez�e are in order. Notice that by (7) and Corollary 3 the following inequalities

hold:

D1z�B
�
R.v�A;e/; v

�
A;e

�
< D1 z�B

�
R.v�A;e/; v

�
A;e

�
< D1z�B

�
v�A;e; v

�
A;e

�
I

see Figure 5. If the pair .v�A;e; v
�
B;e/ satisfies

D1 z�B
�
v�B;e; v

�
A;e

�
2

�
D1z�B

�
R.v�A;e/; v

�
A;e

�
;D1 z�B

�
R.v�A;e/; v

�
A;e

��
;

then there exists a point v0B 2 .v
�
A;e; R.v

�
A;e// such that

D1z�B
�
v0B ; v

�
A;e

�
D D1 z�B

�
v�B;e; v

�
A;e

�
D ˇB :

By deviating to v0B 2 .v
�
A;e; R.v

�
A;e//, candidate B decreases her victory proba-

bility, but also saves ˇB � .v�B;e � v
0
B/ of the campaign cost. So it is possible that

this deviation is desirable for candidate B . Therefore, (Ez�e-c) is necessary for

preventing such a deviation.

Unfortunately, there exists election e and functional form  such that nei-

ther Ez�e nor E� is an equilibrium. (See Example 12 following.) So I seek condi-

tions that guarantee the existence of pure strategy equilibria. This is done by

the following Proposition 13. Roughly speaking, the proposition says that if e

is large enough or is sufficiently closed to 2, then there always exists at least

one pure strategy equilibrium. But before moving to the general analysis, let

us consider an example first.
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D1 z�B .v
�
B;e
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D1z�B .�; v
�
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D1 z�B .�; v
�
A;e
/

Figure 5. Illustration of (Ez�e-c).

Example 12. Let  .x/ D x1=2, ˇA D 4 and ˇB D 1. Then �.x/ D  0.x/= .x/ D

1=.2x/ and the necessary condition (6) implies that vB;e D 4vA;e for every equi-

librium.

The Ez�e -equilibrium. When vB;e D 4vA;e we have

�A.vA;e; vB;e/ D
1

2

�
evA;e

.vA;evB;e/1=2 C vB;e

�1=3
D
.e=6/1=3

2
;

and

D1�A.vA;e; vB;e/ D
5.e=6/1=3

36vA;e
:

Hence, (Ez�e-a) implies that

v�A;e D
5.e=6/1=3

144
and v�B;e D

5.e=6/1=3

36
:

I then consider (Ez�e-b). Evidently, there exists a unique point ez�1 such that

L.vB;ez�1/ D vA;ez�1 , i.e.,

 

�
L
�
v�B;ez�1

��
D XL

�
ez�1

�
�  

�
v�B;ez�1

�
D  

�
v�A;ez�1

�
” XL

�
ez�1

�
D 1=2

” ez�1 D
3
p
2

2
:
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Now if e 2 .2; ez�1/, then

 

�
L
�
v�B;e

��
�  

�
v�A;e

�
D XL.e/ �  

�
v�B;e

�
�  

�
v�A;e

�
> XL

�
ez�1

�
�  

�
v�B;e

�
�  

�
v�A;e

�
D 0I

that is, (Ez�e-b) holds for all e 2 .2; ez�1/.

Finally, consider condition (Ez�e-c). Given v�A;e , let us consider the relaxed

optimization problem for candidate B :9

max
OvB;e>v

�
A;e

�
z�B

�
OvB;e; v

�
A;e

�
� ˇB OvB;e

�
Then OvB;e should satisfy the following first-order condition:

D1z�B
�
OvB;e; v

�
A;e

�
D ˇB ”

�A

�
v�A;e; OvB;e

�
2

�
�
OvB;e

�
D
1

4

 
v�A;e

OvB;e

!1=4
1

2 OvB;e

D 1;

(8)

i.e.,

OvB;e D
1

4 � 22=5

�
v�A;e

�1=5
:

Hence,

U z�B

�
OvB;e; v

�
A;e

�
D z�B

�
OvB;e; v

�
A;e

�
� OvB;e D 1 � 5 OvB;e D 1 �

5

4 � 22=5

�
v�A;e

�1=5
;

where the first equality holds because, by (8),

�A

�
v�A;e; OvB;e

�
D 4 OvB;e:

Therefore,

U z�B

�
OvB;e; v

�
A;e

�
� U

z�
B

�
v�B;e; v

�
A;e

�
D

5

4 � 22=5

�
v�A;e

�1=5
�
23.e=6/1=3

36
:

The above difference is strictly decreasing with e, and is equivalent if and only

if e D 2:11412. Let

ez�2 D 2:11412:

Then (Ez�e-c) holds whenever e 2 .2; ez�2/.

Let ez� D minfez�1; e�2g D 2:11412. Then for every election e 2 .2; ez�/, there

exists an equilibrium .v�A;e; v
�
B;e/.

These outcomes can be explained using Figure 6(a) and (b). If e D ez�1,

then v�B;e and R.v�A;e/ coincide and U
z�
B .vB ; v

�
A;e/ obtains its maximum at the

point R.v�A;e/. In this case, candidate B will deviate and choose some point

OvB;ez�1 < v�B;ez�1
. However, as e decreases, this incentive eventually disappears

(Figure 6(b)).

9The choice of candidate B is actually restricted on the interval .v�A;e;R.v
�
A;e/�. By consider-

ing the relaxed optimization problem, I avoid discussing the possibility that OvB;e D R.v�A;e/.
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0 vB

U z�
B
.vB ; v

�
A;e
/

U
z�
B .v
B ; v �

A
;e /

R.v�
A;e
/

(b) e D ez�1 � 0:03

0 vB

U z�
B
.vB ; v

�
A
; e/

U
z�B .v

B ; v �
A ; e/

R.v�
A;e
/

(c) e D e�1

0 vB

U z�
B
.vB ; v

�
A
/

U
z�B .v

B ; v �A ; e/

R.v�
A;e
/

(d) e D e�1 C 0:03

Figure 6. The equilibria in Example 12.

The E� -equilibrium. The first-order conditions yield v�A D 1=.32
p
2/ and v�B D

1=.8
p
2/. Consequently,

U z�B
�
v�A; v

�
B ; e

�
D 1 �

1

2
p
2
�

1

8
p
2
D 1 �

5
p
2

16
:

The condition (E� -b) yields a cutoff point e�1 D 3
p
2=2. Next, notice that

when e D e�1 � 0:01, then

max
vB>R.v

�
A
;e�1�0:01/

U
z�
B

�
vB ; v

�
A; e

�
� 0:5489 < U z�B

�
v�B ; v

�
A; e

�
:

Thus, there exists an e�2 2 .e�1; e�1 � 0:01/ such that (E� -c) holds. Since

U
z�
B .vB ; v

�
A; e/ is strictly decreasing with e (notice that this conclusion holds

because v�A is independent of e), we know that (E� -c) holds for all e 2 .e�2;1/.
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Let e� D maxfe�1; e�2g. Then .v�A; v
�
B/ is an equilibrium in all elections e 2

.e� ;1/.

