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SET SYSTEMS

REMARKS

REMARK. Klenke (2008, Fig. 1.1, p.7) provides a chart to indicate the relation-
ships among the set systems. Here I replicate his chart; see Figure 1.1.

oUstal/ e A N-stable

e e
Field { ~-closed A-system{ A CB= B~Ac A

U-closed LInzy An € A
e g:\ o-U-stable

g e

Ring { ~-closed
U-closed

LJ-stable

g e A
Semiring { B~ A4 =|1]"_, B;
N-closed

FIGURE 1.1. Inclusion between classes of sets #4 C 2%

.. U -stable . i
Semiring ——— Ring See part (g) of Exercise 20;
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o-ring ﬂ o-field See part (b) of Exercise 41;

Ring ﬁ—eﬁ Field 2 € A and 4 is closed under difference implies that A €
A= A° =2 — A € A;

-stabl
A-systme m o-field See Exercise 8.

REMARK. This notes is for Exercise 32 (p.17). See Klenke (2008, Example 1.40,
p.18-19). We construct a measure for an infinitely often repeated random ex-
periment with finitely many possible outcomes (Product measure, Bernoulli
measure). Let S be the set of possible outcomes. For s € S, let p; = 0 be the
probability that s occurs. Hence ) ¢ ps = 1. For a fixed realization of the
repeated experiment, let z;(w), z2(w), ... € S be the observed outcomes. Hence
the space of all possible outcomes of the repeated experiment is 2 = SN. We
define the set of all sequences whose first n values are z;(w), ..., zy(®):

[Z1(@),....zn(®)] = {0’ € 2: zi(0') = zi(w) forany i = 1,...,n}. (1.1)

Let Cy = {@&}. For n € N, define the class of cylinder sets that depend only on
the first n coordinates

C, ={[z1(w),...,zp(®)]: z1(w),...,zp(w) € S}, (1.2)

and let C := ;2 Cy.

We interpret [z1(w),...,z,(w)] as the event where the outcome of the first
experiment is z;(w), the outcome of the second experiment is z,(w) and fi-
nally the outcome of the n-th experiment is z,(w). The outcomes of the other
experiments do not play a role for the occurrence of this event. As the indi-
vidual experiments ought to be independent, we should have for any choice
z1(w), ..., zy(w) € E that the probability of the event [z;(w),...,z,(®)] is the
product of the probabilities of the individual events.

1.1 7-SYSTEMS, A-SYSTEMS, AND SEMIRINGS

1.1.1 n-Systems

» EXERCISE 1 (1.1.1). Let 2 = («, B]. Let P consists of & along with the rsc
subintervals of 2. P is a w-system of subsets of («, B].

PROOF. Let A = (a,b] and B = (¢, d] be #-sets. Then either AN B = & € P, or
ANB=(aVve,bnd]eP. O

» EXERCISE 2 (1.1.2). Must @ be in every m-system?

SOLUTION. Not necessary. For example, let
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=(0,1, A=(0,1/2, B=(1/4,1, C=(1/4,1/2],

and let # = {4, B,C}. Then & is a n-system on £2, and @ ¢ &. Generally, if
AN B # @ for any A, B in a 7-system, then @ does not in this 7-system. |

» EXERCISE 3 (1.1.3). List all w-systems consisting of at least two subsets of

{w1, w2, w3}.
SOLUTION. These m-systems are:

HoiAwi 0}, () €{1,2,3)% and j # i

{wi} {o1, 02, 03}};

{wi, 0} {w1, 02, w3}};

@ Ao} {wi o}, i =1,2,3,and j #i;

!
!
{oi} (01,0} {01, 02, 03});
!
!

@ {wi, wj}, {o1, w2, w3}};

(D40} (. 05}, {01, 02, 03}). o

» EXERCISE 4 (1.1.4). If $, consists of the empty set and the k-dimensional
rectangles of any one form, then Py is a n-system of subsets of R¥.

PROOF. Let A, B € #; be two k-dimensional rectangles of any form. We also
write A = Ay X Ay x ---x Ay and B = B; x --- x B, where 4; and B; are rsc
intervals for every i € {1,...,n}. We also assume that A # @ and B # &; for
otherwise A N B = @ € & is trivial. Then

k
ANB =(A1 X+ xAp)N(By x---x Br) = X (A4; N B;) € %,
i=1

since A; N B; is a rsc interval in R. O

» EXERCISE 5 (1.1.5). Let P consist of @ and all subsets of R* that are neither
open nor closed. Then P is not a n-system of subsets of R¥.

PROOF. To get some intuition, let ¥ = 1. Consider two P-sets: A = (0,1/2]
and B = [1/4,1). Note that neither 4 nor B are open or closed on R, but their
intersection A N B = [1/4,1/2] is closed on R, and is not in P

Now consider the k-dimensional case. Let A, B € P;let A = Xf-‘zl A; and
B = Xf.;l B;; particularly, we let A; = (a;, b;] and B; = [¢;, d;), where a; < ¢; <
b; < d;. Then (a;,b;] N [ci.di) = [ci,bi] # @, and AN B = X*_, (4, NB) =
X ¥_, [ci,bi] is closed on R*. O

» EXERCISE 6 (1.1.6). For each «a in a nonempty index set A, let $, be a w-system
over §2.
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a. The collection (\,c4 P« IS a w-System on $2.

b. Let A C 2. Suppose that {P, : a € A} is the “exhaustive list” of all the -
system that contain 4. In other words, each £, 2 4, and any r-system that
contains A coincides with some Py. Then () ,c 4 Po Is a w-System that contains
A. If @ is a w-system containing 4, then (\,c4 Po S Q. The minimal -System
generated by A always exists.

c. Suppose that P is a w-system with P D A, and suppose that & is contained in
any other m-system that contains A. Then P = (1,4 P, With notation as in
(b). The minimal n -system containing 4 [which always exists] is also unique.

PROOF. (a) Suppose B,C € (), c4 Po- Then B, C € P, for every o € A. Since P,

J
is a w-system, we have BNC € P, for all« € A. Consequently, BNC € [\ cq P
i.e., (Nyes Po is a w-system on 2.

The analogous statement holds for rings, o-rings, algebras and o-algebras.
However, it fails for semirings. A counterexample: let 2 = {1,2,3,4}, A; =
{@,82,{1},{2,3},{4}}, and A, = {2, 2,{1},{2},{3,4}}. Then A; and A, are
semirings but 4; N A, = {@, 2, {1}} is not.

(b) Since 2% € {#, : a € A} =: [1(A), the family IT(4A) is nonempty. It follows

from (a) that (,c4 P« is @ 7-system containing +. Finally, if @ is a 7-system
containing -4, then @ € I1(+4), hence (o4 P € Q.

() Since () e Po is the w-system generated by 4, we have (,c4 Pu S P
since & is contained in any other m-system that contains +, we have # C
€D

maeA‘/a'

O

1.1.2 A-System

» EXERCISE 7 (1.1.7). This exercise explores some equivalent definitions of a
A-system.!

a. £ is a A-system iff £ satisfies (A1), (A%), and (A3).

b. Every A-system additionally satisfies (A4), (A5), and (Ag).

c. £ isaA-system iff £ satisfies (A1), (A}), and (As).

I The conditions are:

(A1) K€L

(Ay) AedL=— A e L,

(\,) ABef&ACB= B~Ac,

(A3) For any disjoint {4,}52, € £, U,2, 4n € &;
(Ay) A, BeL&ANB=g=— AUBe%;
(As) Vv {An};o C&L A, 1= UZO=1 Ay € &;

=1 =

(A»G) A\ {An}zo=1 c & A, J/=> ﬂzo=1 A, e L.
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d. If a collection £ is nonempty and satisfies (A,) and (A3), then £ is a A-system.

PROOF. (a) Let £ be a A-system. Then @ € £ by (1;) and (4,). Suppose that
A,Be £and A C B. Then B € £ by (A2) and AN B° = @.By (A3), BCU A =
BCUAUGUQGU---€ £. By(Ly) again, B~ A = (B U A)° € £.

To show the inverse direction, we need only to show that (1) and (1,) imply
(Ap):if Ae £,then A° =02~ A€ &

(b) Let £ be a A-system, so it satisfies (1;)—(13) and (1}). To verify that (14)
holds, first notice that o = 2 e £.If A, Be £and AN B = @, then AU B =
AUBUgUg@gU.--e L.
To see that (A5), let {4,} € £ be increasing. Let By = A, and B, = A, ~ A,
for n = 2. Then {B,} € £ by (1}) and is disjoint. Hence, | J 4, = | | B, € £.
Finally, if {4,} € &£ is decreasing, then {45} C £ is increasing. Hence | J A¢ €
£ by (s5). Then (M 4, = (J 45)° € £.

(c) If £ is a A-system, it follows from (a) and (b) that (1}) and (1s) hold. Now
suppose that (11), (15), and (45) hold. It follows from the only if part of (a) that
(A1) and (15) imply (1,). To see (i3) also hold, let {4,},2, < £ be a disjoint
sequence. We can construct a nondecreasing sequence {B,},~, by letting B, =
(Ui, 4i. Notice that B, € £ for all n. Hence, | J,—; Bx = U,~; 4x, and by (15),
we have (13).

(d) If £ # @ and satisfies (1,) and (13), then there exists some A € £ and so
2 =AU A° € £ by (A4). O

» EXERCISE 8 (1.1.8). If £ is a A-system and a n-system, then | ;- A, € £
whenever A, € £ for alln € N. That is, £ is closed under countable unions.

PROOF. This exercise proves that a A-system which is | J-stable is a o-field (see
Figure 1.1). Let {4,},—, € £.Let By = Ay and B, = A{NASN---NA5_ N A,
for all n > 2. Since £ is a A-system, {AS,..., A5_,} € &; since £ is a w-system,
By € £. 1t follows from (A3) that | ;2 Ay = e, Bs € £. O

» EXERCISE 9 (1.1.9). A A-system is not necessarily a w-system.
PROOF. For example, let 2 = (0, 1]. The following collection is a A-system:
£ =1{2,£,(0,1/2],(1/4,1],(1/2,1], (0, 1/4]} .
However, £ is not a 7-system because (0, 1/2] N (1/4,1] = (1/4,1/2] ¢ &£. O

» EXERCISE 10 (1.1.10). Find all A-systems over 2 = {w;,w;, w3, ws} With at
least three elements.

SOLUTION.
{Q’Qv{wi}v{wj»wk’wf}} l#]#k#g
(0.2 4w o) (or. o) (£ ] #k# L
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» EXERCISE 11 (1.1.11). The collection consisting of @ and the rsc intervals is
not a A-system on R.

PROOF. This is not a A-system, but is a semiring. Consider a nontrival rsc in-
terval (a, b]. Note that (a, b]* = (—o0,a] U (b, +00) is not a rsc interval, and so is
not in this collection. O

» EXERCISE 12 (1.1.12). Suppose that for each a in a nonempty index set A, £,
is a A-system over 2.

a. The collection (,c4 £« is a A-system on £2.

b. Suppose that A C 2% is such that 4 is contained in each £, and suppose that
{£q : a € A} is the “exhaustive list” of all the A-system that contain 4. Then
Nuea Lo 1S a A-system that contains A. If @ is a A-system on £2 that contains
A, then (\yeq £o S Q. The minimal A-system generated by 4 always exists.

c. Let £ denote a A-system over 2 with £ O A and where £ is contained in any
other A-system also containing 4. Then £ = (\,c4 Lo, With notation as in (b).
Therefore, the A-system generated by A always exists and is unique.

PROOF. (a) It is clear that £2 € (,c4 Lo- Suppose A € (\ycyq Lo, then 4 € £,
for any o € A. Hence, A° € £, for any « € A. S0 A° € [\ eq Las 1€, [yea Lo
is closed under complementation. To see (),c4 £o 1S closed under disjoint
unions, let {4,},=; € (\,e4 Lo be a disjoint sequence. Then {4,};>, € £, for
any « implies | J;2, A, € £, for any «, which implies that |2, 4, € (Nyeq La-

(b) From (a) we know (),c4 £+ is @ A-system, and since A C £,, V @ € A4,
we know that A C [),c4 £o; hence, (,c4 Lo 1S @ A-system that contains .
Nyes £« € @ because Q € {£, : o € A}.

(c) Since £ is contained in any other A-system containing #, and (,c4 £« 1S
such a A-system, so &£ C (,e4 Lo- Since £ € {L4 1 € A}, 50 (Nyey Lo S L. O

1.1.3 Semiring

» EXERCISE 13 (1.1.13). Is A = {@} U {(0,x]: 0 < x < 1} a semiring over (0, 1]?

SOLUTION. + is not a semiring on (0, 1]. Take (0, x] and (0, y] with x < y. Then
(0, y] ~ (0, x] = (x, y] ¢ 4 since x > 0 by definition. ]

» EXERCISE 14 (1.1.14). This exercise explores some alternative definitions of a
semiring.

a. Some define A to be a semiring iff A is a nonempty r-system such that both
E.F € A and E C F imply the existence of a finite collection Cy,Cq,...,C, €
AWIthE =CyCCiC---CC, CFandC; ~Ci_1 e A fori =1,...,n. This
definition of a semiring is equivalent to our definition of a semiring.
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b. Some define A to be a semiring by stipulating (SR1), (SR2), and the following
property: A, B € A implies the existence of disjoint A-sets Cy,Cy, ..., C, with
B~ A =Jj_, Ci. Note that here B ~ A is not necessarily a proper difference.
If A is a semiring by this definition, then A is a semiring by our definition,
but the converse is not necessarily true.

PROOF. (a) We first show that (SR1), (SR2), and (SR3) imply the above definition.
(SR1) and (SR2) imply that + is a nonempty w-system (since @ € A). Let E, F €
A and E C F. By (SR3) there exists disjoint Dy,..., D, € 4 such that F ~
E=/_,Di.letCo=FEand C; = EUD;U---UD, fori =1,...,n. Then
E=CyCCiC---CCyp=F,and C; ~Cj_1 = D; € A.

Now suppose (a) holds. (SR1): Since 4 is nonempty, there exists £ € #;
since E C E, there exists a finite collection £ = C, € C; € --- € C, C E,
which implies that Cy = C; = --- = C,,, and so C; ~ Cj—1 = @ € +4. (SR2) holds
trivially. (SR3): Let A, B € A and A C B. Then by the assumption, there exists
a finite collection Cy,Cy,...,C, € A With A = Cy € C; € --- € C, € B, and
B, = C, ~ Cy—1 € A. Then {B;}]_, C A is disjoint, and

n n
AullBi|=au |G ~Ci) | =4U(B~4) =B

i=1 i=1

(b) Some authors do apply this definition, for example, see Aliprantis and Bor-
der (2006); Dudley (2002). The proof is obvious. O

» EXERCISE 15 (1.1.15). Let A consist of @ as well as all rsc rectangles (a, b].
The collection of all finite disjoint unions of 4-sets is a semiring over R,

PROOF. We prove a more general theorem. See Bogachev (2007, Lemma 1.2.14,
p.-8).

For any semiring §, the collection of all finite unions of sets in § forms a ring
R.

Proof. It is clear that the class &R admits finite unions. Suppose that 4 =
Ui 4, and B = UleBk, where A4;,B; € §. Then we have A N B =
Ui<n.j<k 4i N B;j € R.Notethat 4; N B; € A, Vi €{l,...,n}and j € {1,...,k},
since a semiring is [)-stable. Hence &R admits finite intersections. In addition,

n k n k
A~B=Jla~UB |=[)“i~B).
i=1 j=1

i=1j=1

Since the set 4; ~ B; = A4; ~ (4; N B;) is a finite union of sets in §, one has
A;~B; € R.Furthermore, ﬂ;‘zl (Ai ~ Bj) € 8 because S is (")-stable. Finally, the
finite list {4; ~ B;} 4y 18 disjoint; hence, 4 ~ B is a finite disjoint
union of sets in §.

i€{l,...,n},j{l,...,
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Now, since « is a semiring [which is a well known fact], we conclude that
the collection of all finite disjoint unions of #4-sets is a ring over R¥ [a ring is a
semiring, see Exercise 20 (p.10)]. |

» EXERCISE 16 (1.1.16). An arbitrary intersection of semirings on §2 is not nec-
essarily a semiring on 2.

SoLUTION. Unlike the other kinds of classes of families of sets (e.g., Exercise 6
and Exercise 252), the intersection of a collection of semirings need not be a
semiring. For example, let 2 = {0,1,2}, A, = {@, £2,{0},{1},{2}}, and A, =
{@,£2,{0},{1,2}}. Then 4, and A, are semirings (in fact, 4, is a field), but their
intersection A = A, N A, = {J, 2, {0}} is not a semiring as 2 ~ {0} = {1,2} is
not a disjoint union of sets in .

Generally, let A; and 4, be two semirings, and 2 € 4, and 2 € 4,. Then
2 € A1NA,, and which means that the complement of every element in +4; N>
should be expressed as finite union of disjoint sets in #4; N #4,. As we have seen
in the example, this is a demanding requirement.

Of course, there is no pre-requirement that £2 should be in a semiring. See
the next Exercise 17. |

» EXERCISE 17 (1.1.17). If A is a semiring over 2, must 2 € A?

SOLUTION. Not necessarily. In face, the simplest example of a semiring (a ring,
a o-ring) is just {T}. |

» EXERCISE 18 (1.1.18). Let A denote a semiring. Pickn € N, andlet A, Ay, ..., A, €
A. Then there exists a finite collection {Cy,...,Cy,} of disjoint A-sets with

A~ U?:l A = U;n=1 G-

PROOF. When n = 1, write A~ A; = A~ (A N A;) and invoke (SR3). Now assume
that the result is true for n € N. Consider n + 1.

n+1 n m m
A~ UAi = A\UAi ~Apyr = UCj ~Apgr = U(Cj\An+1)-
i=1 i=1 j=1 j=1
Now for each j, there exists disjoint sets {D-’, e D,ij_} C s such that
kj
Cj \An+1 = U D,{.
r=1
Then {D{: Jj=1,....,mr=1,...,m;}is a finite pairwise disjoint subset of +,

and

n+1 m mj

Aa~J4a=JUDni O
i=1

j=1r=1
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» EXERCISE 19 (1.1.19). Other books deal with a system called a ring. We will
not deal with rings of sets in this text, but since the reader might refer to other
books that deal with rings, it is worthy to discuss the concept. A collection R of
subsets of a nonempty set $2 is called a ring of subsets of 2 iff

R1) R #g,
(R2) A,B e R implies AU B € R, and
(R3) A,B e R implies A~ B € R.

That is, a ring is a nonempty collection of subsets closed under unions and
differences.

a. @ is in every ring.

b. R is a ring iff R satisfies (R1), (R2), and
(R4) A,B e R with AC B implies B~ A € R.

c. Every ring satisfies
(R5) A, B € R implies AAB € R.

d. Every ring is a m-system.

e. Every ring is closed under finite unions and finite intersections.

f. R is aring iff R a nonempty n-system that satisfies (R4) along with
(R6) A, BeRand AN B =g imply AUB € R.

g. R is aring iff R is a nonempty n-system that satisfies (R5).

h. Suppose that {R, : « € A} is the “exhaustive list” of all rings that contain .
Then (,e4 Re Is a ring that contains 4, and (\,c4 Ra IS contained in any
ring that contains 4. The minimal ring containing + is always exists and is
unique.

i. The collection of finite unions of rsc intervals is a ring on R.

j. Let 2 be uncountable. The collection of all amc subsets of 2 is a ving on £2.

PROOEF. (a) By (R1), there exists some set A € R, it follows from (R3) that
F=A~AeR.

(b) We need only to prove that (R3) <= (R4) under (R1) and (R2).
e (R3) — (R4) is obvious.

e (R4) = (R3): Let A,B € R, and note that B~ A4 = (BUA)~ A € R since
AC AUB,and BU 4 € R by (R2).
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(c) Let A,B € R.By(R3), A~B e R,and B~ A4 € R;by(R2), (A~ B)U(B~ A) €
R. Observe that AAB = (A~ B) U (B ~ A), and we complete the proof.

(d) Let A, B € R.Itis clear that AN B = (AU B)~(AAB). Note that AUB € R
[by (R2)], AAB € R [by (¢)], and (AU B) ~ (AAB) € R [by (R3)]. Therefore,
AN B e R and R is a w-system.

(e) Just follows (R2) and (d).

(f) To see the only if part, suppose R is a ring. Then (d) means that R is a
nonempty w-system, (R3) =— (R4) [by part (b)], and (R2) — (R6) [by definition].
Now we prove the if part. Note that

(R1) By assumption;
(R2) Let A, B € R. We can write A U B as

AUB =(A~B)U(B~A)U(ANB)
=[A~(ANB)|U[B~(ANB)]U(ANB).

Now (R4) implies that [A ~ (AN B)] € R, and [B ~ (A N B)] € R; (R6) implies
that AU B € R.?

(R3) LetA,Be R.Then A~B =@ U(A~B) = (ANA)U(ANBS) = AN
(ACUB)=AN(ANB)Y =A~ (AN B). Clearly, AN B C A, so (R4) implies
that A~ B € R.

(g) To see the only if part, suppose that R is a ring. Then (R1) and (d) implies
R is a nonempty w-system, and we have (R5) by (c).
For the inverse direction, suppose that R satisfies the given assumptions.

(R1) R # @ by assumption;

(R2) Let A,B € R.ThenAU B = (AAB) U (AN B) = (AAB) A (A N B). Since
R is a #-system, A N B € R. Thus, (R5) implies (R2).

(R3) Let A,B € R. Note that A ~ B = (AAB) N A. Then (R5) implies that
AAB € R, and (AAB) N A € R since R is a n-system.3

(h) Similar to Exercise 6 and Exercise 252.

(i) See Exercise 255 (p.147).

(j) (R1) is trivial. (R2) holds because every finite (in fact, countable) union
of amc sets is amc (see, e.g., Rudin 1976). To see (R3), let 4, B be amc. Since
A~B=A~(ANB)C A,and AN B C A, we know that 4 ~ B is amc. O

» EXERCISE 20 (1.1.20). This problem explores the relationship between semir-
ings and rings.

2For A~ B = A~ (AN B), see part (g) of this exercise
3 Vestrup (2003, p.6) hints that A ~ B = AA (4 N B).
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a. Every ring is a semiring. However, not every semiring is a ring.

b. Let A denote a semiring on $2, and let R consist of the finite disjoint unions
of A-sets. Then R is closed under finite intersections and disjoint unions.

c. IfA,BeAand A C B,then B— A € R.

d AecA BeR, and AC B imply B— A € R.
e. A BeRand AC BimplyB— A€ R.

f. R is the minimal ring generated by .

g. A semiring that satisfies (R2) is a ring.

PROOF. (a) Let R be a ring. Then (R1) [R # @] and (R3) [R is closed under
differences] imply that there exists A € R such that @ = A~ A4 € K. Thus, (SR1)
is satisfied. To see that R satisfies (SR2) [R is a w-system)], refer Exercise 19
(d). Finally, (R4) [Exercise 19 (b)] implies (SR3).

To see a semiring is not necessary a ring, note that the collection § :=
{@,(a,b]|a,b € R} is a semiring, but is not a ring: let —co <a <b <c¢ <d <
+o0, then (a,b] U (c,d] ¢ S.

Note that a semiring § is a ring if for any A,B € § we have AU B € §
[Figure 1.1 (p.1), and part (g) of this exercise]. Any semiring generates a ring as
in the Claim in Exercise 255 (p.147).

(b) Let 4 be a semiring on £2, and let

R = UA,-:A,-eAandnelN

i=1

To prove R is closed under finite intersections, let 4 = U;’;l Aj, and B =
Uk=1 Bk, where the 4;’s are disjoint and in «, as are the By’s. Then

m n

m n
AnB=|J4a|nlUB|=UJUMnB)= | (A,-mBk)(Q:R,
j=1k=1

j=1 k=1 1<j<m
1<k<n

where (1) holds because the (4; N By)’s are disjoint and in 4 [by (SR2)]. Since
the intersection of any two sets in R is in R, it follows by induction that so is
the intersection of finitely many sets in R.

A disjoint union of finitely many sets in R is clearly in R.

(c) Let A, B € A and A C B. Then by (SR3), there exists disjoint Cy,...,Cy € 4
with B~ A4 = Uf=1 C;. Thus, B ~ A € R by definition.
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(d) Let A€ A, Be R,and A C B. Then,

n

B_a2 (CJAi)—A=O(Ai\A)=U[Ai—(AimA)] S
i=1

i=1 i=1

where (2) follows the fact that B € R [the A4;’s are in 4 and disjoint], and
(3) follows part (c) in this problem [note that 4; € 4,4 € 4, and by (SR2),
Ai N A € Al

(e) Let A,Be R and A € B. Then

B~A= (]QlBk)\(jQAj) =kLn)=l Bk\(jQAj) =kL=)1 |:]é(Bk\Aj):|.