According to Figure 6(c) and (d), when e D e�1, the points v�B and R.v�A; e�1/

coincide and candidate B wants to increase her valence from v�B . However, as

e increases, this deviation incentive disappears.

It is easy to see that in this example, the (pure strategy) equilibrium is

unique. Þ

The results obtained in Example 12 can be generalized as follows:

Proposition 13. In the election game, the following properties hold:

1. There exists a cutoff point ez� > 2 such that Ez�e is an equilibrium for every

election e 2 Œ2; ez�/.

2. There exists a cutoff point e� > 2 such that E� is an equilibrium for every

election e 2 .e� ;1/; there exists a cutoff point e0� > e� such that E� is the

unique equilibrium for every election e 2 .e0� ;1/, and there also exists a

cutoff point e00� such that E� is not an equilibrium for all e 2 .2; e00�/.

It follows from Proposition 13 that when e is large enough (larger than e0� ),

then there always exists a unique pure strategy equilibrium. Also, the mag-

nitude of e does not affect candidates’ equilibrium valence choices any more

(of course the presence of e matters): their valences are constant across all

e 2 .e0� ;1/.

Remark. In most election games with endogenous campaign effort decisions,

there is no pure strategy equilibrium and the mixed strategies are usually dif-

ficult to describe (e.g., Aragones and Palfrey 2002, Meirowitz 2008, Ashworth

and Bueno de Mesquita 2009, and Hummel 2010, etc.) Hence, Proposition 13

purifies the mixed strategies in the previous models by considering voting cost

(Harsanyi, 1973).

Particularly, when  .x/ D x with  2 .0; 1�, a commonly used contest func-

tion, then the proof of Proposition 13(1) becomes much easier.

Corollary 14. Suppose that  .x/ D x , where  2 .0; 1�. Then there exists a

cutoff point ez� > 2 such that Ez�e is an equilibrium for every election e 2 .2; ez��.

4.4. Equilibria for e 2 .0; 2/

The analysis for e 2 .0; 2/ is analogous to the one in the previous subsection,

but the role of candidate A and B need to be exchanged; see Figure 3.

Similar to the instances for e 2 .2;1/, there exists two possible equilibria

for e 2 .0; 2/, too. The first equilibrium is a pair .v�A;e; v
�
B;e/, so that candidate

A and B wins with probability �A.v�A; v
�
B ; e/ and z�B.v�A;e; v

�
B;e/, respectively; the
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second equilibrium is a pair .v�A; v
�
B/, such that candidate A and B wins with

probability �A.v�A; v
�
B/ and z�B.v�A; v

�
B/, respectively. I call the first equilibrium

an E�e-equilibrium and the second an E�-equilibrium.

The proofs for the following two propositions are similar to Propositions 11

and 13 and thus are omitted. Let

U
�
A .vA; vB ; e/´ �A .vA; vB ; e/ � ˇAvA;

U
�
A .vA; vB/´ �A .vA; vB/ � ˇAvA:

Proposition 15. Consider an election e 2 .0; 2/.

1. A pair of valences .v�A;e; v
�
B;e/ is an E�e-equilibrium if and only if the following

three conditions are satisfied:

(E�e-1)

�
D1�A

�
v�A;e; v

�
B;e

�
;D1 z�B

�
v�B;e; v

�
A;e

��
D
�
ˇA; ˇB

�
:

(E�e-2) v�A;e < `
�
v�B;e

�
:

(E�e-3) U
�
A

�
v�A;e; v

�
B;e

�
> max
vA2

�
`.v�
B;e

/;v�
B;e

�
�
U
�
A

�
vA; v

�
B;e

��
:

In this equilibrium, both v�A;e and v�B;e are continuous and strictly increasing

with e.

2. A pair of valences .v�A; v
�
B/ is an E�-equilibrium if and only if the following

three conditions are satisfied:

(E�-1)
�
D1�A

�
v�A; v

�
B

�
;D1z�B

�
v�B ; v

�
A

��
D
�
ˇA; ˇB

�
:

(E�-2) v�A > `
�
v�B ; e

�
:

(E�-3) U
�
A

�
v�A; v

�
B

�
> max
vA2.0;`.v�B ;e//

n
U
�
A

�
vA; v

�
B ; e

�o
:

In this equilibrium, both v�A and v�B are independent of e.

Proposition 16. In the election game, the following properties hold:

1. There exists a cutoff point e� > 0 such that E� is an equilibrium for every

election e 2 .0; e�/.

2. There exists a cutoff point e� > 0 such that E� is an equilibrium for every

election e 2 .e�; 2/.

Now let us compare the two equilibria E� and E� . In particular, let .vA; vB/

be an E�-equilibrium for some e 2 .0; e�/ and let . QvA; QvB/ be an E� -equilibrium

for some e 2 .e� ;1/. Then,

D1�A .vA; vB/ D
1

2
�.vA/ D ˇA D D1�A . QvA; QvB/ D

�A . QvA; QvB/

2
� . QvA/ :
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0 vA

U
�
A
.vA; v

�
B;e
/

U
�
A
.vA
; v
�
B
;e
/

`.v�
B;e
/

(a) e D e�1

0 vA

U
�
A
.vA; v

�
B;e
/

U
�
A
.vA; v

�
B;e
/

`.v�
B;e
/

(b) e D e�1 C 0:3.

0 vA

U
�
A
.vA; v

�
B
/

U
�
A
.vA; v

�
B
; e/

`.v�
B;e
/

(c) e D e�1.

0 vA

U
�
A
.vA; v

�
B
/

U
�
A
.vA
; v
�
B
; e/

`.v�
B;e
/

(d) e D e�1 � 0:3

Figure 7. The equilibria in Example 18.

Since �A. QvA; QvB/ < 1, we know that

�.vA/ < � . QvA/ ” vA > QvA;

since � is strictly decreasing. Similarly, vB > QvB . Therefore, the following

Proposition 17 holds.

Proposition 17. Both candidates’ valence choices when e 2 .0; e�/ are larger

than their choices when e 2 .e� ;1/.

I close this subsection by continuing Example 12.

Example 18. Let  .x/ D x1=2, ˇA D 4, and ˇB D 1. So we still have vB;e D 4vA;e
for every equilibrium.
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0 e

v�
B;e

v�
A;e

2e� e�

ez� e�

Figure 8. Equilibria in Examples 12 and 18.

I first consider the E�-equilibrium. In this case, .v�A; v
�
B/ D .1=32; 1=8/. Then

1=32 D `.1=8; e�1/ gives:

e�1 D 3=4:

It can be seen that 1=32 > `.1=8; e/ for all e 2 .0; e�1/.

Now consider candidate A. Her expected payoff from .1=32; 1=8/ is

�A.1=32; 1=8/ � 4 �
1

32
D
1

8
:

Then, when e D 0:56,

argmax
vA2.0;`.1=8;0:56//

n
�A

�
vA; 1=32; 0:56

�
� 4vA

o
� 0:01289 < `.1=8; 0:56/ D 0:05;

and

max
vA2.0;`.1=8;0:56//

n
�A

�
vA; 1=32; 0:56

�
� 4vA

o
� 0:1246 < 1=8

Let e� D minf0:75; 0:56g D 0:56. Then E� is an equilibrium for all e 2 .0; 0:56/.

Now consider E�e . In this case,

v�A;e D
5.e=6/1=3

144
; and v�B;e D

5.e=6/1=3

36
:

Notice that e�1 D 3=4. Pick e�2 such that

D1�A

�
`
�
vB;e�2 ; e�2

�
; vB;e�2

�
D ˇA D 4:

This gives

e�2 � 1:04:

Take e� D maxfe�1; e�2g. Then E�e is an equilibrium for all e 2 .1:04; 2/. The

above arguments are illustrated in Figure 7.

Figure 8 combines the findings in Examples 12 and 18. It can be seen

from this figure that there exists pure strategy equilibrium when e 2 .0; e�/ [

.e�; ez�/[ .e� ;1/. More importantly, both candidates’s valences on the interval
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Œ0; e�/ and .e� ;1/ are constant, and strictly increasing on the interval .e�; ez�/.

Finally, they implement the highest valences on the interval .0; e�/. Þ

4.5. Asymmetry between Candidates

The final order of business is to investigate how the asymmetry between can-

didates influences their decisions. Let us fix candidate A’s marginal cost ˇA
throughout this subsection. Let �v�e ´ v�B;e � v

�
A;e , the difference between

candidates’ valence choices in equilibrium.

Proposition 19. Fix ˇA. Then the equilibrium valences .v�A;e; v
�
B;e/ satisfy the

following properties:

� Candidate A’s equilibrium valence choice v�A;e increases with ˇB .

� The difference �v�e decreases with ˇB .

According to Proposition 19, when candidates become similar (in terms of

their marginal costs ˇA and ˇB ), then their equilibrium choices become sim-

ilar, too: as candidate B ’s marginal cost ˇB increases (but still less than ˇA),

candidate A increases her valence in a rate faster than candidate B .

5. Conclusion

I considered a model in which two asymmetric candidates compete for voters

through non-policy activities. When voting is costly for voters, there exist

at least one pure strategy equilibrium for most cases. This model predicts

that candidates’ valence choices are influenced by voters’ voting cost and the

productivity difference between the two candidates.

The current paper can be extended in the following directions: (1) I only

considered pure strategy equilibrium, and shown that there exist elections

where no such equilibria exist. While I have shown that there exists at least

on equilibrium (possibly mixed) under Assumption 1, it is important to work

out the explicit form of the mixed equilibria. (2) I supposed that candidates’

costly actions do not influence the importance of the elections for voters. This

assumption can be relaxed.

Appendix A. The Indifferentiable Points

� The function LWRCC� Œ2;1/! RC is defined by letting L.v�c ; e/ D minfvc 2

RC W � .vc ; v�c/ D eg; that is,

L.v�c ; e/ D  
�1

"
e2 � 2 � e

p
e2 � 4

2
�  .v�c/

#
µ  �1

�
XL.e/ �  .v�c/

�
:
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0 e

XL

XR

X`

Xr

2

1

Figure A.1. XL.e/, XR.e/, X`.e/, and Xr .e/.

� The function RWRCC�Œ2;1/! RC is defined by letting R.v�c ; e/ D maxfvc 2

RC W � .vc ; v�c/ D eg; that is,

R.v�c ; e/ D  
�1

"
e2 � 2C e

p
e2 � 4

2
�  .v�c/

#
µ  �1

�
XR.e/ �  .v�c/

�
:

� The function `WRCC � .0; 2�! RC is defined by letting �c.`.v�c ; e/; v�c/ D e;

that is,

`.v�c ; e/ D  
�1

�p
4e C 1 � 1

2
�  .v�c/

�
µ  �1

�
X`.e/ �  .v�c/

�
:

� The function r WRCC�.0; 2�! RC is defined by setting��c.v�c ; `.v�c ; e// D e;

that is,

r.v�c ; e/ D  
�1

�p
4e C 1C 1

2e
�  .v�c/

�
µ  �1

�
Xr .e/ �  .v�c/

�
:

All of these functions are well-defined and increasing with v�c . Notice that if

e ¤ 2, then L.v�c ; e/; `.v�c ; e/ < v�c , and R.v�c ; e/; r.v�c ; e/ > v�c ; if e D 2, then

L.v�c ; 2/ D R.v�c ; 2/ D `.v�c ; 2/ D r.v�c ; 2/ D v�c . Also, R and ` are increasing

with e, and L and r are decreasing with e. These properties can be seen from

Figure A.1, where Xi .e/, i 2 fL;R; `; rg, are depicted.

I now show (3). This property holds because XL.e/ �XR.e/ D 1, and so

vc < L.v�c ; e/ ”  .vc/ <  .L.v�c ; e// D XL.e/ �  .v�c/

” XR.e/ �  .vc/ <
�
XR.e/ �XL.e/

�
�  .v�c/

” XR.e/ �  .vc/ <  .v�c/

” R.vc ; e/ < v�c :

Notice that (4) can be proved using the exactly same way.
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Appendix B. Proofs

Proof of Corollary 3. I first show that:

� For an election e 2 Œ2;1/:

(B.1)

„
�c.vc ; v�c ; e/ < �c.vc ; v�c/ if vc 2 .0; L.v�c ; e//

�c.vc ; v�c ; e/ D �c.vc ; v�c/ if vc 2 f0;L.v�c ; e/g

�c.vc ; v�c ; e/ > �c.vc ; v�c/ if vc 2 .L.v�c ; e/; v�c �;

and

(B.2)

„
z�c.vc ; v�c ; e/ < z�c.vc ; v�c/ if vc 2 .v�c ; R.v�c ; e//

z�c.vc ; v�c ; e/ D z�c.vc ; v�c/ if vc D R.v�c ; e/

z�c.vc ; v�c ; e/ > z�c.vc ; v�c/ if vc 2 .R.v�c ; e/;1/:

� For an election e 2 .0; 2/:

(B.3)

„
�c.vc ; v�c ; e/ > �c.vc ; v�c/ if vc 2 .0; `.v�c ; e//

�c.vc ; v�c ; e/ D �c.vc ; v�c/ if vc 2 f0; `.v�c ; e/g

�c.vc ; v�c ; e/ < �c.vc ; v�c/ if vc 2 .`.v�c ; e/; v�c �;

and

(B.4)

„
z�c.vc ; v�c ; e/ > z�c.vc ; v�c/ if vc 2 .v�c ; r.v�c ; e//

z�c.vc ; v�c ; e/ D z�c.vc ; v�c/ if vc D r.v�c ; e/

z�c.vc ; v�c ; e/ < z�c.vc ; v�c/ if vc 2 .r.v�c ; e/;1/:

To verify (B.1), notice that when vc 6 v�c ,

�c.vc ; v�c ; e/

�c.vc ; v�c/
D

 
e2 .vc/ .v�c/�
 .vc/C  .v�c/

�2
!1=6

:

Hence,

�c
�
L.v�c ; e/; v�c ; e

�
�c
�
L.v�c ; e/; v�c

� D  e2 �XL.v�c ; e/ �  
2.v�c/�

XL.v�c ; e/C 1
�2
 2.v�c/

!1=6
D 1:

Since

D1

�
�c.vc ; v�c ; e/

�c.vc ; v�c/

�
D
e�c.vc ; v�c/

�
 .v�c/ �  .vc/

�
 0.vc/

12f 2.vc ; v�c ; e/
�
 .vc/C  .v�c/

�2 > 0;

it follows from the above inequality that �c.vc ; v�c ; e/=�c.vc ; v�c/ < 1 when

vc 2 .0; L.v�c ; e//, and �c.vc ; v�c ; e/=�c.vc ; v�c/ > 1 when vc 2 .L.v�c ; e/; v�c/.