Note that By, Aj € A, then By N A; € » [(SR2)], and by part (¢),
B~ A; =Bk—(BkﬁAj) € R.

Furthermore, by part (b), (\7_; (Bx ~ 4;) € R, and so B — 4 € R.

(f) Let N (A) be the class of rings containing +, and let € € %i(+4). By definition,
if A € R, then 4 = |J;_, A;, where {4;}!_, C » are disjoint. Then A € € since
€ is a ring containing . Hence, R is the minimal ring containing +.

(g) Let A be a semiring satisfying (R2) [A,B € A — AU B € A)]. Then 4
is nonempty since @ € 4 by definition of a semiring. By (R2), 4 is | J-stable;
hence, to prove 4 is a ring, we need only to prove that + is closed under
difference. Let 4, B € 4. Then

k
ANB=A-(ANB) =G e,
i=1

where {C; }f-‘zl C & are disjoint, and equality (1) follows (SR3). O

» EXERCISE 21 (1.1.21). Let 2 be infinite, and let A C 22 have cardinality Y.
We will show that the ring generated by 4 has cardinality Rg.

a. Given'€ C 29, et €* denote the collection of all finite unions of differences of
€-sets. If card(€) = Ry, then card(€*) = Ry. Also, @ € € implies € C €*.

b. Let Ay = 4, and define A, = A*_| forn = 1. Then A C ;2 , A, C R(A),
where R(A) is the minimal ring generated by A and where [without loss of
generality] @ € 4. Also, card(| ;2 #n) = Ro.

C. Unweo #n Is a ring on $2, and from the fact that R(A) is the minimal ring
containing 4, we have | ;- , A, = R(+4), and thus card(R(A)) = Ro.

d. We may generalize: if A is infinite, then card(+4) = card(N(+A)).
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PROOF. (@) Let €' := {C; ~ C;j : C;, C; € €}. Since card(€) = 8¢ [€ is countable],
we can write € as
€ ={Cp}o2,.

We now show that card(€’) = Ry. Notice that for any C, € €, we can construct
a bijection on N onto C, ~€ := {C,, ~ C; : C; € €} as follows

an(l) = Cn \Cl»

but which means that C, ~ € is countable. Then,

¢ =[] [C.~]

Cyet

is a countable union of countable sets, so it is countable [under the Axiom of
Choice, see (Hrbacek and Jech, 1999, Corollary 3.6, p. 75)].
Now we show that for any n € N, the set €, defined by

n
e = U C/: C{ € €' and C/ # C] whenever i # j}

i=1

is countable. We prove this claim with the Induction Principle on n € N. Clearly,
this claim holds with n = 1 since in this case, €} = €’. Assume that it is true
for some n € N. We need to prove the case of n + 1. However,

e =¢rucC,
where
€ :={C'e€:C'#C/Vi<n}.

Because €’ is countable, we conclude that € C €’ is amc. Therefore, €y is
countable. Hence, by the Induction Principle, card(€,’) = R, for any n € N, and

e =Jer (1.3)

nelN

is countable.
We now show that if @ € €, then € C €*. Let C € €, then C € €’ because
C = C ~ g; therefore,
ece cer.

[Remember that €’ = €] and (11.1).]

(b) By the definition of 4,, we know 4; = 4™, the collection of all finite unions
of differences of 4 sets. Since @ € 4, we know from part (a) that A C A* = Aq;
therefore,

A< An (1.4)
n=0
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We are now ready to prove that | ;2 , € %(+). We use the Induction Principle
to prove that
A CTR(A), Viel Pi)

Clearly, PO holds as A¢ = 4 € %(4). Now assume Pr holds. We need to prove
Pn + 1. Notice that A, +; = 4™, the collection of all finite unions of differences
of #,-sets, we can write a generic element of A, as

m
Apy1 = U Aj,
j=1

where A} = A ~ A, and 4, A] € A,. Since A, € R(A) by Pn, we know that
Aj = A, ~ A} € %(A) by (R3); therefore, A,q1 = JJ; 4} € 9i(4) by (R2).
This proves Pr + 1. Then, by the Induction Principle, we know that A, C R(#),
VY n € N; therefore,

L An € R(A). (1.5)
n=0

Combine (11.2) and (1.5) we have

A C ) An S R(A). (1.6)
n=0

To prove card(U,‘j"=0 An) = Vg, we first use the Induction Principle again to
prove that 4, is countable, V n € N. Clearly, A; = A* is countable by part (a).
Assume A, is countable, then 4, ; = A* is countable by part (a) once again.
Therefore, U;’,":O A, is countable [under the Axiom of Choice].

(c) Clearly, ,—y A = A # @, so (R1) is satisfied. To see (R2) and (R3), let
A, B € A. Then there exist m,n € N such that 4 € A, and B € A,. We have
shown in part (a) that

fA’n+1 = ‘A’Z D Ay

[along with the Induction Principle]. Therefore, either #,, < 4, [if m < n] or
An C Ay [if n < m]. Without loss of generality, we assume that m < n, i.e,,
Am C Ay; therefore, A € A,, = A € A,. Therefore, A, B € A, implies that

AUB=(A~D)U(B~D) € A" = At C A,
[this proves (R2)], and

ny ng na+np &
A~B = (UAI')\(UBJ‘) = U (i~B)earclan
n=1

i=1 j=1 i=1

[this proves (R3)]. Hence, A is a ring, and A = R(A); furthermore, we have
card(M(A)) = Ro.

(d) Straightforward. O
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1.2 FIELDS

» EXERCISE 22 (1.2.1). The collection ¥ = {A C £2 : A is finite or A€ is finite} is
a field on 2.

PROOF. 2 € ¥ because £2¢ = ¢ is finite; let 4 € F. If A is finite, A° € ¥ as
(A°)¢ = Ais finite; if A€ is finite A° € . Thus, ¥ is closed under complements.
Finally, let A, B € ¥ . There are two cases: (i) both 4 and B are finite, then AU B
is finite, whence 4 U B € ¥; (ii) at least one of A€ or B¢ is finite. Assume that
B¢ is. We have (AU B)° = A° N B° C B¢, and thus (4 U B)¢ is finite, so that
gan AUB e ¥. O

» EXERCISE 23 (1.2.2). Let ¥ C 22 be such that 2 € ¥ and A~B € ¥ whenever
A,B e F.Then ¥ is a field on £2.

PROOF. We need to check ¥ satisfies (F1)-(F3). 2 € % by assumption. Let
A= and B € ¥.Then B¢ = 2~B € ¥.Let A, B € ¥.Then A, B¢ € ¥. Since
(AUB) = A°NB°=A°~Be¥,wemusthave AUB =[(AUB)]"e¥. O

» EXERCISE 24 (1.2.3). Every A-system that is closed under arbitrary differences
is a field.

PROOF. We only need to show that it is closed under finite unions, and it comes
from the previous exercise. |

» EXERCISE 25 (1.2.4). Let ¥ C 2% satisfy (F1) and (F2), and suppose that ¥ is
closed under finite disjoint unions. Then ¥ is not necessarily a field.

SOLUTION. For example, let 2 = {1, 2, 3,4}, and
F ={2.2,{1,2},{3,4}.{2.3} . {1.4}} .
F satisfies all the requirements, but which is not a field since, for example,
{1,2}U{2,3} ={1,2,3} ¢ ¥. O

» EXERCISE 26 (1.2.5). Suppose that 51 C ¥, C %3 C ---, where ¥, is a field on
2 for eachn € N. Then | J;=, %, is a field on 2.

PROOF. (F1) 2 € %,, for each n € N, so 2 € | J,2, Fu; [Of course, it is enough
to check that 2 € ¥, for some %,.] (F2) Suppose 4 € U;’le Fn. Then there exist
n € N such that 4 € %,.So A° € %, = A° € U, Fun; (F3) Let A, B € U, 2, Fu.
Then 3 m € N such that 4 € %, and 3 n € N such that B € #%,. Hence,
AUB € %, UF, CUp2, Fa. O

» EXERCISE 27 (1.2.6). The collection consisting of R¥, @, and all k-dimensional
rectangles of all forms fails to be a field on R¥.
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SOLUTION. Consider k = 1 and [a, b], where a,b € R. Then [a,b]° = (—00,a) U
(b, +00) is not a interval.
The k > 2 case can be generalized easily. For example, let

k
A = X [ai, bi].
i=1
Then A€ is not a rectangle. O

» EXERCISE 28 (1.2.7). The collection consisting of @ and the finite disjoint
unions of k-dimensional rsc subrectangles of the given k-dimensional rsc rect-
angle (a, b] is a field on 2.

PROOF. A more general proposition can be found in Folland (1999, Proposi-
tion 1.7). Denote the set system given in the problem as §, a semiring, and
the collection of @ and the finite disjoint unions of k-dimensional rsc sub-
rectangles as A First 2 = |J;cy /i by definition, where I; € §.If A,B € §
and B = |J;_, C;, where C; € . Then A~ B = |J!_,(ANC;) and AU B =
(A~ B)U B.Hence A~ B € A and AU B € 4. It now follows by induction that
if Ay,...,A, € 8, then |J/_, A; € +. It is easy to see that 4 is closed under
complements. O

» EXERCISE 29 (1.2.8). An arbitrary intersection of fields on $2 is a field on 2.

PROOF. Let {#, : @ € A} be a set of fields on 2, where 4 is some arbitrary set
of indexes. Then

(F1) 2 €\, eq Fa since 2 € F, for any « € A.
(F2) Let B € (\yeq Fa, then A€ € Fy, for any o € A4; hence A€ € [ eq Fa-

(F3) LetB,C €(\yeq Fo-Then B,C € %,V « € A.Hence, BUC € F,, VY a € 4,
and BN C € \yey Fa-

a

» EXERCISE 30 (1.2.9). Let 2 be arbitrary, and let A C 2%. There exists a unique
field ¥ on 2 with the properties that (i) A C ¥, and (ii) if § is a field with A C G,
then ¥ C §. This field ¥ is called the [minimal] field [on $2] generated by A.

PROOF. Let {¥, : a € A} be the exhaustive set of fields on §2 containing 4. Then
(Naea Fa is the desired field. O

» EXERCISE 31 (1.2.10). Let Ay,..., A, € $§2 be disjoint. What does a typical
element in the minimal field generated by {A,, ..., A,} look like?

SOLUTION. Refer to Ash and Doléans-Dade (2000, Exercise 1.2.8). To save nota-
tion, let F denote the minimal field generated by 4 := {44, ..., A,}. We consider
an element of F ~ {2, @}. We can write a typical element B € F as follows,
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B =By *xBy*---x By,
where « is an set operation either U or N, and B; € {A;,..., 4, 4, ..., A5} for

eachi € {1,...,m}. |

» EXERCISE 32 (1.2.11). Let S be finite, and 2 denote the set of sequences of
elements of S. For each o € §2, write

w:(zl(a)),zz(w),...),

so that zj (w) denotes the k-th term of w for allk € N. Forn € N and H € S",
let
C,(H)y={weR|z1(w),...,zn(w) € H}.
Let
F:={Cu(H)|neN HCS"}.
Then ¥ is a field of subsets of S*°. [The sets C,,(H) are called cylinders of rank

n, and ¥ is collection of all cylinders of all ranks.]

PROOF. See Figure 1 (p.2) for more details about Cylinders. To prove % is a
field, note that

(F1) 2 € ¥. Consider Cy (S°); then w € Co (S*°), V @ € £2, which means
2 C Cx (85°°). Hence,
2 =Cx(S®)e¥F.

(F2) To prove that ¥ is closed under complements, consider any C,(H) € ¥.
By definition,
Ch(H)={weR|z1(®),...,zn (w) € H}.

Then,

[Ca(H)]" = {w e 2: [z1(0),....2a(0)] ¢ H}
={we Q: [21(®).....zp(0)] € H}
=C, (HS)

(z-system) Finally, we need to prove ¥ is closed under finite intersections.*

4 It is hard to prove that ¥ is closed under finite unions. See below for my first but failed
try.

(Wrong!) Let C,,, (G),C, (H) € ¥, where m,n € N and G C §™, H C S". By definition,
Cn(@) U Cu(H) = {0 € 2|[21(),.... z2n@)] € G} | J{o € 2|[21(@), ..., 20(@)] € H}

Lo e2|[21@), ... 2mm@)] € (HUG)

é Cm/\n (Gm/\n U Hm/\n)
eF,
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Consider two cylinders, C,,(G) and C,(H), where m,n € N, G € S§™, and
H C S§". We need to prove that C,,(G) N C,(H) € ¥. In fact,

Cm(G) N Cn (H) = Cm\/n ((Gm/\n n Hm/\n) X (Gm—(m/\n) U Hn—(m/\n))) € 377

where, for example, Gy, 1, in equality (2), Gpan S S™, Gu—nany S S™~"AM and
Gian X Gr—nany = G.
To see why equality (1) holds, we need the following facts:
CrLAIM 1. Suppose thatm <n, H =G x H,,—,;;, and G € §™. Then C,,(G) 2 C,(H).
PROOF. Pick any w’ € C,,(H). By definition,
[zl (@) ..., zn (w’)] €eH=GxH,_,,

which means that
[zl (@) s.eszm (w’)] € G = o' € Cp(G).

CiamM 2. If G € H € S”, then C,,(G) € C,,(H).

PROOF. Straightforward.

CLAIM 3. Foranym,n € N,and G C §", H C §", we have
Cn(G)U Cr(H) S Cruan(Gman U Hpan).

PROOF. Without loss of any generality, we assume that m A n = m. Pick any o’ € C,,,(G) U
C,,(H). Then,

[zl(w’),...,zm (w’)] eG, or [zl(a)’),...,z” (w’)] € H.
From Claim 2, we have
[z](a)/),...,zm (a)/)] eGUH,, or [zl(a)/),...,z,, (a)/)] e (GUH,) X Hy_m,
where H,,, € S™,and H = H,,, X H,,—,;;. Then, by Claim 1, if m A n = m, we have

o' €Cy,(GUH,).

CLAIM 4. Forany m,n € N,and G C §"", H C §", we have
Cn(G)UCy(H) 2 Couan(Gran Y Hyan).

PROOF. We still assume that m A n = m. Pick any @’ € Curn (Guan YU Hupn) =
C,, (G U H,;,). By definition,

[21 @),z (@) | € G U Hys

that is,
[zl (w’),...,zm(a)/)]eG or [zl (w’),...,zm(w’)]eHm. O
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where Gopan, Hupn S S™M, Gm—(m/\n) c Sm—(m/\n)' Hn—(m/\n) C Sn—(m/\n)’ G =
Gmnn X Gm—manyy H = Hman X Hy—(mam), and we define Go = Hy = @. O

» EXERCISE 33 (1.2.12). Suppose that A is a semiring on 2 with 2 € 4. The col-
lection of finite disjoint unions of A-sets is a field on 2. [Compare with Example
3 and Exercise 28.]

PROOF. Let A be a semiring, and 2 € . Let ¥ be the collection of finite
disjoint unions of #-sets, thais, A € # iff for some n € N we have 4 = | J!_, 4,
where A;’s are disjoint A-sets. ¥ is a field: (i) 2 € F since 2 = QU T € F.
(ii) Let A € . Then A = U:’zl Ai, where n € N and {4;}/_, € +. To prove
A° € ¥, we need only to prove 4§ € ¥ since A° = (")/_; A, and + is a semiring
[-stable]. But A¢ € ¥ is directly from (SR3) and the fact that £2 € A since
AS = 2~ 4 = U;’l:l C]?, where {C}}:zl

{1,...,n}, thatis, each A{ is a finite disjoint union of A-sets. Thus, ¥ is closed
under complements.

Instead of proving that ¥ satisfies (F3) directly, we prove that ¥ is a =-
system. Let By, B, € ¥. Then

C A is disjoint, and n € N,V i e

n k

BiNB, = OAi n OA,- =J|UJMna)|=1J@n4).

i=1]|j=1 i,j

Note that 4; N A; € 4 by (SR2). Hence By N B, € ¥.
O

» EXERCISE 34 (1.2.13). Let f: 2 — £2'. Given A C 2% let f~1(A) =
{f~UA"): A’ € A}, where f~1(A') is the usual inverse image of A’ under f.

a. If A’ is a field on 2/, then f~1(A) is a field on 2.
b. f(A) may not be a field over 2’ even if 4 is a field on £2.

PROOF. (a) Let A’ be a field on £2’. (i) Since 2 = f~1(2’) and 2’ € A/, we have
that 2 € f~Y(A). (i) If 4 € f~1(A'), then A = f~1(A") for some A" € A’
Therefore, A¢ = [f~1(4)]¢ = f71((4)°), and (4')¢ € A since A’ is a field.
It follows that A€ € f~1(A'), so that f~!(A’) is closed under complements.
(iii) To see that f~!(+4') is closed under finite unions, let {4;}_, € 4, where
n € N. Therefore, for each i € {1,...,n}, there is A} € A" with 4; = f~' (4)).
Therefore,

Uai=Usr @) =" (U] esr e,
i=1 i=1 =1

since | J/_, A} € A/.
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(b) The simplest case is that f is not onto [surjective]. In this case, f (§2) € §2’;
that is, 2’ ¢ A/, and so A’ is not a field on £2’. O

» EXERCISE 35 (1.2.14). Let £2 be infinite, and let 4 C 2% have cardinality X,.
Let f(4) denote the minimal field generated by A [Exercise 30]. We will show
that card( f(4)) = Ro.

a. Given a collection €, let €* denote the collection of

i. finite unions of €-sets,
ii. finite unions of differences of €-sets, and

iii. finite unions of complements of € -sets.
If @ € €, then € C €*. If card(€) = R, then card(€*) = Ry.
PROOF. |

» EXERCISE 36 (1.2.15). Some books work with a system of sets called an alge-
bra. An algebra on $2 is a nonempty collection of subsets of 2 that satisfies (F2)
and (F3).

a. ¥ is an algebra on L2 iff ¥ is a ving on 2 with 2 € ¥.

b. ¥ is an algebra iff ¥ is a field. Thus algebra and field are synonymous.
PROOF.

(a: =) Suppose ¥ is an algebra. Then,

(R1) ¥ # @ by assumption.

(R2) ¥ is | J-stable follows (F3).

(R3) The assumption of 2 € ¥ and (F2) imply that if 4, B € ¥, then A¢ =
R2—Aec¥ and B = 2 — B € ¥. Then

[(ACUB)(F??]E;[(ACUB)CGJF]:HA\BE?].

This proves that ¥ is closed under difference.

(a: &) Suppose ¥ is aring and 2 € ¥. To prove ¥ is an algebra on £2, note
that

(Al) ¥ # @ since ¥ is a ring.

(F2) Let A € ¥. Because 2 € ¥ and (R3), we have A° = 2 — A € ¥. This
proves that ¥ is closed under difference.

(F3) | J-stability follows (R2).
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(b) We need only to prove that ¥ is an field if # is an algebra since the reverse
direction is trivial.

Suppose ¥ is an algebra. We want to show 2 € ¥. Since ¥ # @ by definition
of an algebra, there must exist A € ¥. Then A¢ € ¥ by (F2),and so 2 = AUA® €
F by (F3). O

1.3 o-FIELDS

» EXERCISE 37 (1.3.1). A collection ¥ of sets is called a monotone class iff (MC1)
for every nondecreasing sequence {A, }o-, of ¥ -sets we have | J,-, A, € ¥, and
(MC2) for every nonincreasing sequence {A,},~, of ¥ -sets we have (\,_, A, €
7.

a. If ¥ is both a field and a monotone class, then ¥ is a o -field.
b. A field is a monotone class if and only if it is a o -field.
PROOEFE. See Chung (2001, Theorem 2.1.1).

a. Let # is both a field and a MC. Let {4,};>, € ¥, then B, = |J/_, 4, € ¥
since ¥ is a field, B, € Byy1,and Uy~ An =Ure  Bn € F.

b. We only need to show the “IF” part. But it is trivial: A o-filed is a field and a
MC.

a

» EXERCISE 38 (1.3.2). This problem discusses some equivalent formulations of
a o-field.

a. ¥ satisfies (S1), (S2), and closure under amc intersections iff ¥ is a o -field.
b. Every field that is closed under countable disjoint unions is a o -field.

c. If ¥ satisfies (S1), closure under differences, and closure under countable
unions or closure under countable intersections, then ¥ is a o -field.

PROOF. (a) For the “ONLY IF” part, let {4,},—; € ¥ and ¥ satisfy (S1) and (S2).
Then A¢ € # for any n € N; hence, |52, 4, = (N2, AS)° € ¥ . The “IF” part
is proved by the same logic.

(b) We need only to prove ¥ is closed under countable unitions. Let ¥ be a
field, and {4,};—, € ¥. Let

c
n—1

B =40 | | A

i=1

Itis clear that {B,},-, € ¥ is disjoint, and | J,—, B, = |J,—; 4,. This completes
the proof.
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(c) We only need to prove (S2), that is, ¥ is closed under complementation. Let
A e F.By(S1), 2 € ¥, then A° = 2 ~ A € ¥ since by assumption, ¥ is closed
under difference. O

» EXERCISE 39 (1.3.3). Prove the following claims.

a. A finite union of o -fields on £2 is not necessarily a field on 2.
b. If a finite union of o -fields on 2 is a field, then it is a o -field as well.

c. Giveno-fields ¥1 € ¥, € --- on £2, it is not necessarily the case that | J;- | %,
is a o -field.

PROOF. (a) Let {%;}7_, be a class of o-fields, and consider ULI A;, where 4; €

F:. Note that it is possible that | J;_, A; ¢ ¥; for any j, so /-, 4; ¢ U/_; Fi.
For example (Athreya and Lahiri, 2006, Exercise 1.5, p.32), let

22 =1{1,2,3}, F1= {{1},{2,3},[2,@}, N2 {{1,2},{3},9,@}.
It is easy to verify that ¥; and %, are both o-fields, but ; U ¥ is not a field
since {1} U {3} = {1,3} ¢ F1 U F>.

(b) Without loss of any generality, we here just consider two o-fields, #; and
%>, on 2. Consider a sequence {4,}.>,; € ¥ U %,. Then we can construct two
sequences, one in #; and one in %,. Particularly, the sequence of sets {A}l} c
is constructed as follows:

A,, if A, e 7
z, otherwise.

Al =

n

The sequence of sets {42} C %, is constructed similarly. Then [ J;—, 4; € #
and | J;-_, A2, € %, since both #; and ¥, are o-fields, and

o0 o0 o
Uan={U4a|u|U 42
n=1 n=1 n=1
If #1 U ¥, is a field, we have
o0 o0 o0
Ua={Ua vl |ermurm.
n=1 n=1 n=1

(c) See Broughton and Huff (1977) for a more general result. Let 2 = N and
for alln € N, let

?n:o({{l},...,{n}}).

Since {{1}.....{m}} € {{1}.....{n}} when m < n, we have #; ¢ %, < ---. It it
clear that {1},{2},... € Uy, %, but
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Ut =t.2...0¢  %a
n=1 n=1

since there does not exist a %, such that {1,2,...} € #,, for any n € N. |

» EXERCISE 40 (1.3.5). A subset A C R is called nowhere dense iff every open
interval I contains an open interval J such that J N A = @. Clearly @ and all
subsets of a nowhere dense set are nowhere dense. A subset A C R is called a
set of the first category iff A is a countable union of nowhere dense sets.

a. An amc union of sets of the first category is of the first category.

b. Let ¥ = {A C R: A or A is a set of the first category}. Then ¥ is a o-field of
subsets of R.

PROOF. Refer Gamelin and Greene (1999, Section 1.2) for the more detailed
definitions and discussion of nowhere dense and the first category set.

(@) Consider a countable sequence of sets of the first category, {4,},~,. Then
Ay = 72, A? for any n € N, where {Al’f}fil are nowhere dense. Clearly, the
amc unions of amc unions is still amc, which proves the claim.

(b) Let # = {4 C R: A or A° is a set of the first category}. Then 2 € ¥ since
@ is of the first category and 2 = @°. To see ¥ is closed under complemen-
tation, let A € #. (i) If A is of the first category, then A¢ € ¥ since (4°)° = A
is of the first category; (ii) If A is of the first category, then A¢ € ¥ by the
definition of #. In any case, A € ¥ implies that A¢ € ¥.

Finally, to see ¥ is o-| J-stable, let {4,},—, be a sequence of ¥ -sets. There
are two cases: (i) Each A4, is of the first category. Then part (a) of this exercise
implies that | J;2, 4, € F. (ii) Some A is of the first category. In this case,
we assume without loss of generality that A is of the first category, and we
have that (U2, 4,)° = N2, A5 C AS. It is trivial that (2, 44)° is of the
first category since A is, and every subset of the first category is of the first
category. Particularly, let A = |J,2, B,, where the B,’s are nowhere dense
sets. Since (s, 4,)° € A¢, we must can rewrite (2, 4,)° as

n=1

c

e’} 00
Ja| =Ue
n=1 n=1

where every C, is a subset of B, and some C,’s maybe be empty. Note that then
every C, is nowhere dense no matter C, = @ or not. Consequently, (U, A,,)c
is of the first category by definition. |

» EXERCISE 41 (1.3.6). A o-ring of subsets of 2 is a nonempty collection of
subsets of §2 that is closed under differences as well as countable unions.

a. Every o-ring is closed under finite unions and amc intersections.
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b. ¥ is a o-field iff ¥ is a o-ring with 2 € ¥ .

c. State and prove an existence and uniqueness result regarding the [minimal]
o-ring generated by a collection A of subsets of 2.

PROOF. (a) Let R be a o-ring. We first prove that @ € R. Since R # &, there
exists A € R; moreover, since R is closed under difference, we have @ =
A~ A € R. Now consider an arbitrary sequence of R-sets Ay,...,A4,,3,D,....
Because R is o-| J-stable, we know that

n
J4i=Audu-ud)u(@UEU-) € R,

i=1

which proves that R is | J-stable.
To see R is closed under amc intersections, let {4,},2; € R. Then 4 =
U2, 4n € R. Let
Al =A~A,, VYneN.

Then {4} S R, U2, 4, € R, and

(U)m
n=1

n=1
since 4 ~ (Un=, 4},) € R. [Basically, I let A be the universal space, and 4, be
the complements of A4,, in A.]

(b) Suppose that ¥ is a o-field. Then 2 € ¥ be (S1). To see ¥ is closed under
difference, let A, B € ¥. Then (S2) implies that B¢ € ¥. Since ¥ is ()-stable, we
have A~ B = AN B¢ € ¥. The fact that ¥ is o-| J-stable follows (S3).

Now suppose that ¥ is a o-ring with 2 € ¥. We need only to prove that ¥
satisfies (S2). Let A € ¥. Since 2 € ¥ and ¥ is closed under difference, we
have

A°=QR~Ae¥.

(c) Standard. Omitted. O
» EXERCISE 42 (1.3.9).

a. If A C A C o(A), then o(A) = o (A).

b. For any collection @ # A C 2%, m(4) C A(s) C o (A).

c. If the nonempty collection 4 is finite, then o(A) = f(A).

d. For arbitrary collection 4, we have o (4) = o (f(A)).

e. For arbitrary collection 4, we have f (a(A)) = o (f(A)).

PROOF. (a) On the first hand, A € A’ implies that o(4) C o(4A’); on the sec-
ond hand, A’ C o(-) implies that o(A') € o (0(4)) = o(4). We thus get the
equality.



SECTION 1.3  o-FIELDS 25

(b) Let I1(A), A(A), and X(4A) denote the collection of all wm-systems, A-
systems, and o-fields of subsets of §2 that contain +, respectively. With this,
we may define

mA)= () P. AMA)= (] £ and oA)= () ¥.

Pell(A) LeA(A) FeX(A)

It is easy to see that any o-field containing » is a A-system containing +; hence
XY (A) C A(A), and so A(A) C o(A).

(c) It is clear that f(4A) C o(A); since 0 <|A| < oo, the field f(+4) is finite and
so it is a o-field. Then o(A) C f(A).

(d) On the first hand, f(A) € o(+4) implies that o (f(A)) € o (0(A)) = o ().
On the second hand, A C f(+4) and s0 o(A) C o (f(A)).

(e) It follows from (d) that o (f(+)) = o(+). By definition, f (c(+4)) is the
minimal field containing o(4). But o(4) itself is a field; hence f (o(4)) =
o (A). O

» EXERCISE 43 (1.3.16). Let ¥ = o (), where @ # 4 C 2. For each B € ¥
there exists a countable subcollection Ap C A with B € o (Ap).

PROOF. Let
B ={B e ¥ :3Ap C + such that Ap is countable and B € o (Ap)}. (1.7)

It is clear that 8 C ¥. For any B € «, take Ap = {B}; then Ap = {B} is
countable and B € o ({B}) = {@, 2, B, B°}; hence A4 C 8. We now show that 8
is a o-field. Obviously, 2 € 8 since 2 € ¥ and 2 € o ({(2}) ={2,2}.If B € 8,
then B € ¥ and there exists a countable Ap C 4 such that B € ¢ (Ap); but
which mean that B¢ € ¥ and B¢ € o (sAp), i.e., B¢ € B. Similarly, it is easy to
see that 8 is closed under countable unions. Thus, B is a o-field containing 4,
and so ¥ C B. We thus proved that 8 = ¥ and the get the result. O

» EXERCISE 44 (1.3.18). Given @ # A C 22 and @ # B C 2,let AN B =
{ANB:AcA}andleta(A)NB={ANB:Acac(A)}

a. o(A) N B is ao-field on B.

b. Next, define op (A N B) to be the minimal o-field over B generated by the
class AN B. Then og (AN B) = o(4A) N B.

PROOEF. This claim can be found in Ash and Doléans-Dade (2000, p. 5).

(@ Beo(A)NBas2ca(Ah).If C eo(4A)NB,then C = AN B with 4 € a(A);
hence B~C = A°NB € a(4A)NB. To see that o(4)N B is closed under countable
unions, let {C,}°2; € o(A) N B. Then each C,, = 4, N B with 4,, € o(4). Hence,

n=1 =
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o0 (] o0
UG =JUnB=|J4.|nBeco(4)nB.
n=1 n=1 n=1

(b) First, A C o(+A), hence AN B C o(4A)N B. Since o(+4)N B is a o-field on B by
(a), we have op (A N B) C o(+4A) N B. To establish the reverse inclusion we must
show that AN B € op (4 N B) for all 4 € o(A). We use the good sets principle.
Let

g={Aco(A): AN B €op (AN B)}.

We now show that ¢ is a o-field containing 4. Itis evident that 2 e 6. If A € g,
then ANB € o (AN B)and A € o(+4A); hence, ANB = B~(AN B) € o (AN B)
implies that A° € . To see ¢ is closed under countable unions, let {4,},-, C §
with A, N B € o (A N B) for all n € N. Then

oo

4w |nB=|]JA.NB)ecos(ANB).

n=1 n=1
Since A C g, we have o(4) C §; hence o(4A) = §: every set in o(s4) is good. O

» EXERCISE 45 (1.3.19). Suppose that A = {A1, A,, ...} is a disjoint sequence of
subsets of 2 with | J,—, An = $2. Then each o (+)-set is the union of an at most
countable subcollection of Ay, A,, . . ..

PROOF. Let
€ = {A € 6(+) : Ais an at most countable union of A-sets} .

It is easy to see that £2 € € since 2 = | Jro, 4x. If 4 € €, then A = ;, 4i,
where J is at most countable. Hence 4¢ = (U~ 4,) ~ (U;es 4i) is an at most
countable union of #-sets, that is, € is closed under complements. It is also
easy to see that € is closed under countable unions and A4 C €. Hence, € is a
o-field and o(4A) = €. O

» EXERCISE 46 (1.3.20). Let & denote a m-system on £2, and let £ denote a
A-system on 2 with  C £. We will show that o () C £. Let A (P) de-
note the A-system generated by P, and for each subset A < 2 we define
G4={CCR:ANC € A(P)}.

PROOE. See Vestrup (2003, Claim 1, p. 82). O

» EXERCISE 47 (1.3.21). Let ¥ denote a field on 2, and let M denote a monotone
class on 2 [See Exercise 37]. We will show that ¥ C M implies that o (¥) C M.
Let m (¥) denote the minimal monotone class on 2 generated by % . That is,
m (¥) is the intersection of all monotone classes on §2 containing the collection
7.

a. To prove the claim, it is sufficient to show that o (¥) C m (¥).
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b. If m (¥) is a field, then o (¥) C m ().

c. 2em(¥F).

d. Letg ={AC 2 :A° e m(F)}. § is a monotone class on 2 andm (¥) C §.
e. m (¥) is indeed closed under complements.

f. Letg, = {A CR:AUBem(¥F) forall B e 37} Then g, is a monotone class
such that ¥ € §, andm (¥) C 6.

g Letg, ={BCR2:AUBem(F) forall Ac m(F)}. Then &, is a monotone
class such that ¥ € §,, and m (¥) C 6,.

h. m (¥) is closed under finie unions, and hence is a field.

PROOF. Halmos’ Monotone Class Theorem is proved in every textbook. See
Billingsley (1995, Theorem 3.4), Ash and Doléans-Dade (2000, Theorem 1.3.9),
or Chung (2001, Theorem 2.1.2), among others. The above outline is similar to
Chung (2001).

(a) By definition. In fact, o (¥) = m (¥).

(b) By Exercise 37: A field is a o-field iff it is also an M.C. If m () is a field,
then it is a o-field containing ¥; hence, o (¥) € m (¥).

© ReF Cm(F).

(d) Let {A,};°, € § be monotone; then {A,ﬁ}:o=1 is also monotone. The DeMor-
gan identities

c c
UJ4n] =45 and (4| =] 45
n=1 n=1 n=1 n=1

show that ¢ is a M.C. Since ¥ is closed under complements and ¥ C m (¥), it
is clear that ¥ € ¢. Hence m (¥) C ¢ by the minimality of m ().

(e) By (d), m (¥) € g, which means that for any 4 € m (¥), we have A¢ € m (¥).
Hence, m (¥) is closed under implementation.

() Let g ={ACcQ:AUBem(¥) forall Be F}.If {A4,};2, € & is mono-
tone, then {4, U B},~, is also monotone. The identities

(@A,,)UB:Q(AM), (ﬁAn)UB:ﬁ(A,,UB)
n=1 n=1

n=1 n=1

show that §; is a M.C. Since ¥ is closed under finite unions and ¥ C m (¥), it
follows that & C §;, and so m (¥) C §; by the minimality of m (¥).

(g) As in (f) we can show 6, is a M.C. By (f), m (¥) C §;, which means that for
any A € m(¥) and B € ¥ we have AU B € m (¥). This in turn means that
F C G,. Hence, m (¥) C 6.
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(h) Since m (¥) C G, forany Bem (¥)and A e m (¥), wehave AUB € m (¥);
that is, m (¥) is closed under finite unions. O

1.4 THE BOREL o-FIELD

» EXERCISE 48 (1.4.1). Show directly that® o(+43) = o (A}), 0(A4s) = (A7), and
o (A}) = 0 (A1)

PROOF. (i) It is clear that o (A%) € o (43). We only need to show that o (A3) C
o (A3). Since [x, 00) = (J[rn, 00), where {r,}5=, € Q, we complete the proof. O

» EXERCISE 49 (1.4.2). All amc subsets of R are Borel sets. All subsets of R that
differ from a Borel set by at most countably many points are Borel sets. That is,
if the symmetric difference CAB is amc and B € B, then C € 8.

PROOF. Let 4 = {x,}p—; € R. Then A = {J;2, {x»}. {x»} is a Borel set. O

» EXERCISE 50 (1.4.3). The Borel o-field on (0,1] is denoted by 8,11 and is
defined as the o-field on (0, 1] generated by the rsc subintervals of (0, 1]. 8,1
may be equivalently defined by {B N (0,1]| B € 8}.

PROOF. It follows from Exercise 44 that op (4 N B) = o(4A) N B for any @ #
A C 2% and @ # B C £2. In particular, we have B, =BNB. O

» EXERCISE 51 (1.4.4). 8B is generated by the compact subsets of R.

PROOF. Denote
A11 = {A C R": A is compact}.

Let A € A11. Every compact set is closed (Heine-Borel Theorem); hence A € +41y.
It follows that o(#411) € 0(A19). Now let A € Aqp. The sets Ax = AN [-K, K]",
K € N, are compact; hence the countable union A = (Jg_, Ak is in o(sA11). It
follows that #19 € o(+11) and thus o(A19) € o (A11). O

> Notation: #3 = intervals of the form [x, 00), 44 = intervals of the form (x, c0), A7 =
intervals of the form [a, b), and 49 = closed subsets of R.
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MEASURES

REMARK (The de Finetti Notation). I find the de Finetti Notation is very excel-
lent. Here I cite Pollard (2001, Sec.4, Ch.1).

Ordinary algebra is easier than Boolean algebra. The correspondence A <—
14 between A C £2 and their indicator functions,

1 ifxed

T4(x) =
A= e,

transforms Boolean algebra into ordinary pointwise algebra with functions.
The operations of union and intersection correspond to pointwise maxima
(V) and pointwise minima (A), or pointwise products:

Ty 4,(0) = \/ 14,(x). and (2.1)

Iy a4, () = \ g, () =[] 14, (). (2.2)
i i
Complements corresponds to subtraction from one:
Tae (x) = 1 — T4(x). (2.3)

Derived operations, such as the set theoretic difference A~ B := AN B¢ and
the symmetric difference, AAB := (A ~ B)U(B ~ A), also have simple algebraic
counterparts:

Tap(x) = [14(x) — 13(0)]" := max {0, 14(x) — 1p(x)}, (2.4)

TaaB(x) =[T4(x) — Ip(x)]. (2.5)

The algebra looks a little cleaner if we omit the argument x. For example,
the horrendous set theoretic relationship

29
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corresponds to the pointwise inequality

n

n n
1_[ Ua; = 1_[ I | < |]]Ai —Ip,
i=1 =1

i=1 i

’

whose verification is easy: when the right-hand side takes the value 1 the in-
equality is trivial, because the left-hand side can take only the values O or 1;
and when right-hand side takes the value 0, we have 14, = 15, for i, which
makes the left-hand side zero.

2.1 MEASURES

» EXERCISE 52 (2.1.1). This problem deals with some other variants of proper-
ties (M1)-(M3).

a. Some define a probability measure P on a o-field A of subsets of 2 by
stipulating that (i) 0 < P(A) <1 for all A € A, (ii) P (2) = 1, and (iii) P is
countably additive. This is a special case of our definition of a measure.

b. If (M1) and (M3) hold for a set function u defined on a field A with u(A) < +oo
for some A € A, then u is a measure on .

PROOF. (@) If u: A — [0, +00] is a measure, define a new set-valued function
P: A — Ras
p(A)
P(A)= ———, VAecaA.
n(82)
(b) We only need to check (M2): u(@) = 0. Since + is a field, @ € 4. Consider

the following sequence {4, @, @, ...}. (M3) implies that

pA) = p(AUVB UG U-) = pu(A) + ) (D).
Since u(A) < 400, we have u(@) = 0. |

» EXERCISE 53 (2.1.2). Let 2 = {wy,...,wn}, and let p1,..., py € [0, +00]. Define
w on 22 as in Example 2. Then (2,29, 1) is a measure space, and . is o -finite
iff pn < 400 for eachn € N.

PROOF. To prove (£2,2%, 1) is a measure space, we only need to prove that yx is
a measure on 2 since 29 is a o-field. Clearly (M1) and (M2) hold. To see (M3)
hold, let A4, ..., A,, € 22 be disjoint (Since £ is finite, we need only to check
the finite additivity). Then
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m
w |\ An | =D {px: kis such that w; € 4; for some i € {1.....n}}
i=1

Il
NE

> {pk : k is such that oy € 4;}
1

w(A;) .

I
N

Il
—

If p; = +oo for at least one i, then u is not o-finite. If each p; is finite then
i is o-finite: take 4; = {w;}, where i € {1,...,n}. |

» EXERCISE 54 (2.1.3). Let A = {@, 2}, w(@) = 0, and u(2) = +oo. Then
(82, A, w) is a measure space, but u fails to be o -finite.

PROOF. {@, 2} is a (trivial) o-field. (M1) and (M2) hold. Now check (M3):
p(@U2)=pn(2) =0+ pu(2) = (@) + n(82).
Notice that 2 = 2 U @ or 2 = £2, but by the hypothesis, u (£2) = +oc. O

» EXERCISE 55 (2.1.4). Let 2 be uncountable. Let A = {A C 2: A is amc or A€ is amc}.
Write u(A) = 0 if A is amc and u(A) = +oo if A€ is amc. Then (2, A, 1) is a
measure space, and . is not o -finite.

PROOF. We show A is a o-field first. 2 € ¥ since 2¢ = @ is amc. If 4 € 4, then
either A or A¢ is amc. If A is amc, A € A because (A°)° = A is amg; if A€ is
amc, A¢ € A by definition of 4. To see that #4 is closed under countably union,
let {A4,}°2, C . There are two cases: (i) Each 4, is amc. Then UnZ; 4, is amc,
whence is a 4-set, and (ii) At least one A, is such that A¢ is amc. Without
loss of generality, we assume A§ is amc. Since (|Up—; 4n)¢ = (e A5 C AS, it
follows that | J;2, A, € A.

We then show that u is a measure on «. It is clear that y is nonnegative and
w (@) = 0. Now let {A4,}°°, C A be disjoint. If each 4, is amc, then (J;2, 4,
is amc, and so u(Up—; An) = 0 = > 72, it (Ay); if there is at least one A,, say
Ay, so that A§ is amc, then (|J;2; 4,)¢ is amc. Hence, 400 = u(Une; An) =
Zzozl w(An) = p(A1) + Z:o=2 p(An) = +o0.

Since £2 is uncountable, which cannot be covered by a sequence of countable
A-sets. Therefore, in any cover of £2, there exists a set A so that A¢ is amc. But
which means that p is not o-finite since u(4) = +oo. O

» EXERCISE 56 (2.1.5). Let §2 be arbitrary, and let A = {A C §2: A is amc or A€ is amc}.
Define . over 4 by stating that (A) = 0 if A is amc, and u(A) = 1 if A€ is amc.

a. u is not well-defined if §2 is amc, but u is well-defined if 2 is uncountable.

b. w is o-finite measure on the o-field A when $2 is uncountable.
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PROOF. () If £2 is amc, we can find a set A such that both 4 and A¢ are amc.
But then (i) u(A) = 0 since A4 is amc, and (ii) u(A) = 1 since A¢ is amc. A
contradiction.

However, if £2 is uncountable, then the previous issue will not occur because
if both 4 and A€ are amc, then 4 U A¢ = §2 is amc. A contradiction.

(b) We have proved in Exercise 55 that # is a o-field. To prove that u is o-finite,
consider {2, 9, d,...}. O

» EXERCISE 57 (2.1.6). Suppose that 4 is a finite o-field on §2. Suppose that i is
defined on A such that (M1), (M2), and (M4) hold. Then (£2, A, u) is a measure
space.

PROOF. Since # is a finite o-field, any countable union of A-sets must take the
following form
AiUAU---UA,UUDU-.-

Then the proof is straightforward. |

» EXERCISE 58 (2.1.7). Let A = {A C 22: A is finite or A€ is finite}. Define u on
A by
0 if A is finite

(4) =
K 1 if A€ is finite.

o

. u fails to be well-defined when $2 is finite.

=2

. If 2 is infinite, then p satisfies (M1), (M2), and (M4).

(@)

. Let card(£2) = Rg. Then u is finitely additive but not countably subadditive.

d. When $2 is uncountable, u is a measure. Is y o -finite?

PROOF. (a) Let £2 be finite, and both A and A€ are finite. Then u(4) = 0 and
w(A) =1 occurs.

(b) The nonnegativity and u (@) = 0 are obvious. To see finite additivity, let
{A;}'_, C 4 be disjoint, and (J7_, 4; € «. If each 4; is finite, then | J;_, 4;
is finite, whence p(Ji_, 4;)) = 0 = Y!_, n(4); if, say, A§ is finite, then
Uiz, 4l = /=, AS € AS is finite, and u(J/—, 4;) = 1. Notice that A; C A
forall j =2,3,...,n since {4;}7_, is disjoint. Hence A, As,..., A, are all finite
if A is finite. Therefore, > 7, n (4;) =1 = p(Ui=; 4i)-

(c) Since card(£2) = N, £ is infinitely countable. Then u is well-defined and
finitely additive by part (b). To show p fails to be countably subadditive, let
2 ={w1,w,,...},and 4, = {w,}. Hence u (4,) = 0and so Y ,2; u (4,) = 0. But
UnZ, 4 = £2 and pn(U,2, 4n) = 1 since (U2, 4,)¢ = @ is finite.
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(d) u is o-finite when £2 is uncountable. Just consider the following sequence
of sets {2,2,d,...}. Note that u(£2) = 1 < 400 as 2° = @ is finite, and
u (D) =0 < +oo as @ is finite. Finally, 2 = Q UaU g U---. |

» EXERCISE 59 (2.1.8). Let card(£2) = Ry and A = 29, Let

0 if A is finite
n(4) = e
+oo if A is infinite.

Then u is well-defined, u satisfies (M1), (M2), and (M4), and that (M3) fails. Also,
W is o-finite.

PROOF. It is straightforward to see that u is well-defined, nonnegative, and
u (@) = 0. Use the ways as in the previous exercise, we prove that u is finite
additive, but not countable additive. To prove p is o-finite, note that card(£2) =
Ry (£2 is infinitely countable), £2 can be expressed as 2 = {w;, -, ...}; hence,
we can just consider the following sequence {A; = {w1}, 42 = {w>},...}. |

» EXERCISE 60 (2.1.9). (M5) is not true if the hypothesis u(A) < +oo is omitted.

PROOF. Suppose A € B with 4, B, B~ A € A. Then u(B) = pn(A) + w(B ~ A).
If u(4) = 400, then u(B) = +oo since u(B ~ A) = 0. Then u(B) — u(A) =
(+00) — (+00) is undefined. O

» EXERCISE 61 (2.1.10). Let u denote a measure on a o-field A, and let
A,Al,Az,...EA.

a. 1(A) = Y go; n (AN Ax) when the Ay ’s are disjoint with | J;—, Ax = 2.
b. u(A1A42) = 0 iff (A1) = p(A2) = pn(A41 N Az).

c. u(A,) =0 forces both u (A, U Ay) = u(Ay) and u (A1 AA,) = 0.

d. u(A4z) =0 forces u (A1~ Az) = pn(A).

PROOF. (a) We have A = A N (Ug 4k) = Ug (AN Ag), and {4 N Ax} C A is
disjoint. Hence,

p(A) =M(G (AﬂAk)) = iu(AﬂAk)-
k=1 k=1
(b) If 1(A)) = (A2) = (A1 N Az), then
(A1) = p (A1~ A2) + (41 N Az) = (A1~ 42) =0,
pu(Az2) = u(Ar ~ Az) + pn(A1 N A2) = p(4r ~ 42) = 0.

Therefore, u (A1AA3) = u (A ~ Az) + u(4A; ~ A2) = 0.
If [L(AlAAz) = O, then [L(Al \Az) = /,L(Al ~ A2) = 0. But then /,L(Al) =
p(Ar~ A2) + (A1 N Az) = p(A; N Az) and p(A4z) = (41 N Az).
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(€©) 0 < u(A; N Ay) < u(A;) = 0 implies that u(A; N A;) = 0. By the inclusion-
exclusion principle,

(A1 U Az) = p(Ar) + p(A2) — (41 N Az2) = p(Ay).
(d) Since Al UA2 = (AlAAz) U (A] mAz), and (AlAAz) n (Al mAz) = g, we have

M (Al U Az) = [L(AlAAz) + /,L(Al n A2) =u (A]AAz)
= (A1~ Az) + u(Ar ~ Az)
= pu (A1~ Az). O

» EXERCISE 62 (2.1.11). Let (£2,4, 1) be a measure space such that there is
B € A with 0 < u(B) < +oo. Fix such a B, and define ug : # — R by the
formula jug(A) = n (AN B) [ (B).

a. (£2, 4, up) is a measure space.

b. Suppose in addition that $2 is the disjoint union of an amc collection of sets
B, € A such that each B, has finite measure, and suppose that . is finite.
Then for all A € A we have (A) =, ug,(A) - u (By). Also, for eachi € N
we have

pa (Bi) - u(A)

> 4 (Bn) - i(A)

This formula is known as Bayes’ Rule.

uB; (A) =

PROOF. (a) If suffices to show that up is a measure on 4 since 4 is a o-field.
(M1) To see ug(A) = 0, note that u(B) > 0 and u (4N B) = 0. (M2) To see

(2N B)
up (@) = 0, note that ug (@) = T = 0. (M3) For countable additivity,
n
let {4,}°2, € 4 be disjoint. Then

[e.o]

plaofUa) |l | UJans

n=1 n=1

1 (B) - 1 (B)

pa(|J 4n) =

n=1

> (4N B)

n=1

w(B)
u(An N B)

w(B)

(e 10

uB (An) .