To verify (B.3), notice that when vc 6 v�c and e 2 .0; 2/,

�c.vc ; v�c ; e/

�c.vc ; v�c/
D

"
e 2.v�c/

 2.vc/C  .vc/ .v�c/

#1=3
:
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Hence,

�c
�
L.v�c ; e/; v�c ; e

�
�c
�
L.v�c ; e/; v�c

� D
�

e 2.v�c/h
X2
`
.v�c/CX`.v�c/

i
�  2.v�c/

�1=3
D 1:

Since

D1

�
�c.vc ; v�c ; e/

�c.vc ; v�c/

�
D �

"
e 2.v�c/

 2.vc/C  .vc/ .v�c/

#4=3
2 .vc/C  .v�c/

3e 2.v�c/
 0.vc/ < 0;

we get the desirable results.

To verify (B.2), rewrite the first inequality in (B.1) as follows:

(B.1.1) ��c.v�c ; vc ; e/ < ��c.v�c ; vc/ if v�c 2 .0; L.vc ; e//:

Observe that v�c 2 .0; L.vc ; e// if and only if vc 2 .R.v�c ; e/;1/ by (3). Then it

follows from (B.1.1) that

z�c.vc ; v�c ; e/ D 1 � ��c.v�c ; vc ; e/ > 1 � ��c.v�c ; vc/

D z�c.vc ; v�c/ if vc 2 .R.v�c ; e/;1/:

This proves the third inequality in (B.2). All the remaining claims can be proved

similarly. ut

Proof of Lemma 4. It follows readily from calculus that:

� For �c.vc ; v�c ; e/:

D1�c.vc ; v�c ; e/ D
8 .v�c/

�
 .vc/C 2 .v�c/

�
�4c.vc ; v�c ; e/ 

0.vc/

3e 3.vc/
> 0;

D11�c.vc ; v�c ; e/ D
�c.vc ; v�c ; e/

9 2.vc/
�
 .vc/C  .v�c/

�2
�

n h
3 3.vc/C 6 .vc/ 

2.v�c/C 9 
2.vc/ .v�c/

i
 00.vc/

�

h
2 2.vc/C 8 .vc/ .v�c/C 2 

2.v�c/
i
 02.vc/

o
< 0;

D12�c.vc ; v�c ; e/ D
�e .vc/

�
 2.vc/C  .vc/ .v�c/C 4 

2.v�c/
�
 0.vc/ 

0.v�c/

72 2.v�c/
�
 .vc/C  .v�c/

�3
�2c.vc ; v�c ; e/

< 0:

� For �c.vc ; v�c/:
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D1�c.vc ; v�c/ D
�c.vc ; v�c/ 

0.vc/

2 .vc/
> 0;

D11�c.vc ; v�c/ D

�
2 .vc/ 

00.vc/ �  
02.vc/

�
�c.vc ; v�c/

4 2.vc/
< 0;

D12�c.vc ; v�c/ D
� 0.vc/ 

0.v�c/

16 2.v�c/�c.vc ; v�c/
< 0:

� For �c.vc ; v�c/:

D1�c.vc ; v�c/ D
 0.vc/

2 .v�c/
> 0;

D11�c.vc ; v�c/ D
 00.vc/

2 .v�c/
< 0;

D12�c.vc ; v�c/ D
� 0.vc/ 

0.v�c/

2 2.v�c/
< 0:

� For z�c.vc ; v�c ; e/ D 1 � ��c.v�c ; vc ; e/:

D1 z�c.vc ; v�c ; e/ D
8
�
2 .vc/C  .v�c/

�
�4�c.v�c ; vc ; e/ 

0.vc/

3e 2.v�c/
> 0;

D11 z�c.vc ; v�c ; e/ D
��c.v�c ; vc ; e/

9 2.vc/
�
 .vc/C  .v�c/

�2
�

n h
6 3.vc/C 3 .vc/ 

2.v�c/C 9 
2.vc/ .v�c/

i
 00.vc/

�

h
4 2.v�c/C 10 .vc/ .v�c/C 10 

2.vc/
i
 02.vc/

o
< 0;

D12 z�c.vc ; v�c ; e/ D
e .v�c/

�
4 2.vc/C  .vc/ .v�c/C  

2.v�c/
�
 0.vc/ 

0.v�c/

72 2.vc/
�
 .vc/C  .v�c/

�3
�2�c.v�c ; vc ; e/

> 0:

� For z�c.vc ; v�c/ D 1 � ��c.v�c ; vc/:

D1z�c.vc ; v�c/ D
��c.v�c ; vc/ 

0.vc/

2 .vc/
> 0;

D11z�c.vc ; v�c/ D

�
2 .vc/ 

00.vc/ � 3 
02.vc/

�
��c.v�c ; vc/

4 2.vc/
< 0;

D12z�c.vc ; v�c/ D
 0.vc/ 

0.v�c/

16 2.vc/��c.v�c ; vc/
> 0:

� For z�c.vc ; v�c/ D 1 � ��c.v�c ; vc/:
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D1z�c.vc ; v�c/ D
 .v�c/ 

0.vc/

2 2.vc/
> 0;

D11z�c.vc ; v�c/ D
 .vc/ .v�c/ 

00.vc/ � 2 .v�c/ 
02.vc/

 3.vc/
< 0;

D12z�c.vc ; v�c/ D
 0.vc/ 

0.v�c/

2 2.vc/
> 0:

I then show that pc.vc ; v�c ; e/ is differentiable at the point vc D v�c D v >

0. Notice that in this case �c.v; v; 2/ D z��c.v; v; 2/ D �c.v; v/ D z��c.v; v/ D

�c.v; v/ D z��c.v; v/ D 1=2. Hence, for e 2 Œ2;1/,

D1�c.v; v; 2/ D D1z�c.v; v; 2/ D D1�c.v; v/ D D1z�c.v; v/ D
 0.v/

4 .v/
;

and for e 2 .0; 2/,

D1�c.v; v/ D D1z�c.v; v/ D
 0.v/

2 .v/
:

Furthermore, by Corollary 3, the following inequalities are easy to see: for

e 2 .2;1/,

D1�c
�
L.v�c ; e/; v�c ; e

�
> D1�c

�
L.v�c ; e/; v�c

�
;

D1 z�c
�
R.v�c ; e/; v�c ; e

�
> D1z�c

�
R.v�c ; e/; v�c

�
;

and for e 2 .0; 2/,

D1�c
�
`.v�c ; e/; v�c

�
> D1�c

�
`.v�c ; e/; v�c ; e

�
;

D1z�c
�
r.v�c ; e/; v�c

�
> D1 z�c

�
r.v�c ; e/; v�c ; e

�
:

Then Lemma 4 follows from the above inequalities and the specification of

pc.vc ; v�c ; e/ in Lemma 2 immediately. ut

Proof of Lemma 5. Notice that for candidate c 2 fA;Bg, her expected payoff

is

Uc.vc ; v�c ; e/ D p.vc ; v�c ; e/ � ˇcvc :

Since p.vc ; v�c ; e/ 6 1, we know that candidate c will never choose a valence

vc > 1=ˇc . ut
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Proof of Proposition 6. For candidate c 2 fA;Bg, if her opponent choses

v�c , then the expected utility for candidate c from choosing vc is

Uc.vc ; v�c ; e/ D

„
1 � ˇcvc if vc > v�c

�ˇcvc if vc < v�c

1=2 � ˇcvc if vc D v�c :

First, there cannot be an equilibrium with vc D v�c : by choosing v�cC ", where

" is sufficiently small but positive, results in victory for candidate c. Since there

always exists " > 0 such that Œ1 � ˇc.v�c C "/� � .1=2 � ˇcv�c/ D 1=2 � ˇc" > 0,

it is benefit for c to chose some vc 2 .v�c ; v�c C 1=.2ˇc//. However, if vc > v�c ,

then a slight reduction in vc is a profitable deviation. Finally, if vc < v�c , then

candidate c should chose vc D 0, and so either v�c D 0 or a slight decrease in

v�c is desirable. But if v�c D 0, then a deviation to vc 2 .0; 1=ˇc/ is desirable

for candidate c. ut

Proof of Lemma 7. I first show that R.v�c ; e/ … BRc.v�c ; e/ for every e 2 .2;1/

and every v�c > 0; that is, candidate c’s optimal valence choice cannot be at

the indifferentiable point R.v�c ; e/.

If D1z�c.R.v�c ; e/; v�c/ < ˇc , then

˛´ argmax
vc2.v�c ;R.v�c ;e//

˚
z�c .vc ; v�c/ � ˇcvc

	
< R.v�c ; e/;

and so R.v�c ; e/ is not optimal: at least candidate c is better off with the point

˛ than with the point R.v�c ; e/ (of course ˛ is not necessarily candidate c’s

optimal choice).

If D1z�c.R.v�c ; e/; v�c/ > ˇc , then

D1 z�c.R.v�c ; e/; v�c ; e/ > D1z�c.R.v�c ; e/; v�c/ > ˇc :

Hence,

max
vc>R.v�c ;e/

˚
z�c .vc ; v�c ; e/ � ˇcvc

	
> z�c

�
R.v�c ; e/; v�c ; e

�
� ˇcR .v�c ; e/

D z�c
�
R.v�c ; v�c ; e/

�
� ˇcR.v�c ; e/

D max
vc2Œv�c ;R.v�c ;e//

˚
z�c .vc ; v�c/ � ˇcvc

	
:

Similarly, it can be shown that L.v�c ; e/ … BRc.v�c ; e/ for every e 2 .0; 2/ and

every candidate c 2 fA;Bg.

Finally, suppose that .v�A; v
�
B/ is an equilibrium for an election e 2 .2;1/. I

will show in Lemma 8 shortly that v�A ¤ v�B for every equilibrium. So, without

loss of generality, assume that v�A < v�B . Then v�B 2 BRB.v�A; e/ and so v�B ¤
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R.v�A; e/ by the previous argument; that is, D1pB.v�B ; v
�
A; e/ exists. Now suppose

that v�A D L.v
�
B ; e/. But then

�A.v
�
A; v

�
B ; e/ D �A.v

�
A; v

�
B/ ” 1 � �A.v

�
A; v

�
B ; e/ D 1 � �A.v

�
A; v

�
B/

” z�B.v
�
B ; v

�
A/ D z�B.v

�
B ; v

�
A/

” v�B D R.v
�
A; e/:

This results in a contradiction. Hence, D1pA.v�A; v
�
B ; e/ also exists. The same

reasoning can be applied to elections e 2 .0; 2/. ut

Proof of Lemma 8. If .vA; vB/ D .0; 0/, then a candidate c 2 fA;Bg can increase

her valence from 0 to an arbitrary small but positive real number " > 0, so that

her victory probability is increased from 1=2 to 1. Thus, there always exists

such an " > 0 to make candidate c better off.

To see vA > vB cannot be an equilibrium, recall that

pc.vc ; v�c ; e/ D pc
�
kc.vc ; v�c/; e

�
:

According to this equality and the chain rule, we have

D1pA.vA; vB ; e/ D
�
D1pA.kA; e/

�
�
�
D1kA.vA; vB/

�
D
�
D1pA.kA; e/

�  0.vA/ .vB/�
 .vA/C  .vB/

�2 ;
and

D1pB.vB ; vA; e/ D D2
�
1 � pA.vA; vB ; e/

�
D �

�
D1pA.kA; e/

�
�
�
D2kA.vA; vB/

�
D
�
D1pA.kA; e/

�  .vA/ 
0.vB/�

 .vA/C  .vB/
�2 :

It follows from (5) and the above two equations that

(B.5)
D1pA.vA; vB ; e/

D1pB.vB ; vA; e/
D
�.vA/

�.vB/
D
ˇA

ˇB
> 1;

where the last inequality follows from the specification that ˇA > ˇB .

Suppose that .vA; vB/ is an equilibrium and vA > vB . Then the left-hand side

of (B.5) is strictly less than 1 since � is strictly decreasing, but the right-hand

side of (B.5) is strictly larger than 1. A contradiction.

Finally, notice that when vA D vB D v > 0,

D1�c.v; v/ D D1z�c.v; v/ D
1

4

 0.v/

 .v/
;

and

D1�c.v; v/ D D1z�c.v; v/ D
1

2

 0.v/

 .v/
;
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i.e., pc.vc ; v�c ; e/ is differentiable at vc D v�c D v for each candidate c 2 fA;Bg.

So the case that vA D vB can be ruled out by applying the above results. Thus,

in every equilibrium it must be the case that vA < vB . ut

Proof of Lemma 9. For ease of exposition, let

Y.e/´

 
e2 � 1C e

p
e2 � 4

24e

!"
1

e3 � 3e C
�
e2 � 1

�p
e2 � 4

#4=3
:

Notice that Y.2/ D 1=4. With some simple but tedious computation, we also

know that Y 0.e/ < 0, that is, Y.e/ is strictly decreasing with e.10 Hence, Y.e/ <

1=4 for all e 2 .2;1/. Since

D1z�c.v�c ; v�c/ D
��c.v�c ; v�c/ 

0.vc/

2 .vc/
D
1

4
� .v�c/ ;

we have

D1 z�c
�
R.v�c ; e/; v�c

�
D
8
�
2 .vc/C  .v�c/

�
�4�c.v�c ; vc ; e/ 

0.vc/

3e 2.v�c/

ˇ̌̌̌
ˇ
vcDR.v�c ;e/

D Y.e/
 0
�
R.v�c ; e/

�
 .v�c/

<
1

4

 0
�
R.v�c ; e/

�
 .v�c/

6
1

4

 0.v�c/

 .v�c/

D D1z�c.v�c ; v�c/;

where the last inequality holds because R.v�c ; e/ > v�c and  is concave. ut

Proof of Proposition 10. Define v�c by letting �.v�c/ D 4ˇc . Such a num-

ber v�c must exist and is unique since the function � is strictly decreasing,

limx!0C �.x/!1, and limx!1�.x/! 0. For this v�c and e D 2, if candidate

c choses vc D v�c , then

D1�c .v�c ; v�c ; 2/ D D1 z�c .v�c ; v�c ; 2/ D D1�c .v�c ; v�c/

D D1z�c .v�c ; v�c/

D
�.v�c/

4

D ˇc I

10Actually, Y.e/ is strictly convex in e.
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that is, candidate c’s first-order condition (5) holds for all e 2 Œ2;1/ by choos-

ing vc D v�c . Since pc.vc ; v�c ; 2/ is strictly concave, the point vc D v�c is

candidate c’s unique best response.