3
Il
-

(b) By the assumption, we can write §2 as 2 = |2, By, where {B,}5>, C A is
disjoint, and u (B,) < +oc. Since u is finite, u (£2) < +oo. For the first claim,
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AN By,
ZmMMww»=2ﬂ%@71uwm=ZMMmm>

=p|JAn By
=p(ANR)
= p(A).
For the Bayes’ Rule,
w(Bi N A)
pBO MY s

128 ,'(A)z - - ’
’ WA Y g, (A1 (B D g, (4) - (By)

» EXERCISE 63 (2.1.12). Let S = {s1,...,5m}, and let {p,: u € S} denote a
collection of nonnegative numbers with ), s pu = 1. Let £2 denote the set of
sequences of S. For each w € 2, write = (z1(w), z2(w),...). Given n € N and
H C S", let

Co(H) = {a) €Q2: (21(®).....20()) € H}.

Such a set is called a cylinder of rank n. Let ¥ = {C,(H): n € N, H C S"}, so
that ¥ consists of all cylinders of all ranks. Define i : ¥ — R as follows: if for
somen € Nand H C S" we have A = {w € 2: (z1(w),...,zy(w)) € H}, write

w(A) =Y Apiy. oo piy: (1. i) € HY.

a. u is well defined.

2.2 CONTINUITY OF MEASURES

I complete the Claim 1 of Vestrup (2003, p. 43) before working out the exer-
cises for this section. Note that we sometimes take the following notation (see
Rosenthal, 2006, p. 34):

liminf 4, = [4, ev.]: 4, eventually,
limsup A4, = [4, i.0.]: 4, infinitely often.

Ash (2009) provides an excellent treatment of lim sup and lim inf for real num-
ber sequences.

CLAIM 5. Let {4,}72, denote a sequence of subsets of £2. Then we have the
following properties:

a. liminf 4, = {w € £2 : w is in all but finitely many of 4y, 4,,...}.

b. limsup 4, = {w € 2 : w is in infinitely many of A;, 4,,...}.
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c. liminf 4,, C limsup 4,.

d. If {4,}°2, is nondecreasing, then lim 4, exists and equals UZO=1 A,.
e. If {4,}°°, is nonincreasing, then lim 4, exists and equals (),—; 4,.
f. If Ay, A,, ... are disjoint, then lim 4, exists and equals @.

PROOE. (b) If w € limsup A4,, then for all k € N, there exist some n > k such
that w € A,. Hence, w is in infinitely many of A4;, 4,,.... Conversely, if o is in
infinitely many of Ai, A,,..., then for all k¥ € N, there exists n = k such that
w € Ay,. Therefore, w € (=, Uros An = limsup 4,.

(e) Since 4,4, C A;, we get (J;~, Ak = An. Therefore,

o0 o0
limsup 4, = () | J 4| =) 4n-
n=1

n=1 \k=n

Likewise
o o0
liminf A4, = | J [ (") 4k | 2 () Ak =limsup 4, 2 liminf 4,.
n=1 \k=n k=1
Thus equality prevails and so lim 4, = (), 4n- O

» EXERCISE 64 (2.2.1). liminf 14, = liminf 4, and limsup 14, = Nimsup 4,,-

PROOF. We first show

U2 4, = I0f Ta,,. (2.6)
T joe = sup Iy, . (2.7)
Un=k An n=k

To prove (2.6), we must show that the two functions are equal. But

oo
ﬂﬂﬁ":kAn(w) =1 ¢ we ﬂ Ap
n=k

— weAd,foralln=k
— ly,(w)y=1foralln=k
— in£l]An(a))=1.

Similarly, (2.7) holds since
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o0
nU?:kAn(w) =1 << we U An
n=k
< we A, forsomen =k
< 14,(w) =1for somen =k
& sup ly,(w) = 1.
n=k
Hence,
Dt = T () = S0 0 a0 = S0P 0 e = limint T,
15 = Troo (o0 = inf 1| | = inf Tyq, =1i T4, .
lim sup A, NS, (U, 4x) rltrzll U2, Ak rlzrzll igl: Ax msup 1y,
Alternatively, we have
liminf 1y, (w) =1 <= 1y,(0) =1 ev. <= w € 4, ev.
<= w € liminf 4,
— 1]limian,, (w) =1,
limsuply,(w) =1 < I4,(w) =110 &< we A, io.
<= w € limsup 4,
— 1]limsupA,, (w) = 1. o

» EXERCISE 65 (2.2.2). Show that liminf 4, C limsup A, without using the

representations of liminf A, and lim sup A,, given in parts (a) and (b) of Claim
1.

PROOF. Notice that

o0 o0
w € U ﬂA,, <= Jk* e Nsuchthatw € 4,, Vn = k*
k=1n=k

—=VkeN, 3n=ksuchthatw € 4,

—w € ﬂ U Ay,
k=1n=k
where the first “==" holds because if k < k*, then w € A4, for all n > k*; if
k=k* thenw € A, foralln = k. O

» EXERCISE 66 (2.2.3). (iminf 4,)¢ = limsup A¢ and (im sup 4,)¢ = liminf A¢.

PROOF. These results are analog to — liminf x,, = lim sup (—x,) and — lim sup x,
liminf (—x,). We have two methods to prove these claims. Here is the Method
1:

c c
oo

(o) o0 o0 o0 o0
(iminf 4,)° = [ | (4| =) | () 4| =) U 45 = limsup 45.

k=1n=k k=1 \n=k k=1n=k
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c

o0 o0 ¢ o0 o o0 o
imsup4,)° = (U4 | =J | U4 | =1 ) 45 = liminf 45.
k=1n=k k=1 \n=k k=1n=k

Here is Methods 2:

x € (liminf 4,)° <= —=[@AN e N)(Yn = N)(x € 4,)]
< (VNeN)@n=N)(xe4)
< x €limsup A;

x € (limsup A,)° <= —[(YN eN)@n = N)x € 4,]
e @NeN)(¥n=N)(xe )
<= x € liminf 4;,. O

» EXERCISE 67 (2.2.4). If B, # A, for at most finitely many n € N, then
liminf A, = liminf B, and lim sup 4,, = limsup B,,. In other words, liminf A4,,,
lim sup 4, [and lim A, ] are not changed if a finite number of Ay ’s are altered.

PrROOF. Just follow Claim 1. O

» EXERCISE 68 (2.2.5). We have the following relations:

a. limsup(4,UB,,) = limsup A4, Ulim sup B,, and liminf(4,, N B,) = liminf 4, N
liminf B,,.

b. limsup(4, N B,) C limsup 4, Nlim sup B, andliminf(4,U B,) 2 liminf 4, U
liminf B,,. Both containment relations can be strict.

C. ]]limsup(AnUB,,) = maX{“limsupAn , ]]limsup Bn} and ]]liminf(AnﬂBn) = mjn{ﬂlimian,,s 1]liminan}"

PROOF. () By definition, limsup(4, U B,) = [4,UB, i.0.] = [4, i.o] U
[B, i.0], and liminf(4, N B,) = [4, N B, ev.] = [A, ev]N[B, ev.].

(b) We have
w € limsup(4, N B,) < o is in infinitely many of 41 N By, A, N By, ...

:*>a) is in infinitely many of A, A,,... and By, B, ...
—w € limsup 4, and w € limsup B,
—w € limsup 4, Nlimsup B,,

where (x) holds with “=" rather than “ <= ” because, e.g., let

A; ifiisodd
w € (2.8)
B; if j is even;
then o is in infinitely many of A;, A4,,..., and o is in infinitely many of
Bi, B,,.... However, if A, N B, = & for all n € N, then » is not in any of

An N By.
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Likewise,

w €liminf 4, U liminf B,

<= w is in all but finitely many of A;, A,... or By, B,,...

;m) is in all but finitely many of (4, U By), (42 U B»), ...
< w € liminf(4, U B,,),

where (xx) holds with “—" rather than “ <= ” because, e.g., consider (2.8);
then w is in all of 4; U By, A; U Bs,, ..., but there does not exist N such that w
isin all 4, for alln = N or N’ such that w is in all B, for alln = N’.

(c) We have

Tlim sup(4,UB,) (@) = 1 <= o € limsup(4, U B,)
< o € (limsup 4, Ulimsup B,)

— maX{ﬂlimsup Ap (), IIlimsup By (w)} = 1.

ﬂliminf(Anr\Bn) =1 < w €liminf(4, N B,)
< w € (liminf 4, Nliminf B,)
— Inin{ﬂlimiann (w), 1]liminan (w)} =1. O

» EXERCISE 69 (2.2.6). If A, — A and B, — B, then A, UB, — AU B, A5 — A¢,
A, N B, - ANB,A, ~B, - A~ B, and A,AB, — AAB.

PROOF. (i) We have limsup(4, U B,) = limsup A4, UlimsupB, = A U B,
liminf(4, U B,) 2 liminf 4, U liminf B, = A U B, and liminf(4, U B,) <
limsup(4, U B,) = AU B. Therefor, 4, U B, — AU B.

(ii) Notice that limsup A = (liminfA4,)° = A¢ and on the other hand
liminf A¢ = (limsup 4,)¢ = A€.

(iii) We have liminf(4, N B,) = liminf 4, Nliminf B,, = A N B, limsup(4, N
B,) C limsup 4, Nlimsup B, = AN B, and lim sup(4, N B,) 2 liminf(4, N B,).

(iv) Note that A, ~ B, = A, N BS. We have known that B — B¢, so A,~ B, —
AN B¢ = A~ B by (ii) and (iii).

(V) Ay AB, = (An ~ By)U(By ~ Ay). Since A,~B, — A~B and B,~A4, — B~A
by (iv), we have A,AB,, — (A~ B)U (B ~ A) = AAB by (i). O

» EXERCISE 70 (2.2.7). If A, is B or C as n is even or odd, then liminf 4,, =
BNC,andlimsup A4, = BUC.

PROOEF. We have
liminf 4, = [4, ev]=BNC,
limsup 4,, = [4, i.0] = BUC. O

» EXERCISE 71 (2.2.8). lim sup 4,~liminf 4, = limsup(4,NA4;_ ;) = limsup(45N
An+1)-
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PROOF. We have

x elimsup(4, N 4;,,,)
— (YNeN)@n=N)(xecd,and x € 4;,,)
< (x €4, i.0)and (x € 4, i.0.)
<= x € (limsup 4, Nlimsup 4;,) = limsup 4, ~ liminf 4,.

The other equality can be proved similarly. O

» EXERCISE 72 (2.2.9). a. lim sup,, liminf (4, N A7) = @.

b.
C.

d.

A~ limsup, Ax = liminfy (4 ~ Ag).
lim sup,, (liminfy 4 ~ 4,) = @.

limsup, (A~ A,) = A~ liminf, 4, andlimsup, (4, ~ A) = limsup,, 4,, ~ A.

. limsup, (4A4,) = (A ~liminf, A,) Ulimsup, (4, ~ A).

A, — A implies that lim sup, (AAA,) = limsup,, (A, ~ A).

For arbitrary set E, F,G and H we have (EAF) A(GAH) = (EAG)A(FAH).
We also have for any set A that

lim sup A; ~ lin}cinf A = lin}cinf A Alimsup A
k k
= (lin}{inf A Alim sup Ak> A(AAA)
k

= (limkinf AkAA) A (lim sup AkAA) .
k

PROOF. (a)
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lim sup lirr}cinf(An N Ay)
n

= lim sup lin}cinf(An N Az)i|

= lim sup limk inf 4, N lin}c inf Ai} [by Exercise 68(a)]
n

n

= limsup | 4, N lin}cinf Az}

n

c
=limsup | 4, N (lim sup Ak) :|
k

C
c (lim sup An) n |:lim sup (lim sup Ak) :| [by Exercise 68(b)]
n n k

c
= (lim sup A,,) N (lim sup Ak)
n k

.

(b) liminfy (4 ~ Ax) = liminfi (4 N A7) = liminfy A N liminf; A7 = AN
(lim supy Ax)¢ = A ~ lim supy, Ag.

(0) lim sup, (liminfy Ax~4,) C [limsup, (liminf; Ax)]N(imsup, A5) = (liminfg Ax)N
(liminf, 4,)° = @.

(d) limsup, (4~ 4,) = ;2 UpZe (AN 45) = ML, [A N (Unzk A:i)] = AN
[Ne2: Usek 45] = AN (limsup, 4¢) = 4 N (liminf, 4,)° = A ~ liminf, 4,

and limsup, (4, ~ 4) = (G Upe (4n 149 = (72, [(UpZy 4n) 0 4¢]
lim sup,, 4, ~ A.

(e) limsup,(AAA,) = limsup,[(A ~ A,) U (4, ~ A)] = limsup, (4 ~ 4,) U
lim sup,, (4, ~ A) = (A ~ liminf, 4,) Ulimsup,, (4, ~ A).

(f) If A, — A, then limsup 4, = liminf 4,, = A. Hence, limsup,(4AA4,) =
(A ~liminf, 4,)Ulimsup, (4, ~ A) = (A ~ A)Ulimsup,, (4, ~ A) = limsup,,(4,~
A).

(g) We first show for all 4, B, C € 29,
(AAB) AC = AA (BAC). (2.9)

This equation hold because!

1 This proof is not elegant. See Resnick (1999, Exercise 1.43).
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(AAB)AC =[(A~ B)U (B~ A)]AC

(A\B)U(B\A)]\c} {C\[(A\B)U(B\A)]}

[(AnB)ucns]|n c“} %[(A nB)UANB)| N c}

(AN B°NC°)U(4° N BNCY)|U %[(AHBC)CH(ACDB)C]HC}

(ANB°NCHOUMANBNCH|U[(ANBNC)UA°NB NC)]
BcﬂC U(BﬂC)]}U%Acﬂ[(BHCC)U(BCHC)]}

!
it
[
2[(ANB NCYU A NBNCY)|U {[(AmB)u(ACmBC)]nC}
[
gl
{A (BUC)N (B°UCE )] }U[ACm(BAC)]
=[AnBAC)][4° n(BAC)]
= AA (BAC),
where equality () holds because
(AN BS) N (A° N B)* = (A°U B) N (AU B°)
= [(A‘-’ UB) N A] U [(AC UB) N BC]
= (AN B) U (4° N BY),
and equality (+*) holds because
(BUC)N(B°UC) =[(BUC)NBJU[(BUC)NC‘]
=(B°NC)uU(BNC).
By (2.9), we have

(EAF)A(GAH) = EA[FA(GAH)] = EA[FA(HAG)]
= EA[(FAH) AG]
= EA[GA (FAH)]
= (EAG)A (FAH).

Now it suffices to show that (liminfy Ax)A(limsupy Ax) = (limsup; Ax) ~
(liminfy Ax). Notice that

(liminf Ax)A(lim sup Ay)
= [(lim sup Ag) ~ (limiank)] U [(limiank) ~ (lim sup Ak)]
= [(tim sup 4¢) ~ (liminf A¢) | U [ (liminf 4) 0 (liminf 47)]

= (limsup Ag) ~ (liminf Ag),
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where (x * *) holds because (liminfy 4z) N (liminfy A7) = [Ax ev.]N[A4] eV]
a. O

» EXERCISE 73 (2.2.10). Let 2 = N, and let 4 = 2%. Define ;. on A by u(A)
number of points in A if A is finite; define u(A) = +oo if A is infinite.

a. u is a measure on 4. This measure is called the counting measure.

b. There exists a nonincreasing sequence {A,}52, of A-sets with . (4,) = +o0
for all n € N but p (lim, 4,) = 0, thus (M9) accordingly fails to hold, hence
the assumption that some A, must have finite measure cannot be dropped.

PROOF. (a) can be found in Vestrup (2003, Example 2, p. 37). For (b), let 4, =
{n,n+1,...} for each n € N, then A, | @, u(4,) = +oo, but u (lim, 4,) =
0. ]

» EXERCISE 74 (2.2.11). Let (£2, A, u) denote a measure space. Let {A,: x € R, x > 0}
denote a collection of A-sets.

a. Suppose that 0 < x < y implies Ay € A,. Then () | J,.o Ax € #A, (i) x1 < x»
implies (Ax,) < u(Ax,), and (iii) w(Ax) — M(Uy>o Ay) as x — +o0.

b. Suppose that 0 < x < y implies Ax 2 A,. Also, further assume that j1(4;) <
oo for some z > 0. Then (i) (= Ax € A, (i) x1 < xo implies u(Ay,) = n(Ax,),
and (iii) u(Ax) — M(ﬂy>0 Ay) as x — +oo. The assumption j1(A;) < +oo for
some z > 0 cannot be dropped. This and (a) generalize (M8) and (M9) from
monotone sequences of sets to monotone [uncountable] collections of sets.

PROOF. (a) Denote {A,: x € R,x > 0} as 4Ag. Define a subset Ay of Ar as
follows:
AN ={A, € A:n € N,n > 0}.

Then, for every x € R and x > 0, there exists n € N such that x < n (by the
Archimedan property; see Rudin 1976, Theorem 1.20); that is, A, € A4,. Thus,

UAR=UAN6A.

(b) Define 8 = {A4y/,: n € N,n > 0}. Then for every x € R and x > 0, there
exists n € N with n > 0 such that x < 1/#n; thatis, A/, € Ax. Thus, [ Ar =
N 8. o

» EXERCISE 75 (2.2.12). Let (2, 4, u) denote a measure space.

a. u is o-finite iff there is a nondecreasing sequence A1 C A, C --- of A-sets
with u(A,) < +oo foralln € N and \ ;2| An = £2.

b. wu is o-finite iff there is a disjoint sequence Ay, A, ... of A-sets with u(A4,) <
+oo foralln € N and | J;2, A, = £2.
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c. Let uy,...,u, denote o-finite measures on 4. Then there exists a sequence
{Am}oe_, of A-sets such that (i) p;(A;) < +oo foralli =1,....,n and j € N
and (ii) 2 = \U,,—, Am. These sets may be chosen to be nondecreasing or
disjoint.

d. Does (c) hold if we have countably many o -finite measures on 4 as compared
to finitely many o -finite measures on .

PROOF. (@) The if part is trivial. So assume that u is o-finite. Then there exists
{Bn} C A with u(B,) < +oo foralln € N and |J B, = 2. Let 4, = Uz, B«-
Then {4,} is nondecreasing and | J B, = |J 4, = £2.

(b) Again, the if part is trivial. So assume that u is o-finite. Let {B,} as in (a).
Let Ay = By, and 4, = B, ~ (U?;ll B;) for n = 2. Then {4,} is disjoint and
UB, =4, = 2.

(c) Let uy,..., u, be o-finite. Then for each i = 1,...,n, there exists {4;;} C 4

such that u; (4;x) < +oo forall k € N and | J, Aix = 2. Now let A,, = j—; Atm-
For each i and j,

n n
pi(Ap) = i | J Ay | < D mi(4)) < +oo, (2.10)
=1 =1

and | J 4,, = £2. It follows from (a) and (b) that {4,,} may be chosen as nonde-
creasing or disjoint.

(d) (c) may not hold if we have countably many o-finite measures on 4 since
(2.10) may fail. O

» EXERCISE 76 (2.2.13). Let u denote a measure on a o-field 4, and let
Ay, Az, ... € A be such that u(lJ7Z y liminfy (4; N Af)) < 400 for some N € N.
Use (M10) and parts (a)—(c) of Exercise 72 to show the following claims:

a. lim, p(liminfy (4, N Af)) exists and equals zero.
b. lim, u(A4, ~ limsup, Ay) exists and equals zero.

c. lim, u((liminf; Ag) ~ A,) exists and equals zero.

PROOF. (a) Since there exists N € N such that ;L(U]?"’:N liminfy (4; ~Ax)) < +o0,
it follows from (M10) and Exercise 72(a) that
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w (hn}linf [lirr}cinf(An ~ Ak):|> < lim inf 10 (lin}cinf(An ~ Ak))
< limnsup m (lin'}c inf(4, ~ Ak))
<p (hmnsup [lirr}cinf(A,, ~ Ak)D
= ()
= 0.

Thus, lim,, p(liminfy (4, N A7)) = 0.

(b) Notice that 4, ~lim sup, A; = liminfy (4, ~ Ax) by Exercise 72(b). Then (b)
follows from (a) immediately.

(c) Using (M10) and Exercise 72(c), we get (c). |
» EXERCISE 77 (2.2.16). Let 4 be a field on 2, and suppose that u: A — R

satisfies (M1) with u(£2) < +o0, (M2), (M4) (and hence (M5)), and in addition is
continuous from above at @. Then u is a measure.

PROOF. Let {B,} C + be disjoint, and | J, B, € . For n = 2, let C, = | Jz~,, Bx-
Then {C,} is nonincreasing and converges to

o0
OC,, = ﬂ U By = limnsup B, = @.

n k=n

Then lim, u(C,) = 0; that is,

[e] oo n—1
0=limpu UBk = lim UBk ~ B;
" k=n " k=1 i=1

n—1
=1 UB,, —li’?qu( B,-)
n i=1
n—1
=p|JBn | -lim} u(B)
n i=1
=M U B, |- Z M(Bn)v
n n=1
i'e'! I*L(Un Bn) = Zn M(Bn) o

» EXERCISE 78 (2.2.17). Let 2 = (0,1], and let ¥ consist of @ and the finite
disjoint unions of rsc subintervals of (0, 1]. Then ¥ is a field. Define u on ¥ as
follows: u(A) = 1 if there exists ¢4 > 0 with (1/2,1/2 + e4] € A and u(A) =0
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otherwise. Then p is well-defined and satisfies (M1), (M2), and (M4), but p is not
countably additive.

PROOF. We first show that ¥ is a field. Suppose that 4 = (a1,a}] U --- (am, a,,],
where the notation is so chosen that a; < ---a,,. If the (a;,q}] are disjoint, then
A¢ =(0,a1] U (a},az]U--- U (a,,_;.am] U (a,,, 1] and so lies in ¥ (some of these
intervals may be empty, as a; and a;4+; may coincide). If B = (b;,b}] U --- U
(bn, by], then (b, b7] again disjoint, then

ANB = Lmj O [(a,-,al’-] N (bj,b}]];

i=1j=1

each intersection here is again an interval or else the empty set, and the union
is disjoint, and hence AN B € ¥.

Nevertheless, ¥ is not a o-field: It does not contain the singleton {x}, even
though each is a countable intersection (), (x — 1/n, x] of ¥ -sets.

The set function pu defined above is not countably additive. Counter the
rational number on (0, 1] starting 1: {1, x1, x»,...}. This set is countable. Con-
sider the collection {(xy,1], (x2,x1],...}. Then u(J(x;,xi—1]) = 1, however,
Yoo mw((xi xi—q]) = 0. O

» EXERCISE 79 (2.2.18). Let (£2, 4, ) be a measure space. Suppose that p is
nonatomic: A € A and u(A) > 0 imply that there exists B € A with B € A with

0 < u(B) < u(A).
a. The measure u of Example 2 in Section 2.1 is atomic.

b. Suppose A € A is such that u(A) > 0, and let ¢ > 0 be given. Then there exists
BeAWwithBC Aand0 < u(B) <e.

C. Let A € A be such that (A) > 0. Given any 0 < o < u(A) there exists a set
B € A with B C A and u(B) = «.

PROOF. (a) Let A = {w}. Then 4 € 2 and 1(A) = 1. The only subsets of 4 (in
A)is @ and A. But u(@) = 0 and u(A4) = u(A). So the unit mass at wq is atomic.

(b) Take an arbitrary A; € 4 with A; € 4 and 0 < u(A4;) < u(A). Since u(A) =
(A1) + u(A~ Ay) and (A ~ A1) > 0 (otherwise u(A4;) = p(A)), we know that
either

0 < pu(Ar) < p(4)/2, (2.11)

or
0 < (A~ A1) < pu(A)/2. (2.12)

If (2.11) holds, take an arbitrary A, € 4 with A, C A; and 0 < w(A4;) < u(Aq).
Then either
0 < u(42) < u(A1)/2 < pu(A)/2%,

or
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0 < pu(Ar ~ A) < 1(A41)/2 < u(A4)/2%.

If (2.12) holds, take 4, € 4 with A, € A~ A; and 0 < u(A43) < (A~ A;). Then
either
0 < ju(A2) < (A~ A1)/2 < p(4)/22,

or
0 < ((A2) S (A~ Ar~ A2)/2 < (A~ A41)/2 < p(A4) /2%

Thus, there exists A, € A with A, € A such that 0 < u(4,) < u(A)/22.

Then by mathematical induction principle, we can show that there exists
A, € A with 4, € A and 0 < u(A4,) < u(A)/2". By letting n sufficiently large
and setting B = A,, we get the result.

() Ifa =0,set B = g;ifa = u(A), set B = A. So we assume that 0 < o < u(A4).

Let € denote the family of collection £ of countable disjoint A-sets con-
tained in A4 such that ). u(D) < . Notice that € is well-defined by (b). For
D,& € €, write D < § iff (1) Y pep (D) < Y pee n(E), and (i) D C €.

It is clear that (€, <) is a partially ordered set since < and C are partial
orderings. For any chain ® C G, there exists an upper bound | ®. It follows
from Zorn’s Lemma that there exists a maximal element ¥ € G.

Let B = |J ¥. We finally show that u(B) = ) pcsy #(F) = a. Assume that
u(B) < a. Then (A~ B) > 0 for otherwise u(A) = w(A~B)+ u(B) = o < u(A).
Take an arbitrary ¢ > 0 such that ¢ < o — u(B). It follows from (b) that there
exists C e AwithC C A~ Band 0 < u(C) <e.Let § = F U {C}. Then all sets
in ¢ are disjoint and

Do mG) = Y wF) + u(C) < p(B) +e <e

Ge§ Fe¥

thatis, § € €. Further, ) ;.0 #(G) = Y peg W(F) + u(C) > Y peg n(F) since
uw(C) > 0,and ¥ C ¢. Thus, ¥ < §. In Contradict the fact that ¥ is maximal
in C. O

» EXERCISE 80 (2.2.19). Let (£2, A, 1) be a measure space. Let B € A and Ap =
{A € A: AC B}. Then Ap is a o-filed on B, and the restriction of i to Ap is a
measure on Apg.

PROOF. Automatically, B € Ap.If A € Ap, then 4 € A, S0 B~ A4 € A and
B~ AC B,ie, B~ A € Ag. Finally, if {4,,} C Ap, then 4, € A and 4, C B
for each n. Thus, [ JA, € 4 and | J 4, € B, i.e, | J 4, € Ap. Itis trivial to verify
that u is a measure on Ap. O

2.3 A CLASS OF MEASURES

» EXERCISE 81 (2.3.1). Let p1,..., py > 0. Fixn real numbers x; < x, < -+ < Xy,
and define
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0 le < X1
F(x)={( p1+--+p; ifthereexists1 < j <n suchthatx; <x < xj
1 if x = xy.

AF is a measure on A, and

Y {pj:jissuchthata <x; <b} if(a.b]N{x1,....xp} # @

Ar((@b) = otherwise

This is an important framework in discrete probability theory.

PROOF. We first show that Ar takes the given form. If (a,b] N {x1,...,x,} = &,
then eithera < b < x; <x3 < -+ <X, Or x; < X < --- < X, < a < b. Hence,
F(a) = F(b) = 0or F(a) = F(b) = 1, so Ap((a,b]) = F(b) — F(a) = 0. If
(a,b)N{x1,...,xn} # @, then there exists i, j = 1,...,n such thata < x; < x; <
b. Hence,

Ar((@.b]) = F(b) = F(a) = (p1 + -+ pj) = (pr + -+ pi)

= Y

{j:a<x;<b}

To see that Ar is a measure, notice that (M1) and (M2) are satisfied auto-
matically. Let {(a,,bn]}y=; < 4 is disjoint, and assume that a; < by < as <
by <---<a, <b, <---,whence,

o0
Afp U(a,,,b,,] =Z{pk:kissuchthatxkeA,,forsomeneIN}

n=1

M

> {pk: k is such that x; € A}

3
Il
—-

e

AF ((an,bn]) . O

Il
-

n

» EXERCISE 82 (2.3.2). This problem generalizes Example 4. Let f: R — R be
such that f is continuous and nonnegative. Further suppose that ffozo . OZO f)yde <
+00. Define a function F : R — R by

F(x)=/_:---/:f(t) dr, xeRF

Then Af is a measure on the semiring Ay, and for all (a, b] € A, we have

by by
AF((a,b])=/ f(tr, ... tx) dig -~ dey.
a a

k
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PROOF. F is continuous. To derive Ap,, we use the mathematical induction.
If n = 1, then Af,((a.b]) = F(b) — F(a) = fab f (t) dt. Let us assume that the
hypothesis hold for n = k, and consider n = k + 1:

AFk_H(A)
= Z s4(x) Fr41(x)
xeV(A)
= > sa@®)Fe () + Y sa(x)Frpr(x)
xeVi(A) xeV>(A)
= Y s ar) Pt ae) Y sa(x* b)) Fep (6%, byy)
x*eV(A*) x*eV(A%)
= Y (s P arr) + Y sar () Frpa (6%, )
x*eV(4*) x*eV(4*)
= Z sS4 (%)« [ Fryr (6%, bpyr) — Frp (2™, aq1) |
x*eV(4*)
. br41 .
= Z sA*(x ) Fk(x )dl‘k_H
x*eV(4*) Ak+1

bi+1
/ Y s Fe(x®) | dien
a

k+1 xeV(A*)

b1 br+1
/ '.‘/ f(tla--.,tk_;’_l) dtk-}—l"'dll
ai a

k+1

\V

0
Hence, F;, € ©. O

» EXERCISE 83 (2.3.3). Let Fy,...,F; € ©. For each x € R¥, write F(x) =
k
Hizl Fi (x;).

a. F € &, hence A is a measure on Ay.
b. Ar ((@,b]) = [T52, [F: (bi) — Fi (a;)] for all (a,b] € Ay.

PROOF. The continuity of F is clear. For F;, we have A, ((ai.bi]) = F; (bi) —
F; (a;). We can derive the form of Ag as in Example 3. O

» EXERCISE 84 (2.3.4). Suppose that F; € &, fori = 1,...,n. Suppose that
F: RXi=1ki 5 R is such that

n
F(xM, . x™) = l_[ Fi(xD)
i=1

for each x € R¥1, .., and x™ e R¥". Then Af is a measure on Asn_ .. Also,
Ap (A x -+ x Ay) =12, AF, (A;) for each Ay € Ay, ..., and A, € Ay, .
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PROOF. We use mathematical induction. If i = 1 then F(x™) = F;(x(), and
AF(A1) = Ap (A1) If i = 2 then F(xV,x®) = F;(xV) x F,(x®). Consider
any (x, x®) e ¥ (4, x A,). By definition,

+1 if |, j: xl.(l) = alo),x](-z)

-1 if|{i,j: xi(l) = afl),x](.z) = a](.z)}| is odd.

@ ;
=da: 1S even
Sty (¢, @) = il

4,54, (XD xVF(x® x@) = 54 04, (xPD, x@). [F1 (x(l))Fz(x(z))] . (2.13)

o If [{i: xV = aM} = #0 is even, and |{i: x® = a®}| = #@ is even, too,
then {i,j: xV = afl),xj(.z) = aj(.z)}| = #1.2) js even, and 54, (x (V) = 54,(x@) =

i

Sar x4, (x D, x @) = +1. Therefore, by (2.13)
SA1xAs (x(l)’ x(z))F(x(l), x(2)) — F(x(l), x(2))
= AGMRE®) (2.14)
= [s4, D) F )] - [54, 6@

o If # and #® are both odd, then #(:? is even, and so

SA,x Ay (x(l), x(2))F(x(1), x(z)) — F(x(l), x(z))
= (xR (x®)

_ [_Fl (x(1))] . [_Fz(x(z))] (2.15)
= [ GORGED)]- [, F?)]
o If one of the #V #® is even, and the other is odd, then #1-? is odd. (2.14)
holds in this case.

Hence, for any (x(V, x®) € A; x 45, (2.14) hold. Therefore, we have
> s (6D x@)F (x 0, 52)

(xD x@)eV (41 x42)

= Y[R x [uaD)RE®)

(x(D,x@)eV(4;x42)

(2.16)
= ) [sAl(x“))Fl(x“))]x > PR (®)
x“)EV(Al) x(z)GV(Az)
= Y[R x AR ()
xMev(ay)

= AF (41) - AR, (A42).

Now suppose the claim holds for » = k, and consider n = k + 1. In this case,
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k
F(x(l),_“,x(k)’x(k-l-l)) — l_[E(x(l)) Fk+l(x(k+l))~

i=1
Just like Step 2, we have

sekrt , (k@ xEFDYE @ kD)
Hizl A;

: ' (2.17)
e (e ) 1_[ Fi(x®) | x [SAk+1(x(k+1))Fk+1(x(k+1))]
i=1
for every (x@, ... x*+D) ¢ nyill 4,. Therefore,
AF(AI X eoe X Ak+1)
= Z Sl—[;(:ll Ai(x(l),.--,x(k+1))F(x(1),_._’x(k‘f‘l))

K
= > ST, 4, (x(l)n-.,x(k))-nf}(x(’))

@O, xE+D)e (T 45) i=1

x [s400 D) Fiopy (D) |

k
2 iz a, (20 ®@) - [T RGO

(x D, x(k))e[/(l‘[fﬁzlAi) i=1
x oo sa GE) R (x®ED)
x(k+1)eV(Ak+1)
k .
= HAFi(x(l)) 'AFk+1(x(k+1))
i=1
k+1
= l_[ Ap (x®).
i=1

Since F; € G, we have A, (4;) = 0;thus, Ap (4y x -+~ 4,) = [[/=; AF, (4i) =
0. The continuity of F(x™, ... x%*+D) is obvious. Hence,

Fx®,.. x™)eGyn_ 4. O
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REMARK (p. 82). If A € A (), then §,4 is a A-system.

PROOE. Let
G4={CCR:ANC € A(P)}. (3.1)

A) AN =Aer(P) = 2 € G4. (Ay) Suppose C; C C, with C,C; € §.
Then we have ANC; C ANCy,and ANCy, AN C;, € A (L) by assumption. Since
every A-system is closed under proper differences, we have

(ANC)—(ANC)=AN(C,—Cy) € A(P),

$0 C, — C; € 4. (A3) Let {C,,},2, denote a disjoint collection of g4-sets, so that
{ANCyl2, is a disjoint sequence of A (£)-sets. Since A (P) is a A-system and
hence satisfies (13), we have

AN (G C,,) = G(Aﬂcn)ek(,?),
n=1 n=1
so that (Jy2, C, € 8. O
REMARK (p. 90). PAQ = RAS = PAR = QAS.
PROOF. First observe that AAB = @ iff A = B. To see this, note that
@=AAB=(A~B)U(B~A) < [A~B=B~A=0],
but!

A~B =0 =— AC B,
B~A=2 = B C A4;

Thus A = B.
For the reverse inclusion, let A = B. Then

L The proof is as follows: Let A~ B = AN B¢ = &.letx € A. Then x ¢ B¢ = x € B.

53
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AAB=(A~B)U(B~A) =0UQ =0a.
Now we prove the claim. Since PAQ = RAS, we have
(PAQ) A(RAS) = @. (3.2)

It follows from Exercise 72(g) that we can rewrite (3.2) as (PAR) A (QAS) = &,
and which gives the result: PAR = QAS. O

3.1 EXTENSIONS AND RESTRICTIONS

» EXERCISE 85 (3.1.1). Let (£2, 4, u) denote a measure space. Pick E € A and
define Ap = {F € A: F C E}. Then Ag isaoc-fieldon E, Ag = {ANE: A € A},
and the restriction ug of u [from A] to Ag is a measure. That is, (E AE, ME) is
a measure space and g = |1 on Ag.

PROOF. Automatically, £ € Ag.If A € Ag, then A € A and A C E; hence
E~A € Ap. If {A,)02, C g, then s>, Ay € E and ;2 An € 4, ie,
Un2; 4An € Ag. Therefore, Ag is a o-field.

We first show

(Feh: FCE=hp CAly ={ANE: AcA).

If F e Ap then F € Aand F C E. Since F = F N E, we get F € A’;. For the

converse inclusion direction, let B € A’;. Then there exists A € 4 such that
ANE =B.Itisobviousthat ANE e Aand ANE CE,sOANE =B € Ag.

WE is ameasure [on Ag] because u is a measure [on #A]. [See Exercise 86(b).]

O

» EXERCISE 86 (3.1.2). Prove Claim 1 and 2.

Claim 1 Assume the notation of the definition. If u is o-finite on ¢, then v is
o-finite on g as well.

Claim 2 Suppose that @ € ¢, and let § € # C 2%. Let v: # — R denote a
measure. Then the restriction of v to § is a measure.

PROOF. (Claim 1) By definition, u is the restriction of v [from #] to &, so v(A4) =
u(A) for all A € §. Since u is o-finite on g, there exists a sequence of §-sets,
{An}o2,, such that 2 = |J,2; 4, and v(4,) = pu(4,) < +oo for each n € N.
Hence, v is o-finite on §.

(Claim 2) Since p is the restriction of v from J# to &, we have u(4) = v(A) for
all A € §. (M1) To see the nonnegativity, let A € § C J¢. Since v is a measure,
v(B) = 0 for all B € J#; particularly, u(4) = v(4) = 0 for all A € §. M2)
w(2) =v(@) =0.(M3) Let | J;2, A, € §. Then
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U4s| = U Zv(m ZM(A) 0
n=1 n=1 n=1

3.2 OUTER MEASURES

» EXERCISE 87 (3.2.1). Let (£2, 4, u) denote an arbitrary measure space. Define
v on 22 by writing v(B) = inf {i1(A): B C A, A € A} for each B C 2. Then v is
an outer measure.

PROOF. The nonnegativity of v is evident since u(-) is a measure. To see (02),
observe that @ C @, so V(@) < u(2) = 0. By (O1), v(@) = 0. To see (03), let
B CC c 2. .Hence{u(A): C C A, Ae A} C{u(Ad): B C A, A € A}, which means
that inf{u(4): C € A, A € A} = inf{u(A): B C A, A € A}, and so v(B) < v(C).

To see v is countable subadditivity, let {B,}n—, < 2% We just consider the
case that v(B,) < +oo for all n € N. For each n, there exists ¢ > 0 and 4, € A
such that B, € 4, and

V(Bn) +¢/2" = u(4n).

Also |y, By € Uy~ Apn. Thus,

[e.]

viUJBu|<nm (U Z <> u(Bn)+2in =) v(By) +e O

n=1 n=1 n=1 n=1

» EXERCISE 88 (3.2.2). Let v: 2% — R be an outer measure, and suppose in
addition that v is finitely additive: v(A U B) = v(A) + v(B), where A, B C 2 are
disjoint. Then v is a measure. That is, (2,2 ,v) is a measure space.

PROOF. (M1) and (M2) are satisfied automatically. To see (M3) (countable addi-
tivity), let {4,}°2, € 2% be disjoint. Then

0o N N
Udn|zv[ U4 ] =D vdn,
n=1 n=1 n=1
for every N € N. Now let N 1 +o0 and yield
o0 o0
U 4n | =D v(dn). (3.3)
n=1 n=1
Combining (3.3) with (04) (countable subadditivity) yields the result. O

» EXERCISE 89 (3.2.3). Suppose that ¢ and & are outer measures [relative to
some common background set 2], and suppose that we define a new function
v: 2% R for all A C 2 by writing v(A) = max {¢p(A), £(A)}. Then v is an outer
measure [relative to §2].
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PROOF. (O1) and (02) are straightforward. To see (03), let A € B € £2. Then
v(4) = max{p(A4).5(A)} < max{p(B),&(B)} = v(B).

To see (04), let {4,152, € 2%. Then

(04~ Hee) 9

< max{Z so(An>,ZS(An)}

n=1 n=1

< Y max{p(4,).£(4n)}

n=1
o0

=Y v(4p). O
n=1

» EXERCISE 90 (3.2.4). Let v denote an outer measure, and let A C 2. Define a
new set function vq on 2% by writing v4(B) = v(B N A) for each B C 2. Then
V4 IS an outer measure relative to S2.

PROOF. (O1) and (O2) are satisfied automatically. If B € C C £2, then
vA(B) = v(B N A) <v(CNA)=v4(C)

by the monotonicity of v. To see (04), let {B,} € 2. Then

n=1 n=1 n=1

V4 (G Bn) =v (G Bn)ﬂA =V(G(BnﬁA)) siv(BnﬂA)

= ZVA(Bn)- o
n=1

» EXERCISE 91 (3.2.5). Let{v,}52, denote a sequence of outer measures [relative
to some common §2], and let {a, }32 | denote a sequence of nonnegative numbers.
Foreach A C 2, let v(A) = Y o2, an - va(A). Then v is an outer measure relative
to £2.

PROOEF. (0O1) and (O2) are satisfied obviously. If A € B C £, then

v(A) =) an-va(4) < ) an-va(B) = v(B).
n=1

n=1

To see (04), let {4} € 2%. Then
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v (U Ak) =Y anvn (U Ak) <> an | D valAr)
k=1 n=1 k=1 n=1 k=1
= Z Zanvn(Ak)
k=1n=1
= > v(4p). O

x>
Il
-

3.3 CARATHEODORY’S CRITERION

» EXERCISE 92 (3.3.1). Show directly that if A,B € M(v), then AU B, A~ B €
M(v).

PROOF. (i) The following method is from Bear (2002). Let 4, B € M(v) and let
T C 2 be any test set. Let T = T; U T, U T3 U Ty as indicated in Figure 3.1. We

need to show
v(T)=v(TN(AUB))+v (T N(AUB)°), (3.4)

or, in terms of Figure 3.1,

v(T) = v(Ty U Ty UTz) + v(Ty). (3.4

T s s Ty

FIGURE 3.1. AU B € M(v)

Cutting the test set T) U T, with B gives
v(Ty U T,) = v(T) + v(Ty). (3.5)
Similarly, cutting 75 U T, with B gives

v (T3 U Ts) = v(T3) + v(Ts). (3.6)
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Cutting T with A gives
v(T)=v(hUT) +v (T3 UTy). (3.7)
Combining (3.5), (3.6), and (3.7) we can write
v(T) = v(T1) + v(T2) + v(T3) + v(Ty). (3.8)
Now cut 7; U T, U T3 with 4 and then use (3.5):
v(Th UTL, UT3) =v(Ty UTy) +v(T3) = v(T1) + v(T3) + v(T3). (3.9

From (3.9) and (3.8) we have the desired equality (3.4’).

(ii) It is clear that A € M(v) iff A° € M(v). Thus, A, B € M(v) implies that
B U A¢ € M(v) by the previous result. Since A ~ B = (B U A°)° € M(v), we get
A~ B e M(v). O

o]

» EXERCISE 93 (3.3.2). Suppose that 2 may be written as | J,_, An, where
{A,};2, is a nondecreasing sequence of subsets of 2. If A C 2 is such that
AN A € M(v) for all k exceeding some constant k4, then A € M(v).

PROOF. By the Outer Measure Theorem, M(v) is a o-field on £2. Therefore,

k=kq+1 k=kq+1

g (AﬂAk)zAﬂ( g Ak)e.M(v).

But since {4, };—, is a nondecreasing sequence, we have

o0 o0
U Ak=UAk=.Q,
k=1

k=k4q+1

which means that

Am( g Ak)zAﬂ.QerM(v). O

k=kq+1

» EXERCISE 94 (3.3.3). Let v denote an outer measure such that v(2) < +oo,
and further suppose that if A C 2 with v(A) < +oo, then there exists B € M(v)
such that A € B and v(A) = v(B). Then E € M(v) iff v(2) = v(E) + v(E®).

PROOF. If E € M(v), then v(T) = v(TNE)+v (T N E°); in particular, this holds
for T = £2, so v(£2) = v(E) + v(E°).

For the other direction, suppose v(£2) = v(E) + v(E€). Since v(£2) < 400, we
get v(E), u(E°) < 400 by the monotonicity of v. Then there exist B’, B” € M(v)
such that E¢€ C B/, v(E€) = v(B’), and E C B”, v(E) = v(B”). Let B = (B)‘ €
M(v). Then B € E and

v(B) = v((B")%) = v(2) —v(B') = [v(E) + v(E)| = v(E®) = v(E).
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Hence, there exist B, B” € M(v) such that B € E € B”, and v(B) = v(E) =
v(B").

Notice that E is the union of B and a subset of B” ~ B. If we can show that
every subset of B” ~ B is in M(v), then E € M(v) (since M(v) is a o-field). For
every C C B” ~ B, we have

v(C) <v(B”"~B)=v(B")—v(B) =0.
Therefore, v(C) = 0, i.e., C € M(v), and so E € M(v). O

» EXERCISE 95 (3.3.4). Suppose that v is an arbitrary outer measure, and let
A, B C 2 with A € M(v). Show that v(AU B) +v (AN B) = v(A4) + v(B).

PROOF. A € M(v) implies that
V(AUB)=v((AUB)NA)+v((AUB)NA°) =v(A) +v (BN A, (3.10)
and
V(B) = v(B N A)+v (BN A). (3.11)
Combining (3.10) with (3.11) we get v(AU B) + v (AN B) = v(4) + v(B). O

» EXERCISE 96 (3.3.5). Let v denote an outer measure, and let {A,},-, denote
a nondecreasing sequence of M(v)-sets. Show that v(lim(A N A,)) = limv(4 N
A,) for any A C . State and prove an analogous vesult for nonincerasing

sequences of M(v)-sets.

PROOF. Let {4,},;=, be a nondecreasing sequence of M (v)-sets. Then {A N A4,}
forms a nondecreasing sequence, so lim(4A N 4,) = [ J(A N 4,) = AN (U 4n)-

Let By = A; and B, = A, ~ Ay—1 for n = 2. Then {B,} C M(v) is disjoint and
\UAn = By. Thus

(o]

v (lim(A N A,)) = v (A n (U Bn)) =3 v(4N By

n=1

= 11’11112 V(A N By)
i=1

n
=limv ]| AN (U B,-)
i=1

= lmv(4 N 4,).
n

If {A4,} is a nonincreasing sequence of M (v) sets, then {A4¢} is a nondecreas-
ing sequence of M(v) sets. Thus v(lim(4 <~ 4,)) = limv(4 ~ 4,). |

» EXERCISE 97 (3.3.6). Let v denote an outer measure such that the following
holds: if A € 2 with v(A) < +oo, then there is B € M(v) with A € B and
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v(A) = v(B). Then, for any nondecreasing sequence {A,},-, of subsets of §2, we
have v(lim 4,) = limv(4,).

PROOF. If there exists A; such that v(A4g) = 400, then v(lim 4,) = v( 4,) =
V(Ar) = 400, and so v(lim A,) = 4o0; on the other hand, v (4;) < v (43) < ---
and v(Ag) = +oo imply that limv(A4,) = +oo.

Now let v(4,) < +oo for all n € N. Then there exists B, € M(v) such that
A, C B, and v(A4,) = v(B,) for each n € N. We first show that we can choose
{B,} so that it is nonincreasing.

Consider B, and B,+1. If B, D B4, then v(B,) = v(B,+1) since v(B,) =
v(A4,) < v(A4,+1) = v(By+1) always holds. But then v(4,) = v(A4,+1) and so we
can just let B,+; = B, after we having chosen B,,.

Thus, v(lim B,) = limv(B,) exists. Since {A4,},>, is nondecreasing, we
have v(J;_, A;) = v(4n) = v(By) for all n € N. Take the limit and we get
v (U2, 4;) = v(lim B,) = limv(B,) = limv(A4,). O

» EXERCISE 98 (3.3.7). In each of the following parts, (i) describe the outer
measure w* on 22 induced by the given p, (ii) describe the collection M(u*) and
determine if M(u*) is a o-field, and (iii) check to see whether u* = u on the
given collection 4.

a 2 = {1.,2,3}, A = {@.{1}.{2.3}.22}, and p is a measure on A such that
w(82) =1 and p ({1}) = 0.

SOLUTION. (a) Since w is a measure on 4, by (finite) additivity, u(@) = 0 and
1 ({2,3}) = w(2) — pn({13) = 1. Then, p* (@) = 0, pu* ({13) = 0, u* ({2,3}) = 1,
pr2) = 1, p*(2}) = p({2.3}) = 1, w3 = p({2.3) =1, u*({1,2}) =
p*({1,3) = u(2) = 1. 0

3.4 EXISTENCE OF EXTENSIONS

» EXERCISE 99 (3.4.1). Let k € N and refer to the measure Ax: 8% — R that
assigns the value ]_[f-‘=1 (b; —a;) to every (a,b] € Ay, as given in this section’s
example. For this measure Ay, we have the following;

a. Ak ((@,b]) = i ((a,5)) = Ak ([a, b)) = A ([, b)) = [Ti—, (b — ap).

b. A, applies to any k-dimensional rectangle that contains a k-dimensional open
set and is unbounded in at least one dimension gives +oo.

c. Ax applied to any bounded B* -set yields a finite number.

d. It might be thought that if A € B with B € 8% with A (B) = 0, then Ay (A)
must exists and equal 0. Show that if there exists an uncountable set C € B*
with A (C) = 0, then A (A) need not even exist, let along equal zero, and thus
A Vviolates our intuition in this regard.
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PROOF. (a) Observe first that {x} = lim, (x —1/n,x] for any x € R¥. Therefore,

A ({x}) = A (li}gn (x — 1/n,x]) = lir{n)kk (x—=1/n.x] = li’l;nl/nk =0.
Now by (M5),

Ak (@, b) = Ak ((a,b] ~ {b}) = Ag (a,b] — Ax ({b}) = Ak (a,B].