Because ˇA > ˇB , it follows from that

�.vB/

� .vA/
D
ˇA

ˇB
> 1;

which implies that vA > vB .

I now show that the best response function BRc for candidate c is strictly

increasing on .0; v�c/ and is strictly decreasing on .v�c ;1�. Differentiating (5)

with respect to v�c yields�
D11pc.vc ; v�c ; 2/

�
�
�
D1BRc.v�c ; 2/

�
C D12p.vc ; v�c ; 2/ D 0I

thus,

D1BRc.v�c ; 2/ D �
D12pc.vc ; v�c ; 2/

D11pc.vc ; v�c ; 2/

˚
< 0 if vc < v�c

> 0 if vc > v�c ;
(B.6)

according to Lemma 4.

If ˇA D ˇB D ˇ and e 2 .2;1/, then the necessary condition (6) implies that

�.vA;e/ D �.vB;e/; that is, vA;e D vB;e D v since � is monotonely decreasing.

Therefore, candidates’ victory probabilities are �A.v; v/ and z�B.v; v/, respec-

tively. Then,

D1�A.v; v/ D
�.v/

4
D ˇ H) �.v/ D 4ˇ:

This gives the unique equilibrium campaign effort levels:

v�A D v
�
B D v D �

�1.4ˇ/:

Clearly, candidate c has no incentive to decrease her campaign effort level,

and it follows from (7) that she also has no incentive to increase her campaign

effort level.

Similarly, we can show that if ˇA D ˇB D ˇ and e 2 .0; 2/, then the unique

equilibriu is

v�A D v
�
B D �

�1.2ˇ/:

Since � is strictly decreasing, we have ��1.4ˇ/ < ��1.2ˇ/. ut

Proof of Proposition 11. Evidently, if .v�A;e; v
�
B;e/ is an Ez�e-equilibrium for

an election e 2 .2;1/, then conditions (Ez�e-a) — (Ez�e-c) must hold, and if

.v�A; v
�
B/ is an E� -equilibrium, then conditions (E� -a) — (E� -c) must hold. So it

suffices to do the only if part ion.
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(1-a). In this step I first show that for every e 2 Œ2;1/ there exists a unique pair

.v�A;e; v
�
B;e/ satisfying (Ez�e-a); then I show that both v�A;e and v�B;e are continuous

and strictly increasing with e.

Observe that (Ez�e-a) implies that

(B.7) vB;e D �
�1

�
ˇB

ˇA
��

�
vA;e

��
µ T

�
vA;e

�
:

This function T WRC ! RC is well-defined, continuous and differentiable since

�.�/ is strictly decreasing, continuous and differentiable. Furthermore, T is

strictly increasing: by the Inverse Function Theorem,

T 0
�
vA;e

�
D

ˇA

�0
�
vB;e

�
� ˇB ��0

�
vA;e

� > 0:
Thus, if a pair .vA;e; vB;e/ satisfies (Ez�e-a), then vA;e and vB;e change in the

same direction with respect to e. With this property, I show that there exists a

unique v�A;e such that D1�A.v�A;e; v
�
B;e/ D ˇA, where v�B;e D T .v

�
A;e/ > v

�
A;e .

Let �.vA;e/ ´  .T .vA;e//= .vA;e/. Then the partial derivative D1�A.�; �/ on

the trace .vA;e; T .vA;e// can be written as follows:

D
�
vA;e

�
´D1�A

�
vA;e; T .vA;e/

�
D

2664
 
e1=3

6

!
�
�
vA;e

�
C 2�2

�
vA;e

�h
�
�
vA;e

�
C�2

�
vA;e

�i4=3
3775� �vA;e� :(B.8)

It follows from (Ez�e-a) that

(B.9) 1 >
 
�
vA;e

�
 
�
T .vA;e/

� D ˇB

ˇA
�
 0
�
vA;e

�
 0
�
T .vA;e/

� > ˇB
ˇA
:

Notice that in the above display,  0.T .vA;e// is the first-order derivative of  at

the point T .vA;e/. Hence,

1 < �
�
vA;e

�
6
ˇA

ˇB
:

Therefore, the term in the brackets of (B.8) is bounded, which means that

limvA;e!C1D.vA;e/ D 0, and limvA;e!0C
D.vA;e/ D C1.

Next, I verify that D.vA;e/ is strictly decreasing with vA;e : Let v0A;e > vA;e ;

then vA;e < T.vA;e/ < T .v0A;e/, and so

D
�
v0A;e

�
D D1�A

�
v0A;e; T .v

0
A;e/

�
< D1�A

�
vA;e; T .v

0
A;e/

�
< D1�A

�
vA;e; T .vA;e/

�
D D

�
vA;e

�
I

where the first inequality follows because D11�A.�; T .v0A;e// < 0, and the second

inequality follows because D12�A.vA;e; �/ < 0.

We thus know that for every e 2 Œ2;1/, there must exist a unique point

v�A;e > 0 such that D.v�A;e/ D ˇA.
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Let

˝
�
vA;e

�
´

�
�
vA;e

�
C 2�2

�
vA;e

�h
�
�
vA;e

�
C�2

�
vA;e

�i4=3� �vA;e� :
So D.vA;e/ D .e

1=3=6/ �˝.vA;e/. Then ˝.�/ is continuous and strictly decreasing

with vA;e , and D.v�A;e/ D ˇA implies that

v�A;e D ˝
�1

�
6ˇA

e1=3

�
:

Hence, v�A;e is continuous and strictly increasing with e.

(1-b). Suppose that there exists an election e 2 .2;1/ and a pair of valences

.v�A;e; v
�
B;e/ satisfying conditions (Ez�e-a) — (Ez�e-c). I show that .v�A;e; v

�
B;e/ is then

an Ez�e-equilibrium for this e by verifying that there is no candidate who wants

to deviate.

I first verify that candidate A has no incentive to deviate if candidate B

chooses v�B;e . The following argument is based on Lemma 4. Given v�B;e , (Ez�e-a),

and (Ez�e-b):

(i). Candidate A has no incentive to choose a valence from the set Œ0; L.v�B;e/�X

fv�A;eg because of the first-order condition in (Ez�e-a).

(ii). Candidate A has no incentive to choose a valence v0A 2 .L.v
�
B;e/; v

�
B;e�. This

is because

D1�A
�
v0A; v

�
B;e

�
< D1�A

�
L.v�B;e/; v

�
B;e

�
< D1�A

�
L.v�B;e/; v

�
B;e

�
< D1�A

�
v�A;e; v

�
B;e

�
D ˇA;

and so

�A

�
v0A; v

�
B;e

�
� ˇAv

0
A < �A

�
L.v�B;e/; v

�
B;e

�
� ˇAL.v

�
B;e/

D �A

�
L.v�B;e/; v

�
B;e

�
� ˇAL.v

�
B;e/

< �A

�
v�A;e; v

�
B;e

�
� ˇAv

�
A;e:

(iii). Candidate A also has no incentive to increase her valence to some point

in the interval .v�B;e; R.v
�
B;e/� since

D1�A
�
v�B;e; v

�
B;e

�
D D1z�A

�
v�B;e; v

�
B;e

�
;

and D1z�A.vA; v�B;e/ is strictly decreasing with vA on .v�B;e; R.v
�
B;e/�.
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(iv). Therefore, candidate A’s only possible profitable deviation is to increase

her valence to some v0A > R.v
�
B;e/ such that pA.v0A; v

�
B;e/ D z�A.v

0
A; v

�
B;e/. How-

ever, this deviation is also undesirable for candidate A because

D1 z�A
�
v0A; v

�
B;e

�
< D1 z�A

�
R.v�B;e/; v

�
B;e

�
< D1z�A

�
v�B;e; v

�
B;e

�
D D1�A

�
v�B;e; v

�
B;e

�
< D1�A

�
v�A;e; v

�
B;e

�
D ˇA;

where the first inequality holds since the partial derivative is strictly de-

creasing and v0A > R.v
�
B;e/ by assumption, and the second inequality follows

from (7) in Lemma 9.

I then consider candidate B ’s incentive compatability problem. It follows

from (3) that if (Ez�e-b) holds then R.v�A;e/ < v�B;e automatically holds; that is,

v�B;e locates at the right side of the indifferentiable point R.v�A;e/. It is clear that

candidate B never wants to increase her valence or to decrease her valence to

some point in the interval ŒR.v�A;e/; v
�
B;e/. Also, the deviation to a point v0B 2

Œ0; v�A;e� is undesirable for candidate B because

D1pB
�
v0B ; v

�
A;e

�
> D1�B

�
v�A;e; v

�
A;e

�
D D1z�B

�
v�A;e; v

�
A;e

�
> D1 z�B

�
R.v�A;e/; v

�
A;e

�
> D1 z�B

�
v�B;e; v

�
A;e

�
D ˇB ;

where, in an abuse of notation, D1pB.v0B ; v
�
A;e/ is either the left or right deriva-

tive if v0B D L.v�A;e/; the last inequality follows from (7). Hence, if B wants to

deviate, she will only deviate from v�B;e to some point v0B 2 .v
�
A;e; R.v

�
A;e// such

that pB.v0B ; v
�
A;e/ D z�B.v

0
B ; v

�
A;e/. This deviation is prevented by (Ez�e-c).

In sum, given a pair of valences .v�A;e; v
�
B;e/ satisfying (Ez�e-a) and (Ez�e-b),

candidate A never wants to deviate since to make a deviation profitable, she

has to increase her valence to a very high point — larger than R.v�B;e/ — this

increase of valence cannot complement the cost. However, candidate B may

find it is desirable to reduce her valence to a point less that R.v�A;e/. But (Ez�e-c)

makes this deviation impossible.

(2). It is now easy to show that there exists a unique pair .v�A; v
�
B/ that satisfies

(E� -a) and is independent of e. So I just verify that if there exists a pair of

valences .v�A; v
�
B/ satisfying (E� -a) — (E� -c), then .v�A; v

�
B/ is an E� -equilibrium.

I first verify that when (E� -a) and (E� -b) hold, candidate A has no incentive

to deviate. It is true because if candidate A reduces her valence to some point
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v0A 2 .0; L.v
�
B;e/�, then

D1�A
�
v0A; v

�
B;e

�
> D1�A

�
L.v�B;e/; v

�
B;e

�
> D1�A

�
L.v�B;e/; v

�
B;e

�
> D1�A

�
v�A;e; v

�
B;e

�
D ˇA:

Similar to the cases of the Ez�e-equilibrium, candidate A also has no incentive

to increase her valence.

Finally, when (E� -a) and (E� -b) hold, we have v�B;e < R.v
�
A;e/ by (3). Also, it is

now easy to see that candidate B has no incentive either to reduce her valence

or increase her valence to some point in the interval .v�B;e; R.v
�
A;e/�. Therefore,

candidate B has no incentive to deviate if and only if choosing some valence

v0B;e > R.v�A;e/ is undesirable for her; that is, if and only if condition (E� -c)

holds. ut

Proof of Proposition 13. I first show the properties in the first claim step

by step.

(1: the point ez�). In this step I show that there exists a cutoff point ez� such

that (Ez�e-b) and (Ez�e-c) hold for all e 2 .2; ez�/.

Let .v�A;e; v
�
B;e/ satisfies condition (Ez�e-a). Then by (B.9),

(B.90) 1 <
 
�
v�B;e

�
 
�
v�A;e

� 6 ˇA

ˇB
:

Since  .v�B;e/= .v
�
A;e/ is continuous with e, and XR is strictly increasing with e,

there must exist a point ez�1 > 2 such that for all e 2 .2; ez�1/,

 
�
v�B;e

�
 
�
v�A;e

� > XR.e/I
that is, v�B;e > R.v�A;e/ for all e 2 .2; ez�1/. This proves that (Ez�e-b) holds for all

e 2 .0; ez�1/.

Now define a correspondence GW Œ2;1/� RCC by letting

G.e/ D

�
v�A;e; R

�
v�A;e

��
;

for every e 2 Œ2;1/. Since v�A;e is continuous with e by Proposition 13, and

so R.v�A;e/ is also continuous with e, we know that G.e/ is continuous with

e; since v�A;e , and consequently, R.v�A;e/, is bounded,11 we know that G.e/ is

11It is clear that candidate A will never let v�A;e !1.
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compact-valued. Remember that U z�B .vB ; vA/´ �B.vB ; vA/ � ˇBvB . Let

vz�B.e/´ argmax
vB2G.e/

�
U z�B

�
vB ; v

�
A;e

��
;

and

W z�B .e/´ max
vB2G.e/

�
U z�B

�
vB ; v

�
A;e

��
:

Since U z�B .vB ; v
�
A;e/ is strictly concave with respect to vB , and G.e/ is compact,

there is a unique maximum of U z�B .vB ; v
�
A;e/ on G.e/. It follows from the Max-

imum Theorem (e.g., Aliprantis and Border 2006, Section 17.5, or Ok 2007,

Section E.3), that both vz�B and W z�B are continuous at e for all e 2 Œ2;1/. Since

W z�B .2/ < U
z�
B .v

�
B;2; v

�
A;2; 2/, and U

z�
B .v

�
B;e; v

�
A;e/ is continuous with respect to e,

there must exist an ez�2 > 2 such thatW z�.e/B 6 U z�B .v
�
B;e; v

�
A;e; e/ for all e 2 Œ2; ez�2�.