(b) Write (a, b] = (a1, b1] X --- (ax, bg], and assume that b; — a; = oo. Since (a, b]
contains an open set, b; —a; > 0 for each i = 1,..., k. Therefore, A(a, b] = cc.

(c) Let A € 8% be bounded. Then there exists a bounded (a, b] containing A.
Hence A, (A) < Ag(a,b] < oco.

(d) By the Continuum Hypothesis, if C is countable then|C| = c. Hence ‘2C‘ >
2¢ > ¢. However, | 8%| = c. 0

» EXERCISE 100 (3.4.2). This problem reviews the Extension Theorem.
a. Where or how is the fact that u (@) = 0 used?

b. What happens if A = 22 ?

SOLUTION. (a) @ € M (u) and (b) The Extension Theorem holds if and only if x
is a measure on . |

» EXERCISE 101 (3.4.3). Consider the Extension Theorem framework. If we have
u(A) < +oo for each A € A, it might not be the case that the measure extension
/L;(A) assigns finite measure to every set in o (A). However, if u is o -finite on 4,
then the measure extension MZ( A) 1S o -finite on o (), and the measure extension
“j\t(u*) is o -finite on M (™).

PROOF. Let £2 = R and A consist of @ and all bounded rsc intervals (a, b]. Let
u(a,b] = b —a for all (a,b] € A. Then u(A) < +oo for each 4 € A. However,
R € o (4), and /L;( A)([R) = +o0. The other two claims are obvious. |

» EXERCISE 102 (3.4.4). There is a measure v: 8 — R with v(R) = 1 and
b 2
v(a,b] = / Qr) V2 72z,

where the integral is the familiar Riemann integral from calculus.

PROOF. According to the approach of Georgakis (1994), let y = zs, dy = z ds,
then
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b
/ e~ ()2 dy) dz

a

(/b e~ (14s%)/2, ds) dz
b
(/ e~ (14s%)/2, dz) ds

b

ds

b 1 2
=/ L (1+s2)/2
o | =(+9)
a

b b
2[ ;e—a2(1+s2)/2 ds _/ ;e—b2(1+s2)/2 ds. O
o 1+s2 e 1 +s2

» EXERCISE 103 (3.4.5). Consider the Extension Theorem framework again.
a. If A C B C 2 with B € M(u*) and “j%(u*)(B) =0, then A € M(v*) and
/Lj%(u*)(A) =0.

b. If in (a) we replace every occurrence of M(u*) [including instances where it
appears as a subscript] with o (), then the claim is not necessarily true.

PROOF. (a) Assume the hypotheses. To see 4 € M(u*), note that forany 7 C 2
with u* (T) < 400, we have u*(TNA) < u*(TNB) < u*(B) = 0 by monotonicity
of pu*. Therefore, u*(T) = pu*(T N A) + u*(T N A¢) = u*(T N A°) always holds.

(b) The same reason as in Exercise 99(d). |

» EXERCISE 104 (3.4.6). Let ¥ denote a field on 2, and let . ¥ — R denote a
measure. Let u*: 22 — R be given by

o0
u*(A) = inf Z,u(An): {Ay}isa F-coveringof Ay, ACS2.

n=1

Then p* is an outer measure, and the restriction of u* to the o-field M(u*) is a
measure. With these facts, we have that u* = pw on ¥ and ¥ < M(n*). Finally,
there exists a measure extension of i to o (¥).

PROOF. Notice that (@) = 0 and u(A4) = 0 for all A € F since u is a measure
on £.So p* is an outer measure by Example 1 in Section 3.2. The other parts
are standard. |

» EXERCISE 105 (3.4.7). Let ¥ denote a field on 2. Suppose thatv: ¥ — R is
such that (i) v(A) = 0 for all A € ¥, (ii) v is finitely additive, and (iii) if {A, }p—, IS
a nonincreasing sequence of ¥ -sets with lim A, = @, the limv(4,) = 0. Define
v*: 2% R forall A C 2 by writing

oo
v*(A) = inf Z v(An): {An}5, is an ¥ -covering of A

n=1
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a. v* is an outer measure.

b. M(v*) is a o-field on 2.

c. The restriction of v* to M(v*) is a measure on M(v*).
d. F C M©O*).

e. There exists a measure extension of v to o (¥).

PROOF. (a) It suffices to show that v (&) = 0 by Example 1 of Section 3.2. Take
a sequence {@, @, ...}. Then 0 = limv (&) = v(D).

(b) —(e) are from the Outer Measure Theorem. O

3.5 UNIQUENESS OF MEASURES AND EXTENSIONS

» EXERCISE 106 (3.5.1). If uy and u, are finite measures with domain o (P)
(where P denotes a w-system on §2), if 2 can be expressed as an amc union of
P-sets, and if w1 = o on P, then py = o on o (P).

PROOF. Assume the hypotheses. Then o, is o-finite with respect to # and u; =
2 on P. By the Uniqueness Theorem, p; = u, on o (P). O

» EXERCISE 107 (3.5.2). Let u; and u, denote finite measures with domain
o(P), where P is a w-system on 2, and further suppose that u, = ., on P.
Then M1 = U2.

PROOF. I am not sure about this exercise. If 2 € &, then by letting
L ={A€a(P): u1(4) = u2(A4)},

we can easily to show that £ is a A-system with & C £. Then the result is
trivial. O

» EXERCISE 108 (3.5.3). Let 2 = {w1, w2, w3, w4}, let A consist of &, {wy,w,},
{w1, w3}, {wr, w4}, {w3, w4}, and 2, and let u: A — R be defined as follows:

u(£2) = 6, (@) =0, and u({wy, w2}) = p({wy, w3}) = p({w2, w4}) = p({ws, wa}) =
3.

a. s Is neither a m-system nor a semiring, and o (A) = 2.
b. w is a measure.

c. Define two new distinct measures v and & on the o -field 2 by the following:
v({w1}) = v({ws}) = 1, v({w2}) = v({ws}) = 2, §(w2}) = §({ws}) = 1, and
E({w1}) = E(ws}) = 2. Then v and & are distinct measure extensions of
from A to o(A) = 29.



64 CHAPTER 3~ EXTENSIONS OF MEASURES

d. Let u*: 2 — R denote the outer measure induced by . Then u* = p on 4
and p* is a measure.

e. u*, v, and & are distinct measures.

PROOF. (a) + is not a w-system because {w1, w,} N {w1, w3} = {w1} ¢ A, and so
/4 is not a semiring. o(4) = 2% since every singleton can be expressed as a
intersection of A-sets.

(b) Easy to check.
(c) For example, v({w1, w}) = v({w1}) + v({wz2}) = 1 +2 = pu({wr, w2}).
(d) For example, u*({o}) = inf{iu({wr, ©2}), p({w1, w3})} = 3.

(e) Trivial to see that they are distinct. O

» EXERCISE 109 (3.5.5). We assume the setup of Exercise 104. The aim of this
exercise is to show that if v is a measure with domain o (¥') such thatv = u on
the field ¥ , then v coincides with the measure extension of u to o (¥') guaranteed
by Exercise 104.

a. If Beo(¥), thenv(B) < u*(B).
b. If F € 6(¥) and u*(F) < 400, then v(F) = w*(F).

c. If u is o-finite on ¥, then v(E) = u*(E) for all E € o(¥). This gives the
uniqueness of the measure extension whose existence is guaranteed by Exer-
cise 104.

PROOF. (a) Let ¥, denote the family of all countable unions of % -sets. If 4 €
Fs, 16, A = |J A, with 4, € ¥ for all n, then, by letting By = 4; and B, =
An ~ (U;j<n 4i) for n = 2, we can rewrite A4 as a disjoint union of #-sets {B,}.
Thus,

v() =v (U Ba) = D v(Ba) = Y w(Ba) = 3w Ba) = p* (| Ba)

= p*(4).
Now take an arbitrary B € ¢(¥), and we show that
w*(B) = inf {Z w(A,): {4,} is an ¥ -covering of B}
=inf {u*(A): B C A € %} defined as B.

Firstly, B € A implies that ©*(B) < u*(A4) and so u*(B) < B. Secondly, for all
A € %, there exists {4,} € %, such that 4 = |J A,, and so we get u*(4) =
w* (U An) <2 1" (4n) = ) iu(4y); thus, B < u*(B). Therefore,

p*(B) = inf {u*(4): BC A€ F5} =inf{v(A): B C A € F,} = v(B).
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(b) It suffices to show that v(F) = u*(F) by part (a). Since u*(F) = inf{u*(4): F C
A € ¥}, for a given ¢ > 0, there exists C € F, with F C C, such that

W (F) + &> p*(C).
Hence,

WH(F) < p*(C) = v(C) = v(F) + v(C ~ F) < v(F) + u1*(C ~ F)
=V(F) + p*(C) — u*(F)
< u(F)+e.

Since ¢ > 0 is arbitrary, we get u*(F) < v(F) whenever F € g(¥) and p*(F) <
+00.

(c) If p is o-finite on ¥, then there exists {4,} € ¥ such that 2 = |J 4, and
u(A4,) < 4oo for all n. Without loss of generality, we can assume that {4,} is
disjoint % -sets. Then by (b), for every E € o(F) we get

W(E) = v (U(E N A,,)) =S w(ENA) =Y WHENA) = p*E). D

» EXERCISE 110 (3.5.6). Alattice on £2 is a collection £ < 2% such that (i) 2 € &£,
(ii) @ € &£, (iii) £ is closed under (finite) unions, and (iv) £ is a w-system. We also
define the following two collections: D = {B ~ A: A,B € £,A C B}, and U will
denote the collection of all finite disjoint unions of D -sets.

a. D is a w-system.

b. U is a w-system.

c. U is closed under complementation.

d. U coincides with the minimal field containing the lattice £.

e. Let A denote a o-field on 2 that contains £. Suppose that u and v are mea-
sures with domain A such that © = v on £. Furthermore, suppose that
2 = |JA,, where A, € £ and u(A,) < +oo for eachn € N. Then p = v
ono(L).

PROOF. () Write D; = B; ~ A; with 4;, B; € £ and 4; € B;, fori = 1,2. Then

D1 N Dy = (B~ A1) N (B2~ Ay)
— (By N AS) N (By N AS)
— (By N Ba) ~ (41 U 4)
= (B1 N B>) ~ [(B1 N B) N (A1 U 4,)]
e D.
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(b) LetUy = DyU---UD,, and U, = E;U---U E,, where Dy,...,D,, € O are
disjoint, and Eq,..., E, € O disjoint. Then

m

Uinty=JJminE.

i=1j=1

Since D; N E; € O (D is a n-system), U; N U, is a finite disjoint unions of
D-sets, and so is in U.

(c) Pick an arbitrary U € U. Then there exists disjoint Dy,..., D, € D such
that U = J/_, D;. If n = 1, then U = D; = By ~ Ay, where 4, B; € £ and
A; € B;. Thus, U = (A~ @) U (£2 ~ B) € U. Let us assume that U¢ € U when
U=D;U---UD, and consider n + 1. Then

c c
n+1 n

Upi| ={UDi| nDyyew

i=1 i=1

since (J/_, D;)° € U by the induction hypothesis, DS, ; € U as in the case of
n + 1, and U is a w-system.

(d) Notice that 2 = 2 ~ @ € U, so U is a field by (b) and (c). If 4 € &£, then
A=A~2 e U,s0 ¢ C U. Thus, f(£) C U.Itis easy to see that U C f(L).

(e) Let 2 = |J,2, 4, with A, € £ and p(A,) < 4oo for each A,. Let U € U;
then U = D; U---U D,, for some disjoint Dq,..., D,, € O. Hence,

o

pW) =p| JAnn) [ =3 u4nn0)

n=1

n=1
= ZZM(An N D;)

n=1i=1

3.6 THE COMPLETION THEOREM

» EXERCISE 111 (3.6.1). Letk = 2, and let A : 8% — R denote the unique mea-
sure with domain 8% that assigns the value ]_[f;l (b; —a;) to each k-dimensional
rsc rectangle (a,b]. Let A = {x € RF: x, = --- = x; = 0}. Then A € B*, A is
uncountable, and A, (A) = 0, hence ’F’ = 2¢,

PROOF. A € 8% since A = lim,[(—n,n] x (—1/n, l/n]k_l]; A is uncountable since
R is uncountable; A (A4) = 0 since A;(A) = (+00) x 0 x---x 0= 0.

Since BF is complete (the completion of B%), and 4 € 8% c B, we know
that every subset of 4 is in 8. There are 2¢ subsets of 4, so ‘:8"‘ 2¢;
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the other hand, there are 2¢ subsets on R, i.e.,

ﬁ) < 2¢ It follows from the

Cantor-Bernstein theorem that ‘@‘ = 2°¢, O

» EXERCISE 112 (3.6.2). Let (£2, % ,v) denote a measure space. If A, B € ¥ with
ACECBandv(B~A) =0,thenE € ¥ andv(E) = v(A) = v(B).

PROOF. We first show E € . Since A, B € ¥, and ¥ is a o-field, we get B~ A €
F . Now we can write E as

E=AU[(B\A)\(B\E)].

Since A € ¥, B~A)~(B~E) < B~A e ¥, and v(B ~ A) = 0, we have
(B~A)~(B~E)e Ny(v);thus E € ¥.

To show V(E) = v(A) = v(B), we only need to show that v(4) = v(B) since
V(E) = v(A) by definition. If v(4) < 400 or v(B) < 400, then 0 = V(B ~ A) =
v(B) — v(A) implies that v(B) = v(A). If v(4) = 400, then by the monotonicity
of a measure, v(B) = v(A4) = +o0, and so v(B) = +o00 = v(A) |

» EXERCISE 113 (3.6.3). Let (£2, ¥.v) denote a measure space. Furthermore,
let #1 denote a sub-o-field of ¥. Then there exists a minimal o-field ¥, such
that #1 C $, € ¥ and N (v) C F,. Also, A € ¥, iff there exists B € ¥, with
AAB € N (v).

PROOF. Let #, = o(#7, N (v)).Itis clear that 1, N (v) C %5. Since 1, N (v) C F,
we have that
Fr=0(F1,NW) Co(F)=%.

We next show that (£2, %>, v) is complete (where v is restricted on %5). |

3.7 THE RELATIONSHIP BETWEEN 0 (A) AND M (p*)

» EXERCISE 114 (3.7.1). Let 2 be uncountable, let A denote the o-filed {A C
2: A is amc or A€ is ams}, and define u: A — R by stipulating that (A) de-
notes the number of points in A if A is finite and u(A) = +oo if A is infinite.

a. (£, A, n) is a non-o-finite measure space.
b. (82, A, u) is complete.

c. Letting u* denote the outer measure induced by u, the (o-field) M(u*) coin-
cides with 2.

PROOF. (a) For every sequence {4,} C A with u(4,) < +o0, i.e., 4, is finite for
all n, their union | J, 4, is amc. Hence, (§2, +, ) is non-o-finite.

(b) Let A € B C 2 with B € A and u(B) = 0. Then B must be empty and so
A=@ =B¢eah.
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(c) Take an arbitrary T C £ with u*(T) < +oc; that is, T is finite. Then for
every subset A C 2, we have that T N 4 and T N A€ are both finite and |T| =
|T N A|+|T N A¢|. Hence, u*(T) = u*(TNA)+ pu*(T N A°),i.e., A € M(n*). Thus,
M(p*) =22,

Note that here 4 = A # M(u*) = 2%, so the o-finiteness is essential. |

3.8 APPROXIMATIONS

» EXERCISE 115 (3.8.1). The assumption v(B) < +oc is not superfluous in Claim
4, and the assumption v(A) < +oo is not superfluous in Claim 6.

PROOF. Let 4 be the semiring consisting of @ and all bounded rsc (a, b]. Let
us consider (R, 8, A). For Claim 4, take B = R. It is evident that for any finite

disjoint #4-sets (a1, b1, ..., (an, by], we have A(RA |J'_, (a;, b;]) = +oc. For Claim
6, let A = R. then for any bounded set E € 8B, there exists (a, b] € A containing
E,so AM(E) < Aa,b]=b —a < +o00 = A(R). O

» EXERCISE 116 (3.8.2). Let v: B¥ — R be nonnegative and finitely additive
with v(R¥) < +o00. Suppose that v(A) = sup{v(K): K € A, K compact} for each
A € B%. Then v is a finite measure.

PROOF. It suffices to show that v is countably additive. |

3.9 A FURTHER DESCRIPTION OF M (1*)

» EXERCISE 117 (3.9.1). Countable superadditivity: If Ay, A,,... C 2 are dis-
Joint, then p, (s>, An) = 30% | ta(Ap).

PROOF. Fix an arbitrary ¢ > 0. For every A,, find C, € o(+4) with C,, C A4, such
that
M;(A)(Cn) + /2" > pu«(4y).

Since | J72, Cy € Uy~ An, we have

o0 (&) (e ] o0
D wadn) < D k@) Fe=pio | U G| te<ma | U An | +e
n=1 n=1

n=1 n=1

where the first equality holds since {C,} is disjoint o (+4)-sets. Since ¢ > 0 is
arbitrary, we get the countable superadditivity. O

» EXERCISE 118 (3.9.2). For any A C £, u*(4) = inf{,ujl(m)(B): AC B €
M(p*)} = u**(A).

PROOF. Define
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€= {M;M)(B): ACBe a(,A,)} and D= {ML(M*)(B): ACBe M(M*)} .

It is clear that € C D, so inf € > inf D. Next, pick d € O. Then d must be of
the form ML(M*)(B), where A € B € M(u*). Write B = C U D, where C € o (),
D C Nand N is a ,u;( A)-null set. Thus, there exists C U N € o(+) such that
AC BCCUN and

Poway (€ UN) < pg ) (C) + tgay(N) = i (C) S Wi (B)-

Denote ,uj;(A) (CUN) = c. Hence, for every d € D, there exists ¢ € € with ¢ < d.
It follows that inf € < inf D. O

> EXERCISE 119 (3.9.3). For any A € 2, pu«(A) = sup{py,(B): B S 4, B €
M)}

PROOEF. Define
€ = {M;M)(B): BC ABEe a(,A,)}, D= {ML(M*)(B): BC ABEe M(,u*)}.

First, € € O implies that sup€ < sup D. Next, pick d € D. Then d must be
of the form r“ju(u*)(B)’ where B € A and B € M(u*). Write B = C U D with
C €o(A), D C N,and N is a /L:';M)-null set. Thus, there exists C € o(+4) such
that C € B C 4, and

Poa)(€) = Wi (C U D) = i, (B).

Denote ¢ = “;(A)(C)' So for every d € D there exists ¢ € € such that ¢ = d.
Therefore, sup € > sup D. O

» EXERCISE 120 (3.9.4). For any A C 2, there is E € o(s) such that E C A and
M;(A)(E) = px(A).

PROOEF. For every n € N, there exists E, € o(+) with E,, C A such that
1E oy (En) = pa(A) — 1/,
Let E = |y~ Ex. Then E € 6(A), E C A, and for all n we have
M;(,A,)(E) = M:(A)(An) = pux(A) —1/n;
hence, M;(A)(E) = p«(A). Since [L:;(A)(E) < u«(A) holds, we get the result. O

» EXERCISE 121 (3.9.5). The infimum that defines u*(A) and the supremum
that defines j1«(A) are achieved for each A C 2. That is, there exist C, B € o ()
withC € A C B and /L;(A)(C) = u«(A) and M;(A)(B) = u*(A).

PROOF. We have proved the inner measure in the previous exercise, so we
focus on the outer measure. For every n € N, there exists B, € o(4) with
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A C By and p*(A) + 1/n = p} 4 (Bn).- Let B = (2, By. Then B € 0(4), A C B,
and for all #,
Iy (B) < Roay(Bn) < w*(A) + 1/n;

that is, “:(«A)(B) < u*(A). Since the other direction is clear, we get the result.
O

» EXERCISE 122 (3.9.6). Let A C §2 and let {A,} denote a disjoint sequence of
M(p*)-sets. Then we have (s (AN Ay)) = Y 02 wsx(An N A).

PROOF. There exists E € M(u*) with E C | J,—,(4 N A,) = AN (Up—; 4») and
uj“(/L*)(E) = px(Uy=; (A N Ay,)) by Exercise 120 (since o (A) = M(n*)). Thus,

o0 o0 o0
po | AN A | = iigun (E) = D 1hguny (B N An) S Y pa(A N Ap).
n=1 n=1 n=1
Then the desired result follows from Exercise 117. O

» EXERCISE 123 (3.9.7). If A, B C 2 are disjoint, then u.(A U B) < u«(A) +
p*(B) < u*(AU B).

PROOF. Let F € o() with B € F with u*(B) = Poay(F)- Let E € o(A) with
E € AUB such that u«(AUB) = ;L;M)(E). Since ENF C E~B C (AUB)~B = A4,
it follows that

Ux(AU B) = /'L;(A)(E) S M;(A)(E ~F)+ M;(A)(F) < px(A) + pn*(B).

Dually, let H € o(4A) with H € A and M:;(A)(H) = u«(A). Let G € o(4A) with
AUB < G and pj 4 (G) = pn*(AU B). Since B € G ~ H, it follows that

AU B) = 13 (G) = Wy (H) + 154G ~ H) 2 pu(A) + w*(B). O

» EXERCISE 124 (3.9.8). If A € M(n*) and B C 2, then Wi (A) = px(B N
A) + pu*(B€ N A).

PROOEF. Applying Exercise 123 to B N A and B¢ N A, we obtain
px(A) < (B N A) + (BN A) < p*(A).

Since A € M(u*), we have u.(4) = u*(A4) = /Lj%(“*)(A), and thus we get the
result. |



LEBESGUE MEASURE

4.1 LEBESGUE MEASURE: EXISTENCE AND UNIQUENESS

» EXERCISE 125 (4.1.1). Let x € R and k = 2. Then A({x}) = Ax({x} x RF"1) = 0.
Next, forany j € {1,...,k — 1} and x € R/ we have A;({x} x R¥=7) = 0.

PROOF. Since the sequence {{x} x (—n,n]F~!} is increasing and converges to
{x} x R"~1 we have

Ar(§xy x RF1Y) = Ap(lim{x} x (—n,n]*1) = 0 = A({x}).
n
The other claim can be proved in the same way. O

» EXERCISE 126 (1.4.2). Enumerate the rationals in (0, 1] by {q1, 42, ...}. Given
arbitrarily small ¢ > 0, remove the interval A,, = (q,—e/2" !, g, +¢/2"T1HN(0, 1].
Let A =J;2, Ayn. Then A(A) < ¢, despite the fact that A is an open dense subset
of (0,1]. Also, we have A((0,1] ~ A) = 1 — ¢, even though (0, 1] ~ A is a nowhere
dense subset of (0, 1].

PROOF. For every A, we have 0 < A(4,) < A(g, — /2", g, + /21 = g/27;
hence,

2(4) =1 (G A,,) <3 T4 < izin =,
n=1

n=1

and so A((0,1]~A) =1—A(4) =1 —e¢. O

» EXERCISE 127 (4.1.3). There cannot exist a closed subset of (0, 1] whose inte-
rior is empty, yet has A-measure of one.

PROOF. |

» EXERCISE 128 (4.14). Ay is nonatomic: any A € B* with Ax(A) > 0 has a
proper subset B € 8% with 0 < Ax(B) < Ax(A). This forces A to be nonatomic
as well.

71
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PROOF. Take any A € £* with A (4) > 0. Since £*¥ = 8%, the completion of B,
there exists C, M € 8%, where M is a subset of 1;-null set, such that A = C UB.
Therefore, Ax(B) = Ax(A) > 0. Since A is nonatomic, there exists B € 8% with
0 < Ax(B) < Ak (C) = Ax(A), that is, Ax is nonatomic. O

» EXERCISE 129 (4.1.5). Let k = 2. There exists an uncountable set U € B* with
Ae(U) = 0.

PROOF. Let U = {x} xR, where x € R. Then U is uncountable, and A(U) =0. O
» EXERCISE 130 (4.1.6). |£¥| =2¢ and |8*| = ¢ for each k € N.