This proves that (Ez�e-c) holds for all e 2 Œ2; ez�2�.

Let ez� D minfez�1; e�2g and this completes the proof of the first part. So I

turn to show the properties in the second claim.

(2-a: the point e� ). I first show that there exists a unique cutoff point e� such

that .v�A; v
�
B/ identified in the Proposition 13(2) is an equilibrium for all elec-

tions e 2 .e� ;1/. Let .v�A; v
�
B/ satisfies (E� -a).

Let e�1 > 2 be defined by letting

L
�
v�B ; e�1

�
D  �1

�
XL.e�1/ �  .v

�
B/
�
D v�AI

that is,

XL.e�1/ D
 .v�A/

 .v�B/
:

Since  .v�A/= .v
�
B/ 2 .0; 1/, and XL.e/ is strictly decreasing with e, XL.2/ D 1,

and lime!1XL.e/ D 0 (see Figure A.1), such a point e�1 must exist and is

unique. Moreover, v�A > L.v�B ; e/ for all e > e�1. Therefore, (E� -b) holds for all

e 2 .e�1;1/.

Next, let e�2 be defined by letting

z�B.v
�
A; v

�
B/ � ˇBv

�
B D max

vB>R.v
�
A
;e�2/

n
z�B
�
vB ; v

�
A; e�2

�
� ˇBvB

o
:

Now, if there does not exist such a point e�2, let e�2 D 0; if such a number

e�2 does exist, it is unique since the function z�B.vB ; v�A; e/ � ˇBvB is strictly

decreasing with e for every vB . So (E� -c) holds whenever e 2 Œe�2;1/.

Let e� D maxfe�1; e�2g. Then E� is an equilibrium for every election e 2

.e� ;1/.

(2-b: the point e0
� ). For this property, it suffices to show there exists a unique

e00� such that Ez�e is not an equilibrium for every e 2 Œe00� ;1/.
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Notice that (B.9) can be reformulated as follows:

(B.10)
ˇB

ˇA
6
 
�
v�A;e

�
 
�
v�B;e

� < 1:
Pick an e00� such that

XL
�
e00�
�
D
ˇB

ˇA
:

Such an e00� must exist, unique and if e 2 Œe00� ;1/ then XL.e/ < ˇB=ˇA, and so

 

�
L
�
v�B;e

��
D XL.e/ �  

�
v�B;e

�
<
ˇB

ˇA
�  

�
v�B;e

�
<  

�
v�A;e

�
;

where the last inequality follows from (B.10). Hence, if e 2 Œe00� ;1/, then

L.v�B;e/ < v
�
A;e ; that is, (Ez�e-b) fails.

Let e0� D maxfe� ; e00�g. Then, combining claim 1 in this proposition, we know

that E� is the unique pure strategy equilibrium for all e 2 .e0� ;1/. ut

Proof of Corollary 14. If  .x/ D x , where  2 .0; 1�, then �.x/ D =x. So

the necessary condition (6) implies that v�B;e D .ˇA=ˇB/v
�
A;e µ

Ǒv�A;e . Hence,

�A

�
v�A;e; v

�
B;e

�
D
1

2

�
e

Ǒ C Ǒ2

�1=3
;

and

v�A;e D

�
Ǒ C 2 Ǒ2

�
e1=3

6
�
Ǒ C Ǒ

2
�4=3

ˇA

; v�B;e D

�
Ǒ C 2 Ǒ2

�
e1=3

6
�
Ǒ C Ǒ

2
�4=3

ˇB

:

Let e�1 be defined by letting L.vB;e�1/ D v
�
A;e�1

. Then

e�1 D X
�1
L

24 v�B;e
v�A;e

!35 D X�1L
 
1

Ǒ

!
:

Now for e 2 .2; e�1/, we have�
L
�
v�B;e

��
�

�
v�A;e

�
D XL.e/ �

�
v�B;e

�
�

�
v�A;e

�
> XL.e�1/ �

�
v�B;e

�
�

�
v�A;e

�
D

h
XL.e�1/ � Ǒ


� 1

i �
v�A;e

�
D 0I

that is, v�A;e < L.v
�
B;e/ for all e 2 .2; e�1/.
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To decide the last cutoff point e�2, let

ˇB D D1z�B
�
vA;e�2 ; R.vA;e�2/

�
D �A

�
R.vA;e�2/; vA;e�2

� 

2R.vA;e�2/

D
1

4

 
1

Ǒ

!=2


XR
�
e�2

�
� vA;e�2

:

Then, if e 2 .2; e�2/, we have D1z�B
�
R.vA;e/; vA;e

�
> ˇB , and so

z�B

�
v�B;e; v

�
A;e

�
� ˇBv

�
B;e > z�B

�
R.v�A;e/; v

�
A;e

�
� ˇBR.v

�
A;e/

D max
vB

�
z�B

�
vB ; v

�
A;e

�
� ˇBvB

�
D z�B

�
R.v�A;e/; v

�
A;e

�
� ˇBR.v

�
A;e/:

Let ez� D minfe�1; e�2g and we are done. ut

Proof of Proposition 19. Fix an election e. The necessary condition (6) im-

plies that for every equilibrium .vA; vB/,

�.vB/ D
ˇB

ˇA
��.vA/:

It follows from the above equation that for each vA, if ˇB increases, then vB

strictly decreases since � is strictly decreasing. This result indicates that when

the two candidates becomes similar (ˇA�ˇB becomes smaller), then their equi-

librium valence choices becomes similar, too.

Write vB.ˇB/ D T .vA; ˇB/, where T is defined in (B.7). Define

�
�
vA; ˇB

�
´

 
�
T .vA/; ˇB

�
 .vA/

;

and

˝
�
vA; ˇB

�
´

�
�
vA; ˇB

�
C 2�2

�
vA; ˇB

�h
�
�
vA; ˇB

�
C�2

�
vA; ˇB

�i4=3�.vA/ :
Then �.vA; ˇB/ is strictly decreasing with ˇB . Since the function

x 7!
x C 2x2�
x C x2

�4=3
is strictly decreasing with x when x > 0, we know that ˝.vA; ˇB/ is strictly

increasing with ˇB when vA is fixed.

The following equalities hold at equilibrium:

ˇA D D1�A
�
vA; T .vA; ˇB/

�
D

�
e1=3

6

�
˝
�
vA; ˇB

�
:
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Since ˝ is strictly decreasing with vA, we infer that if ˇB increases, then vA;e
must increase, too. This proves that vA is strictly increasing with ˇB and �v is

strictly decreasing with ˇB in the equilibrium Ez�e .

Now consider the equilibrium E� . In equilibrium we have

ˇA D D1�A
�
vA; T .vA; ˇB/

�
D
1

4

"
 .vA/

 
�
T .vA; ˇB/

�#1=2�.vA/
D
1

4

�
1

�.vA; ˇB/

�1=2
�.vA/:

Since D11�A < 0 and D12�A < 0 by Lemma 4, we know that D1�A.vA; T .vA; ˇB//

is strictly decreasing with vA when ˇB is fixed. Because �.vA; ˇB/ is strictly

decreasing with ˇB , we infer that when ˇB increases, vA must increase in the

equilibrium E� .

ut
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