PROOF. Since |R¥| = ¢ and £¥ < 28", we first have |£¥| < 2¢; on the other hand,
there exists an uncountable set U C R¥ such that A4 (U) = 0 (if k = 1, consider
the Cantor set; if k > 2, consider the set U in the preceding exercise), so |U| = ¢
by the Continuum Hypothesis. Since £¥ is complete, we have |£¥| > |2V| = 2¢.
It follows from the Cantor-Bernstein Theorem that |£*| = 2°. O

» EXERCISE 131 (4.1.7). Assume that £ = 2R; in particular every one of the 2¢
subsets of [0, 1] is a Lebesgue set. Let B = {A(A): A C [0, 1], A(A) ¢ A}. Consider-
ation of the set B (which is in £ be assumption) leads to contradiction.

PROOF. B C [0,1] so A(B) exists. We now have a contradiction: A(B) € B iff
A(B) ¢ B. O

» EXERCISE 132 (4.1.8). Letk = 2. Every line is in 8¥, has A -measure zero, and
hence has A, -measure.

PROOF. Let £ be the line. Take two points @ and b in ¢, and denote [a, b] as the
segment on £. Then [a, b] is closed in R* and so is in B*. Enumerate the points
with rational coordinates on [a, b]; then it is easy to see that A ([a, b]) = 0.
Write £ as an increasing limit of line segments containing [a, b]. Then we get
the result. O

» EXERCISE 133 (4.1.9). Let 8.1 = o({(a.b]: (a.b] < (0. 1]}).
d. B(O,l] = {B - (0, 1] B e C{B} and :[))(0’1] = {B - (0, 1] B € i}

b. Construct Lebesgue measure on both 8,11 and B ,1). Call these measures
A(O,l] and A(O,l]: and denote 3(0,1] by f(()’]].

C. A(0.1] as constructed is the measure restriction of A from B to B.1) and X1
as constructed is the measure restriction of A from £ to £ 1.

PROOF. See, for example, Resnick (1999, Theorem 1.8.1). |
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4.2 LEBESGUE SETS

No exercise.

4.3 TRANSLATION INVARIANCE OF LEBESGUE MEASURE

» EXERCISE 134 (4.3.2). Let A € £ be such that A(A) > 0, and let ¢ € [0, 1).
There exists an open interval U such that M(ANU) = cA(U).!

PROOF. It follows from the Approximation Theorem for Lebesgue measure that
A(A) = inf{A(G): G open, 4 C G}.

Then for any ¢ > 0, there exists an open set G containing 4 such that A(G) <
A(A) + eA(G), i.e,, (1 — e)A(G) < A(A). Thus, for an arbitrary ¢ € [0, 1), there
exists an open set G containing A such that

cA(G) < A(A).

Write G as an countable disjoint unions of open intervals: G = | JG,. Then
A(A) = A(A N G) since A € G. We thus obtain

AG)=cA||JGn]| =D MG <2 =2 JANG
n=1 n=1 n=1
=Y AMANGy).
n=1

Hence, for some N € N, we must have cA(Gy) < I(A NGy).Let U = Gy and
we are done. O

» EXERCISE 135 (4.3.3). Let A € £ contain an open interval. Then there exists
a > 0 such that (—a, a) is contained in D(A) = {x —y: x,y € A}.

PROOF. Let (b,c) C A;then (b —c,c —b) C D(A).Leta =c—b and so (—a,a) C
D(A). O

» EXERCISE 136 (4.3.4). Let A € £ be such that A\(4) > 0. Then there existsa > 0
such that (—a, a) is contained in D(A) = {x —y: x,y € A}.

PROOF. It follows from Exercise 134 that there exists an open interval U C R
such that
A(ANU)=30U)/4.

We next show that a can be taken as A(U)/2.

1 Exercise 134—140 are from Halmos (1974).
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(i) For an arbitrary x € (—A(U)/2,A(U)/2), the set U U (U & x) is an open
interval containing (AN U)U (AN U) & x), and

AU U (U & x)) < AMU) + AU)/2 = %)L(U).

(i) (ANU)U((ANU)®x) is an interval. Suppose that (ANU)N((ANU)Dx) = &;
then

MANDHU(ANU)®x) =AANU)+A(ANU) @ x)
=2X1(ANU)

3
= SAU),
SA©)

which contradicts the fact that A(ANU)U (ANU) @ x)) < AU U (U & x)) <
3A(U)/2.

(iii) Thus, for every x € (—A(U)/2,A(U)/2), there exists y e (ANU) N ((AN
U) & x); that is, there exists y,z € A such that y = z + x. But then x = y — z
and so x € D(A). Therefore, if we let a = A(U)/2, then (—a, a) C D(A). O

» EXERCISE 137 (4.3.5). Let A be a dense subset of R. Then cA = {ca: a € A} is
dense for any ¢ # 0.

PROOF. Take an arbitrary point x € R and an arbitrary open interval (x—e, x+¢).
Now consider (x —¢/c,x + ¢/c). Since A is dense, there exists a € A such that
a€(x—e¢/c,x +¢e/c). Thus, ca € (x —¢,x + ¢) and ca € cA, i.e.,, cA is dense in
R. ad

» EXERCISE 138 (4.3.6). Let £ be an irrational number.
a. Let A={n+mé:n,m e Z}. Then A is a dense subset of R.
b. Let B ={n+mé&: n,m € Z,n even}. Then B is a sense subset of R.

c. LetC ={n+mé&:n,m e Z,n odd}. Then C is a sense subset of R.

PROOE. (a) For every positive integer i there exists a unique integer n; (which
may be positive, negative, or zero) such that 0 < n; + i§ < 1; we write x; =
n; + i&. If U is any open interval, then there is a positive integer k£ such that
w(U) > 1/k. Among the k + 1 numbers, xi, ..., x;+1, in the unit interval, there
must be at least two, say x; and x;, such that |x; — x;| < 1/k. It follows that
some integral multiple of x; —x;, i.e. some element of 4, belongs to the interval
U, and this concludes the proof of the assertion concerning A.

(b) If & is irrational, then &/2 is also irrational. Then D = {n+ (m/2)é: n,m € Z}
is dense by (a); then 2D = {n + mé: n,m € Z} is dense by Exercise 137.
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(c) Notice that C = B @ 1, and translates of dense sets are obviously dense. 0O

» EXERCISE 139 (4.3.7). Forx,y e Rwritex ~ y iffx—y e A={n+mé:n,m e
Z}, where € is a fixed irrational number as in the previous exercise. Then ~ is an
equivalence relation, and hence R may be partitioned into disjoint equivalence
classes.

PROOF. We first show that ~ is reflexive. For every x € R, we have x — x =
0 =0+ 0f € 4, i.e. x ~ x. We next show that ~ is symmetric. If x ~ y, then

x—y=n+méand so y —x = —n —mé € A, i.e. y ~ x. Finally, we verify that
~ is transitive. Let x ~ y ~z. Then x —y = n + mé and y —z = p + g§, where
nm,p,q e Z.Thus,x —z=m+ p)+ (m+ q) € A, i.e. x ~ z. |

» EXERCISE 140 (4.3.8). We now invoke (AC) to form a set E, consisting of ex-
actly one element from each of the equivalence classes in the previous exercise.
We will now show that Eq ¢ £.

a. There exist Borel subsets of Ey.

b. Let F C Eq be a Borel set. Then D(F) cannot contain any nonzero elements
of A, where A is the set in Exercise 138.

c. By (b), there cannot exist an open interval containing the origin that is con-
tained in D(F), hence A(F) = 0.

d. From (c), we have A.(Ey) = 0.

e. If ay and a, are distinct elements of A = {n +mé: m,n € 7}, then Ey ® a; and
Eo @ a, are disjoint.

f. R =J{Eo ® a: a € A}, the countable union being disjoint.

g. IfEy € £, then M(Eo @ a) = 0 for eacha € A, hence A(R) = 0. Therefore, since
the assumption that Ey € £ leads to an absurdity, it must be the case that
Eo ¢ £, and hence there exists a subset of R that fails to be a Lebesgue set.

PROOF. (a) Every singleton is a Borel set.

(b) If there exists x # 0 and x € D(F) N A, there there exists y,z € F such
that y—z € A and y # z. But then y ~ z and y # z, which contradicts the
construction of Ej.

(c) If A(F) > 0, then there exists ¢ > 0 such that (—a,a) € D(F) by Exer-
cise 136. Then there exists x € 4 such that x € (a/2,a) since A is dense, which
contradicts (b). Thus, A(F) = 0.

(d) A.(F) = 0 follows from the definition immediately.

(e) If z = x; +a; = x, + ap, where x, x, € Eg, then x; —x, = a, —a; € A. Then
X1 ~ xp and x; # x, (since a; # a,). A contradiction.
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(f) It suffices to show that R € ( J{Eo®a: a € A}. Take an arbitrary r € R. Since
~ is an equivalence relation on R, there is an equivalence class [x]. containing
r. In particular, r ~ x, i.e. r — x = n + mé for some n,m € Z. Hence, r =
X +n+mé e Ey® (n+ mé). The union is countable since A is countable.

(g) If Ege £,then Eg ®a € £ forall a € 4, and
MEo ® a) = A(Eg) = Ax(Eo) = 0.
But then

AR) =2 | JEooa) | =) X(Eo@a) = 0.

acA acA

A contradiction. O



MEASURABLE FUNCTIONS

5.1 MEASURABILITY

» EXERCISE 141 (5.1.1). Let f: 2 — R be ¥ /B*-measurable. Let y € R, and let
h: 2 — R be such that

V@) if f@) =0

h(w) =
@=), if (@) <.

Then h is ¥ / B*-measurable.

PROOF. Define ¢: R — R by letting

Jx ifx=0

(p(X):{y if x <0.

We first show that ¢ is B8*/8*-measurable by demonstrating that ¢~ !(z, 0] €
B* for each t € R. If y <0, then

R ift<y
o 1 (t, 00] = [0,00] ifre][y,0]
(t2,00] ifr>0.

If y = 0, then

R ifr <0
@ 11, 00] = { [-00,0) U (12,00] if ¢ €0, )
(1%, 0] ifr > y.

Therefore, ¢ is 8*/B*-measurable, and so h = ¢ o f is ¥ /B*-measurable. O

» EXERCISE 142 (5.1.2). There exists a continuous function f: R — R and a
subset A C R such that A € £ but f~'(A) ¢ &£.

77



78 CHAPTER 5  MEASURABLE FUNCTIONS

PROOF. Do according with the hints. O

» EXERCISE 143 (5.1.5). Suppose that f: 2 — R is ¥ /B*-measurable.
a. If ¥ =29, f can be any function from 2 into R.
b. If ¥ = {2, 22}, then f must be constant.

c. If¥F =o0({As,...,A,}), where Ay, ..., A, are disjoint subsets of §2 such that
Q2 =J/_, A;, then f must have the form f =3 7_, c¢ila,, Wherecy, ... cy €
R.

PROOF. (Q) is trivial. For (b), if f takes two different values, say, y; and y, and
y1 < ya, then f=1[y,, 00] ¢ {@, 2}; that is, f is not ¥ /B8*-measurable. For (c),
note that f~1(¢;) € 0({A1,..., An)). 0

» EXERCISE 144 (5.1.6). If f: 2 — R is such that f~'({x}) € ¥ for every x € R,
then f is not necessarily ¥ | B*-measurable.

PROOF. Let 2 =Rand ¥ = £. Let A ¢ £, and let

X if x € A4,

f&) = —x ifx¢A.

Then f~'({x}) € £ for any x € R, but f fails to be £/8*-measurable. O

» EXERCISE 145 (5.1.7). If A C R is any type of interval and f : A — R is
monotone, then f is both Borel and Lebesgue measurable.

PROOF. Without loss of generality, we suppose that f is increasing in the
sense that x; < x, implies that f (x;) < f(x2). Then for any r € R,
S (Ir, +00]) = [x,400), where x = inf{x € R: f(x) = r}. Hence, /™! is Bo-
real, and so is Lebesgue measurable. O

» EXERCISE 146 (5.1.11). Let f : 2 — R, and suppose that 2 = | J52, A,, where
Ay, Ay, ... are disjoint ¥ -sets [F isaoc-fieldon 2]. Let %, = {A € ¥ : A C A,} for
eachn € N. Then ¥, is a o-field for eachn € N. Let f, denote the restriction of
f from$2 toA,,n € N. Then f is ¥ /| B*-measurable iff f, is ¥,/ B*-measurable
for eachn € N.

PROOF. Assume that each f, is #,/8*-measurable. Let B € 8*. Then
oo
= eer
n=1

since each f,"! (B) € ¥, C ¥. Now assume that f is ¥ /8*-measurable. Take
any f, and B € 8*. Then

fFAB)y=4,Nnf'(B)e¥. 0

n
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» EXERCISE 147 (5.1.12). Show that the function ¢: R — R given in Example 4
is 8* / B*-measurable by suitably appealing to (MF6).

PROOF. Let A; = [—00,0), A, = {0}, and A3 = (0, +oc]. Let f; = ¢} A4; fori =
1,2,3. Since both f; and f3 are continuous, they are 8*/8*-measurable; since
/> is constant, it is 8*/B*-measurable. By (MF6), ¢ is 8*/8*-measurable. O

» EXERCISE 148 (5.1.13). The minimal o-field ¥ on 2 such that f : 2 — R is
¥ | B*-measurable is f~' (B*).

PROOF. It suffices to show that f~!(8*) is a o-field on £ since by #/8*-
measurability of f, any o-filed ¥ includes f~! (8*). First, 2 € f~! (8*) since
1 (@) =Q.If Ae f~' (8*), there exists B € 8* such that f~! (B) = 4, then

[ (ﬁ ~ B) = 2 ~ A implies that f~! (8*) is closed under complements. To

see that f~! (8*) is closed under countable union, let {4,};>; € f~' (8*). So
there exists B, € 8* for each n € N with f~!(B,) = 4,. Therefore,

7 (U Bn) =J '3y =4
n=1

n=1 n=1
implies f~! (8*) is closed under countable unions. O

» EXERCISE 149 (5.1.14). The word continuous in (MF4) may be replaced by
either of lower semicontinuous and upper semicontinuous.

PROOF. For a detailed discussion of semicontinuous functions, see Ash (2009,
Section 8.4). Let f : A — R be low semicontinuous (LSC), then f~!(¢, o0] is open
for any ¢ € R. Therefore, f~'(r,00] € ¥ and so f is ¥ /8B*-measurable. Now let
f beupper semicontinuous (USC), then — f is LSC and so is ¥/ B*-measurable;
then f = — (—f) is ¥ /8*-measurable. O

5.2 COMBINING MEASURABLE FUNCTIONS

» EXERCISE 150 (5.2.1). If f: 2 — R is ¥ /B*-measurable, then |f| is ¥ /B*-
measurable. However, if |f| is ¥ /8*-measurable, then f is not necessarily
F | B*-measurable.

PROOF. Since |f| = f+ — f~, and f is ¥/8*-measurable if and only if f+
and f~ are measurable, we know that | /| is ¥ /8*-measurable. To see that the
converse is not true take 4 ¢ ¥ and let

1 ifweAd

flw) = Ty(@) = Tge (@) = —1 ifw e A
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It is not ¥ /B*-measurable since f~1(0,+oc] = 4 ¢ F.But |f| = 1is F/8*-
measurable. O

» EXERCISE 151 (5.2.2). Letn € N, and let fi,..., f, denote ¥ / B*-measurable
functions with common domain A € ¥ .

a. Both max{ f1, f>} and min{ f1, f»} are ¥ / B*-measurable functions.

b. Bothmax{fi,..., f,} and min{ f1,..., fn} are ¥ /B*-measurable functions.
PROOF. (a) Let g = max{ f, f>}. For an arbitrary x € R, we have
{0 € A:max{fi, /ol(@) <x}={w e A: filw) <x}N{wed: fr(w) <x}eF,
and
{oeA:min{fi, o} >x} ={we A: filw)>x}N{weA: fr(w)>x}eF.

(b) We do the max case. Let g, = max{fi,..., f»}. The claim holds for n = 1
and 2 by (a). Assume that it is true for n € N. Then for n + 1, we have

n

{a)eA:gn+1(w)<x}:(ﬂ{weA:fi(a))<x})ﬂ{weA:fn+1(w)<x}€?7

i=1
by the induction hypothesis. O

» EXERCISE 152 (5.2.3). Let (2, %, u) denote a measure space, and let f: 2 —
R denote a ¥/ B*-measurable mapping. Let v: 8* — R be such that v(B) =
w(f~Y(B)) for every B € B*. Thatis,v = o f~'. Then (R, B*,v) is a measure
space. Furthermore, even if  is o-finite, v is not necessarily o -finite.

PROOF. It is clear that v is well defined since f is ¥ /8*-measurable. To see v
is a measure on 8*, note that (i) v(B) = u(f~1(B)) = 0 for every B € B*, (ii)
v(2) = u(@) = 0, and (iii) For a disjoint sequence {B,} € 8*, we know that the
sequence { f~1(B,)} C ¥ is disjoint; then the countable additivity follows. O

» EXERCISE 153 (5.2.4). This exercise concerns itself with (MF9).
a. Prove part (b) of (MF9) by suitably adapting the proof of (a).
b. Prove part (b) of (MF9) by using (a) of (MF9) and (MF7).

c. Show that {w € A : f(w) + g(w) < x} =
ri}fN{w e A: gw) <r}.

{weAd: flw) <

r1,r€Qir1+rao<x

d. Repeat part (c) for f — g by proving an analogous identity.

e.Lety €e Ryn = 2, and fori = 1,...,n, let fi: A — R denote a ¥/B*-
measurable function. Let h: A — R be defined for all w € A by the rule
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fi@) -+ ful@) If fi(w) + -+ fu(@) is defined

h(w) - y. . .
y if fi(w)+ -+ fn(w) is undefined.
Show that h is ¥ | B*-measurable.

PROOF. (a) Let y € R, and let x € R. Define

[/~ (~00) N g (~o0)| U[f M (o) N g~ (00)] if y > x

Ay =
%] if y <x.

Observe that (i) A, € 4, and (ii) the assumption of ¥ /8*-measurability for f
and g forces 4, € ¥ (and hence 4 ~ 4, € ¥). Next,

hl(x,00] = {w € A : h(w) > x}
:{weA\Ay:h(w)>x}U{a)€Ay:h(a))>x}
={a)€A\Ay:f(a))—g(a))>x}UAy
={weA~A4y: f(w)>x+g(@}UA

|

€

(b) Note that —g is ¥ /B8*-measurable since g is. Then f—g is ¥ /B*-measurable.
It follows form (MF7)(c) that 4 is ¥ /8*-measurable.

©LetL={weA: f(w)+g(w) <x},and R = Url,r2€®;r1 +r2<x{a) €A flw) <
r}N{w e A: gw) <r}lfwel,then f(v) + g(w) < x. Take ¢ € Ry4 such
that

[f(@) +¢] + [g(w) + €] = x.

Such an ¢ exists since f(w),g(w),x € R. Then there exists r; € Q such that
f(w) <r; < f(w) + ¢ since Q is dense in R; similarly, there exists r, € Q such
that g(w) < r, < g(w) + &. Thus,

ri+rn< fw)+e+gw)+e=x;

that is, w € R. The other direction is evident.

(d) For f — g, we have

{wed: flw)—gw) <x} = U {weAd: flow)<niN{weAd: —g(w) < —r}.
r1,r2€Q
ri—r2<x
Let L denote the left hand side of the above display, and let R denote the right
hand side. If w € L, then f(w) — g(w) < x. Pice ¢ € R4 such that [ f(w) + ¢] —
[g(w)—¢] = x. Pick ry,r, € Q such that f(w) <r; < f(w)+eand —g(w) < —ry <
—g(w) + . Then r; —ry < x, i.e., w € R. The other direction is evident.

(e) The claim holds for n = 2. Let us assume that it holds for » € N. We now
consider the n + 1 case. Define



82 CHAPTER 5  MEASURABLE FUNCTIONS

A — {weA: filw)+ -+ fu+1(w) is undefined} if y > x
e if y <x.

It is clear that 4, € . Next,
hl(x,00] = {w e A : h(w) > x}
={weAdA~Ay: filw)+ -+ fur1(@w) > x} U A,.

It suffices to show that {w € A~ 4,: fi(w) + -+ fat1(®w) > x} € F. Notice
that if fi(w) + -+ + fu+1(w) is defined, then fi(w) + --- + fu(w) is defined,
too. Thus, f; + -+ f; is ¥ /B*-measurable on 4,. It follows from (MF8) that
h=l(x,00] € 7. O

» EXERCISE 154 (5.2.5). This exercise concerns itself with (MF10).

a. Directly prove (a) of (MF10) assuming that f and g are real valued instead
of extended real valued.

b. Prove (b) of (MF10) assuming that f and g are real valued and that g is
nonzero on A.

c. Using the previous part, now prove (b) of (MF10) in full generality.
PROOEF. (a) For every x € R, we have
(/&) (r.00] = {w € 4: [f@) + g@)] = [ /@) - g@)] > 4x} € 7

thatis, fg is ¥ /8*-measurable.

(b) Write f/g = f x (1/g). Then 1/g is real valued and % /8B*-measurable. It
follows from (a) that f/g is ¥ /8*-measurable.

(c) Take an arbitrary x € R. Define

L — {weA: f(w)/g(w) is undefined} if y > x
g & if y <x.

Notice that
{we A: f(w)/g(w) is undefined} = [~ (xoo) N g~ (£o0)] U g~ 1(0);
thus, 4, € . Next,

h~H(x,00) = {w e A: f(w)/g(w) > x}
={weA~A4y: f(w)/g(w) > x}UA,.

So it suffices to show that {w € A~ 4,: f(w)/g(w) > x} € F. It can be proved
case by case. O
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5.3 SEQUENCES OF MEASURABLE FUNCTIONS

» EXERCISE 155 (5.3.1). Prove (a)-(e) of (MF123).

PROOF. (a) Pick an arbitrary o € A. If f(w) = 0, we have f¥(w) = f(0) and
f~(w) = 0. Then
[T @)+ [T (@) = f().

Next, if f(w) <0, we get f(w) =0and f~(w) = — f(w). Then
fHe) + (@) =—f().

Hence, |f| = f* + f~.
Nowif f = ftand f~ =0, then |f| = f* + f~ = f,ie, f = 0. The other
claim is similar.

(b) If ¢ = 0, then ¢f(w) = 0 iff f(w) = 0. Hence,

=cfT(w).

) @) {Cf(w) if cf(@) 20 _ {cf(w) if (@) >0

0 ifef(w)<0 )0 if f(w) <0

If ¢ <0, then c¢f(w) = 0iff f(w) < 0. Thus,

v ef@ it f@y<o -
(cf) @) = {0 T 0 =@

(c) Suppose that f(w) = —g(w) > 0; then (f + g)T(w) = (f + g)~(w) = 0, but
fT (@) +g" (@) = fT(w)>0,and f~ () + g~ () = —g(w) > 0.

Tosee 0 < (f 4+ g)T < f+ + g7 (the first inequality always holds), observe
that for every w € A4,

f@) +g(@) if f(w) +g(w)=0

() —
(f+8) (@) = if f(@) + (@) <0,

and
f(@) +gw) if f(w) 20,g(w) =0

f(®) if (@)= 0,g() <0

)+ () =
SOt e@=9 v if f(0) <0.g() =0
0 if f(w) <0,g(w) <O.

For instance, if f(w) = 0, g(w) < 0, and f(w) + g(w) = 0, then (f + g)T(w) =
f(@)+g(w) < f(w) = fT(w)+g+(w). All other cases can be analyzed similarly.

d If |g| < f,ie, gt +g < f,then0< g, g~ < f.

(e) For every w € A, we have f(w) = g(w) — h(w) < g(w); thus ft < gt = g.
Similarly, for every w € 4, we have f(w) = —h(w),and so f~ < (—h)" =h. O
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» EXERCISE 156 (5.3.2). The class of ¥ /8*-measurable functions is not nec-
essarily closed under uncountable suprema and infima. The following outline
gives a simple instantiation of this claim. Let 2 = R and ¥ = 8.

a. Let E denote a non-Borel set as constructed in Section 4.5. Argue that E
cannot be at most countable.

b. For each x € E, define f,: R — R by writing fx(») = lxy(w) for each o € R.
Then f, is ¥ /8B*-measurable for each x € E, but sup,.r fx = 1g, hence
SUp,cg fx IS not ¥ | B*-measurable.

PROOF. (a) Every singleton set {x} C R is a Borel set; thus, if £ is at most
countable, it would be a Borel set.

(b) For every x € E, the function f; is 8/8*-measurable by (MF3) since {x} €
B. However, sup,cg fx = 1g is not 8/8B*-measurable since E ¢ 5. |

5.4 ALMOST EVERYWHERE

» EXERCISE 157 (5.4.1). In (MF15), the completeness of(SZ, F, u) is not a redun-
dant assumption.

PROOE. Note that the proof of (MF15) dependents on (MF14), which depends
on the completeness of the measure space. O

» EXERCISE 158 (5.4.2). Suppose that f: R — R is a differentiable function.
Then f' is a Borel measurable function.

PROOF. Let f,(x) = f(x + 1/n) for all x € R and n € N. Then f, is a Borel
measurable function for each n € N since f is continuous. Therefore,

fG+1/m) = f@) _
n = n[fo0) = /()]

is Borel measurable for each n € N. Thus f’ = lim, n(f, — f) is Borel measur-
able. O

5.5 SIMPLE FUNCTIONS

» EXERCISE 159 (5.5.1). Refer to (MF18).

a. If f: 2 — R is a general ¥ | B*-measurable function, then there exists a se-
quence {s,}22, of ¥ /| B*-measurable and finite-valued simple functions such
that s, — f, having the additional property that0 < |s1| < [s2| < ---.

b. If'in (a) the function f is also bounded, then s, — f uniformly on A.
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c. The following converse to (MF18) holds: if f: A — R is such that there exists
a sequence {s,} of simple ¥ | 8*-measurable functions with s, — f then f is
F | B*-measurable.

PROOF. (a) Write f = f* — f~. Then there exist nondecreasing, nonnegative
¥ /B*-measurable and finite-valued simple functions {s;"} and {s, } such that

s — ftands,; — f~.Lets, =s;} —s, for all n, and consider {s,}.

(b) We first consider a nonnegative ¥/ 8*-measurable bounded function f: 4 —
[0,00). Fixan ¢ > 0. For everyn € N and k = 1,...,n2", define

App =qw € A: T

1$f(a))<2k—n and B, ={we A: f(w) =n}.

Take N; € N so that f(w) — sy, (@) < 1/2M < e for all w € U22=n1 AN, k- Now
pick N € N such that N = N; and f(w) — N < ¢ for all w € By. This proves
that s, — f uniformly. This result can be easily extended.

(c) Follows from (MF11). O

» EXERCISE 160 (5.5.2). Consider the measure space (R, £*, 1). Let f: RF - R
denote a Lebesgue measurable function. We will show that there exists a Borel
measurable function g: R¥ — R with |g| < |f|and f = g A -a.e.

a. Let f = 0. There exists a sequence {s,} of nonnegative finite-valued Lebesgue
measurable simple functions such that0 < sy <s, <---< fands, — f.
Pick m € N, and write s, = Z}’Ql cmjla,,;» where 0 < cmi, ..., ¢mn, < oo and
Ami..... A, are disjoint £¥-sets with Uiz Amj = R¥. Write the set Ap; as
Bpj U Cyj, where B,,; € Bk and Cmj Is contained in some Ay -null set Np;.
Define s}, = ngl Cmj1B,,; -

b. For eachm € N, sy, is a Borel measurable simple function such that 0 < s,;, <
Sm and s;, = sm A -a.e.

Define N = | J5_, Ny, where Ny, = {x € R¥ : 5,,(x) # s} (x)} for eachm € N,
and let g = Sup,,cy Sy,

c. Nish-nulL0<g< f,andg = f A -a.e.

d. g is Borel measurable, hence the proof is complete in the nonnegative case.

e. The claim holds when f: R* — R is an arbitrary Lebesgue measurable func-
tion.

PROOF. (a) Follows from (MF18) immediately.

(b) s}, is B%/B*-measurable since B,,; € B forevery j = 1,...,n,, (by (MF16)).
Define
Ny = {x € R¥ @ 5% (x) # sm(x)}.

Then D C U;.’Zl Cpmj and s0 A5 (D) < Ik(U}lZl Cmj) = 0; that is, s = s, A -a. €.
The other claims are trivial.
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(c) It follows from (b) that Ax(N,,) = 0 for every m € N. Thus, Ax(N) <
Y oe1 Ak (Nm) = 0.

Fix an arbitrary x € R¥. Then s*(x) < sm(x) < f(x). Hence, g(x) =
sup,, sy (x) < f(x), i.e,, g < f. Notice that g(x) # f(x) only probably on
N, and since Ax(N) = 0, we conclude that g = f A -a.e.

(d) It follows from (b) that s* is B/ 8*-measurable. Then g is 8%/ 8*-measurable
since g = Sup,,cy ;-

(e) Write f = ft— f~. Then there exist nonnegative 8% / 8*-measurable func-
tions g; and g, suchthat 0 < g; < f*, g1 = fT Ay-a.e,and 0 < g, < 7,
g2=f " Ar-a.e.letg=g; —g>. Theng = f A -a.e., and

lgl = g1 — gl < g1l + g2l =1+ g2< [T+ /7 =[] O

» EXERCISE 161 (5.5.3). In Exercise 160, show that the Borel measurable func-
tion g: R¥ — R may be chosen such that |g| = | f| and f = g A, -a.e.

PROOF. Just let A,j = Byj ~ Cpj, and 72, Bpj = R¥. Then s}, = sy, for every
m, and so g = f when f > 0. As in Exercise 160(e), we also get the other
results. 0

5.6 SOME CONVERGENCE CONCEPTS

» EXERCISE 162 (5.6.1). This result concerns uniqueness.

a Iff,— fu-ae and f, > g pn-a.e,then f =g pu-a.e.

b. If f, — f in pu-measure and f, — g in u-measure, then f = g p-a.e..
PROOF. (a) Write [ f(w) # g(w)] as the union of four ¥ -sets:

A1 = [f(0) # g(), fa(@) > f(®). gn(@) > g@)],
Az = [f(0) # g(), fn(@) > f(©). gn(@) 7> g()].
Az = [f(0) # g(0), fo(@) 7 f(©). gn(@) = g(@)],
Ay = [f(@) # g(@). fn(@) 7 [(@). (@) 7 g(@)].

Since limits of sequences of numbers are unique, A; = @. Observe that each of
A,, A3z, and A4 are contained in v-null sets; for example, 4, C [gn(w) 4 g(w)].

Thus, u[f(@) # g(w)] = 0.

(b) Fix m € N. Suppose that there exists w € A such that | f(w) — g(w)| > 1/m.
For an arbitrary n € N, if | f, (w) — f(w)| < 1/(2m), then

| fn(@) = g(@)] = | f(@) - g(@)| = [fa(@) = f(@)] > 1/2m).

Thus,
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[[f(@) = g(@)] > 1/m] S [| fu(@) = f(@)| = 1/2m)] U [| fu(@) — g(@)| > 1/(2m)].

For any fixed ¢ > 0, N € N such that u[| /(@) — f(w)| = 1/(2m)] < ¢/2™*+1 and
1l fu(@) —g(@)| > 1/(2m)] < &/2"*1. Then u[| f(0) —g(w)| > 1/m] < &/2"™. Since

ulf () # g@)] = p (U [If (@) - g(@)] > 1/m1)
m=1

< ) ullf@) - g@) > 1/m]

we have f =g n-a.e. |

» EXERCISE 163 (5.6.2). Suppose that f, > f and g, % g.

a fo—f>0and|fyl > |

b. Ifa,b € R, thenaf, +b 2 af +b.

c. Ifa,b € R, then af, + bg, A af + bg.

d f+5 frand 7 5 -

e. If u(A) < oo andn > 0, there is M > 0 with u[|g(w)| > M] < n.

f. If u(A) < oo, then f,g A fg.

g If 1(A) < oo, then fug, = fg.

h. If u(A) = oo, then f, g, does not necessarily converge to fg in u-measure.

i. It is not necessarily the case that f,/gn & f/g, even if g(w) # 0 and g, (w) #
0 for every w € A and n € N. However, if u(A) < oo, the result follows.

PROOF. (a) f, 5 f iff for any ¢ > 0, we have lim,,_, u[| fu(w) — f(w)| > €] = 0;
that is

lim 1 [I(fu(@) = f(@) = 0] > ] =0,

e, fu—f 50
To see the second implication, note that || f, (w)| — | f(w)|| < | fu(®) — f(w)],
and so

[ fa(@)] = f(@)]| > e] S [|fa(@) = f(@)] > ¢].

Therefore, u[| fn(w) — f(@)| > ] = 0 implies that w[|| fx(@)| — | f(@)[] > ] = 0;
that is, | ] = | f].
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(b) It is clear that

[ /n(@) = f(@)| > ] = [lafu(@) —af ()| > |ale]
= [l(afu(@) = b) — (af (@) = b)| >|a|e].

(c) It suffices to show that f, + g, 5 f + g. By the triangle inequality, we have
|(fn + gn)(@) = (f + &)(@)] <[fa(w) = f(@)| +]gn(®) — g(w)].

Therefore, [|(fu + gn)(@) — (f + &)(@)| > €] C [ fu(w) — f(@)] > /2] U [|gn(w) —
g(w)| > ¢/2], and so f,, + gn 2 f +g. Then, by (b), it is evident that af, +bgn &
af +bg.

(d) Observe that

|faF (@) = [T ()] = | max{ fu(w), 0} — max{ f(w), 0}
< [max{ fn (@), 0} — f(@)]
= | f(®) — max{ fn (). 0}|
< | f(@) = fa(@)].

Thus, [| /,f () — f T (@)| > €] C [| fu(w) — f(w)| > €], and so f,* 5 f. Similarly,
S

(e) Let 4, = [|g(w)| > m] for every m € N. Observe that {4,,} € ¥ and
Am | @ (since g(w) € R). By monotonicity, we get u(A4;) < u(A4) < oo; thus,
limy, u(A4,) = p(lim,, 4,,) = () = 0. Given n > 0, there exists M € N such
that u(Ay) < n; that is, u[|g(w)| > M] < 1.

(f) Observe that for an arbitrary M € N,

[|fn(@)g(@) — f(@)g(@)] > ¢] = [| fu(@) = f(@)] - g(@)]| > €]
= [|fa(@) = f(@)] - |g(@)| > &.|g(@) > M]
U[lfa(@) = f(@)]|-|g(@)] > & |g(w)] < M]
C[lg@)| > MU [| fu(w) — f(@)| > e/M].
It follows from (e) that for an arbitrary § > 0, there exists M such that

ullg(w)| > M] < §/2. Since f, Lt f, there exists Ny € N such that u[| f, (w) —
f(@)| > e/M] < §/2. Let N = max{M, No}. Then u[| fu(w)g(®) — f(w)g(®)| >
¢] < §; that is, f,g & fs.

(h) Observe that how the assumption p(A4) < oo is used.
(i) Notice that

llg(@) > M] = [|1/g(w)| < 1/M]. -
» EXERCISE 164 (5.5.3). Suppose that f, ~> f and g, —> g.

a fo—f 5 0and|f,] 250 1).
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b. Ifa,b € R, thenaf, +b =5 af + b.

c. Ifa,b € R, then af, + bg, E>af+bg.
d. f;rﬁlj“r andfn_féf_.

e fugn —> [g.

f. Ifg.gn # 0 p-a.e. foreachn € N, then f,/gn —> f/g.
PROOF. (a) We have

wln(@) = f(@) # 0] = ulfa(@) # f(@)] = 0.
Similarly for | f,|.
(b) If a, the claim holds trivially. So assume that a # 0. Then
plafa(@) +b £ af @) + bl = ulfa(@) A f@)] =0.
(o) Forevery w € Awith afy(w)+bg(w) /> af(w)+bg(w),if fu(w) - f(w), then
gn(w) 4 g(w). Therefore,

[afa(@) + bg(w) > af (@) + bg(w)] € [fa(@) 7 f(@)] U [gn(w) /> g(@)],

and so af, + bg, i>af + bg.

(d) Take an arbitrary w € A such that f,(w) - f(w).If f(w) > 0, then there
exists N € N such that f,(w) > 0 for all » = N, and then f,"(0) — fT(w). If
f(w) < 0, then there exists N € N such that f,(w) < 0 for all » = N, and then
f.F(@) =0foralln = N. Thus, f,"(w) - 0 = fT(w). Finally, if f(w) = 0, then
there exists N € N such that | f;,(w)— f(w)| < ¢.In this case, for all n = N, either
ST (@) = fu(w) > 0and fy(w) <, or f,F(w) =0; thus, f,f (@) > f (@) =0.

We thus proved that f,'(w) — f*(w) whenever f,(») - f(w). In other
words, we have

[fa" (@) A fH@)] S [fal@) 7 f(0)];
that is, f," 2% £+, Similarly, we get fr 25
©) [fa(@)gn(@) 7 f(w)g(@)] C [fu(@) 7 f(@)]U[gn(@) 7 g(@)]-
®) [fn(@)/gn(@) 7 f(@)/g(®)] € [fa(®) 7> f(@)] U [gn(®) 7 g(w)]. O

» EXERCISE 165 (5.5.4). Suppose for eachn € N that f, = g, ;1-a.e..
a If fu 25 f, then gn == f.

b. If f & f, theng, & 7.
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PROOF. (a) We have

n=1

[gn(@) A f(@)] € (U [gn(@) # f (w)]) U fa(@) A f@)].

Thus, g, a8 fif g, a8 f.
(b) We have

n=1

[lgn(@) = f@)] > e] < (U[gn(w) # fn(w)]) U [[fn(@) = f(@)] > el

thus, g, A f. O

» EXERCISE 166 (5.6.5). Prove the following statements connecting convergence
in p-measure with convergence i -a. e.

a fa Y S fa, A f for every subsequence {n;}.

b. fu A f iff each subsequence of { f,,} has a sub-subsequence that converges
to f n-a.e..

PROOF. See Resnick (1999, Theorem 6.3.1). Here is the basic procedure of the
proof: f, 5 f iff { f,} is Cauchy in measure, i.e., u[|fr — fs]] = 0 as r,s — oo.
Then there exists a subsequence { f,, } which converges a.s. O

» EXERCISE 167 (5.6.6). Suppose that ¢: R — R is continuous.
a If f, => f, thengo fy <> go f.
b. If fu 5> £, thengo f, 5 go f.

PROOF. (a) There exists a null set N € ¥ with u (N) = 0 such that if € N¢,
then f,(w) — f(w). By continuity of ¢, if ® € N¢, then ¢ (fn(0)) = ¢ (f(@)).

(b) Let {¢ o f,,} be some subsequence of {¢p o f,}. It suffices to find an a.s.
convergence subsequence {¢ o fy, . }. But we know that {f,, } has some a.s.

convergent subsequence { f,,,, } such that f,,, a8 f-Thus, 9o fu, ae oo f
by (a). o

5.7 CONTINUITY AND MEASURABILITY

5.8 A GENERALIZED DEFINITION OF MEASURABILITY

» EXERCISE 168 (5.8.1). Regarding the measure v:
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a. v is really a measure.
b. If u is finite, then so is v.
c. If u is o-finite, v need not be o -finite.

PROOF. (a) (i) v(4’) = 0 for all A’ € F’ since v(4A') = u(f~1(4)) = 0 for all
A e M) v(@) = (wo f7H)(@) = w(@) = 0. (iii) Let {4,} € F’ be disjoint.
Then

o) = (77 (U)) =0 (U s ) = S (s ea)
= ().

(b) If 1u(£2) < oo, then v(2') = u(f~1(2')) = u(2) < oo.

(c) Suppose that there exists a unique sequence {4,} of #-sets such that 2 =
\J 4, and p(A4,) < oo forall n € N; suppose that there does not exist a sequence
{Al} of F'-sets such that f~1(4)) = A, for all n € N. Then v is not o-finite. O

» EXERCISE 169 (5.8.2). Modify (MF14) and prove it in the more general setting
of this section.

PROOF. (MF14) can be modified in the following way:

(MF14’) Let (£2, %, 1) denote a complete measure space. Pick nonempty 4 in
¥, and let f be defined p-a.e. on A and % /%’-measurable. If g is defined
uw-a.e.on Aand f = g u-a.e. on A, then g is ¥ /F’'-measurable.

PROOF OF (MF'). Let B = {w € dom(f) Ndom(g) : f(w) = g(w)}, so that pu(4 ~
B) = 0. Take an arbitrary A’ € #’, and observe that

gl =g nBlufg )N~ B
— [f*‘(A’) N B] U [g*I(A’) N4~ B)] .

Since f~1(4’) e ¥ and B € ¥, we have f~1(4)NB € ¥.Next, g7 (A)N(A~B)
is a subset of A ~ B, and u(A ~ B) = 0. Since (£2, ¥, u) is complete, we have
g Y (A)N (A~ B) e F.Thus, g71(4’) € F and so g is ¥ /F'-measurable. O






THE LEBESGUE INTEGRAL

6.1 STAGE ONE: SIMPLE FUNCTIONS

» EXERCISE 170 (6.1.1). Let E € ¥.
a. w(E) =0Iff I} (s) =0 foreverys € G.
b. Foranyc =0, I3(c) = cu(E).

PROOF. (a) Write s = Y 7, ¢;l4,. If w(E) =0, then IT5(s) = Y j_, cin(4; NE) =
>, ¢i0 = 0since u(A; N E) < w(E) = 0 implies that u(4; N E) = 0. For the
converse direction, observe that if 4 (E) > 0, then I} (1g) = u(E) > 0, where,
of course, 1g € @.

(b) Write c € @ as ¢ = clg. Thus, I3 (c) = cu(2 N E) = cu(E). |

» EXERCISE 171 (6.1.2). Lett,s,s1,52,... € ©. Why can’t we say that Iy (as +
bt) = aly(s) + bIy(t) for every a,b € R, as compared to saying that the
result holds for every 0 < a,b < oo? Also, why can’t we necessarily write
I3 (0072 cisi) =272 ciI3(si)? [What is the domain of I3 7]

PROOF. This is because the domain of I3 is &: the collection of finite-valued
nonnegative ¥ / B8*-measurable simple functions with domain £2. Hence, if a <
0 and b < 0, then as + bt ¢ &. We can’t necessarily write I5(} 72, cisi) =
Y52, ci T4 (si) because it is possible that Y72, ¢is;(w) = oo for some w € 2. O

» EXERCISE 172 (6.1.3). Let E € ¥ be such that u(E) > 0. Then Iy (s) = 0 iff
s =0 p-a.e. on E. In particular, I*(s) =0 iff s =0 n-a.e. [on £2].

PROOF. Assume first thats =0 u-a.e.on E. Let E; = {w € E : s(w) = 0} and
E, = E ~ E;. Then u(E,) = 0, and so

Ip(s) = Ig,ug, () = Ik, (s) =0.

Conversely, assume that I3 (s) = 0. Let 4, = {w € E : s(w) = 1/n} for
each n € N. Then, for every n € N, we have 4, € ¥ and %ﬂAn < s on E;

93
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hence Ij‘s(%ﬂA”) < I3 (s) by (S4), whence p(4,)/n < 0 by (S6). It follows that
u(A,) = 0 for all n € N. Since

{w e E :s(w) >0} = UA,,,
n=1

we have u({w € E : s(w) > 0}) = 0; hence s = 0 u-a.e.. Replacing E by 2 we
get the second claim. |

» EXERCISE 173 (6.1.4). Let E € ¥ and s € G.

a. If W(E) < oo, then I (s) < oo, but the converse is not necessarily true.

b. If u(E) = oo and Ij,(s) = oo, then u({w € E : s(w) > 0}) > 0, but the converse
is not necessarily true.

c. Let u(E) = oo. Then I3 (s) < oo Iff u({w € E : s(w) > 0}) < oo.

PROOF. (@) Let s = Y '_, ¢;14,, where 0 < ¢; < oo and |J/_, A; = 2. If u(E) <
oo, then pu(4; N E) < u(E) < oo, for all i. Thus, I4(s) = > 7, cin(4; N E) < o0
since the finite summation of finite terms is finite.

To see the converse is not necessarily true, consider t = Tgc. Then Iy (f) =
0, and which holds no matter whether u(E) = oo or not as long as we assume
that 0 x co = 0.

(b) If s = 0 u-a.e. on E, then I} (s) = 0 by the previous exercise; hence,
wlw € E : s(w) > 0}) > 0.

To see the converse is not necessarily true, let t = 1g. Then u({w € E :
t(w) > 0}) = u(E). By letting 0 < u(E) < oo, we see that u({w € E : t(w) > 0}) >
0, but u(E) < oo and I3(t) = u(E) < oc.

(c) If u(E) = oo, then

n
ZCiM(Ai NE)<oo < u(4; NE) <ooforalli withc¢; >0
i=1

< u({w e E :s(w) > 0}) < oo. O

» EXERCISE 174 (6.1.5). Suppose that {E,};>, is a nonincreasing sequence of
F -sets. Also, let s € ©.

a. It is not necessarily the case that lim, Iz, (s)= Iﬁmn E, ().
b. If Iy (s) <oo for somen € N, thenlim, Iy (s) = Iy, g (s).

c. If{E,}32, is no longer nonincreasing but is still such that lim, E, exists, state
conditions under which lim,, T %n (s)=1 ﬁ‘mn E, (s).

PROOF. (a) Let (£2, 7, ) = (N, 2N, 1), where p is the counting measure; let s =
lg.Let E, = {j € N:j =n}. Then E, | &, u(E,) = oo and u(y—, En) = 0.
In this case, I%n (1) = oo for each n; but Iﬁm,, E, (1) = 0. This argument and

the following example is modified from Folland (1999, p. 26).
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(b) The same as (M9). This example shows that some finiteness assumption is
necessary.

(c) See Vestrup (2003, p. 47-48). O

» EXERCISE 175 (6.1.6). Lets € @ and recall (S7), where v, is the measure on ¥
with vg(B) = Ij(s) for every B € ¥. Then, for any E € ¥ andt € &, we have

Ty (tivs) = Tg(ts;p).

PROOF. Lets =Y} cils, and ¢ = 37, d;1p,. Then

Tptivg) = Zdjvs(Bj NE)= Zdjffeij(S;M) = Zde%(SHBj;H)
i=1

Jj=1 Jj=1

m
=I5 | 2 dists;in
j=1

= TI5(ts; ). o

» EXERCISE 176 (6.1.7). Let A € ¥ be nonempty, and let s € ©. Let ¥4 = {E C
A E € ¥}, and let u4 denote the restriction of u from ¥ to F4. Finally, let s4
denote the restriction of s from 2 to A.

a. (A, ¥4, naq) Is a measure space.

b. If ¢ denotes this section’s functional relative to (A, ¥4, u4), then we have
Iz (sspn) = $E(sa; pa) forevery E € Fy.

PROOF. (a) We only need to show that %4 is a o-field. (i) A € ¥4 because 4 € ¥
and A C A. (i) If £E € F4,then E € Aand £ € ¥. Thus, A~ E C A and
A~E € ¥,ie, A~ E € Fy. (iii) Let {E,} C F4. Then E,, C A and E, € ¥ for all
n. Thus, | JE, € Aand |J E, € ¥; thatis, | J E, € F4.

() Lets =7, cily,. Then sy = Y 7_, ¢il4;na:4, and so

FE(saipa) =D cipa (A NANE) =Y ciu(A; N E) = I} (s )

i=1 i=1

since u4 = pon ¥4 and E C A. O

» EXERCISE 177 (6.1.8). Let A € ¥ ~ {@&}, and suppose that s: A — [0,00) Is
simple and ¥ | 8*-measurable. Let E € $4, where %4 is defined in the previous
exercise. Consider two programs:

Program 1 Extends from A to $2 as follows: Let s* € @ be such that s* = s on
A and s* = 0 on A°.

Program 2 Do not extend s from A to 2 as in Program 1, but instead view s
as a function defined everywhere relative to the measure space (A, ¥4, (ta),
where the notation is as in the previous exercise.
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These two programs are equivalent in the sense that Iy (s*;u) = $g(s:pa),
where Iy, is this section’s functional relative to the measure space (2, ¥, i),
and g g is this section’s functional relative to the measure space (A, 4, j14)-

PROOF. Write s = ), ¢; 14,, where {4;} is disjoint and | J;_; 4; = A. Extend s
to s* as

n
s* = ZciﬂAi + 0T ge.

i=1

Then
n n
Tp(s™m) =Y cip(AiNE)+0x u(A° N E) =) ciu(4; N E).
i=1 i=1

Next, consider Program 2. We have
n n
FE(s;pa) = ZCiMA(Ai NE) = ZCiM(Ai NE).
i=1 i=1

Thus, Iz (s*; 1) = FE(s; 1a). O

» EXERCISE 178 (6.1.9). Quickly prove the following “almost everywhere” mod-
ification of (S3) and (54). As usual, s,t € @ and all sets are in ¥ .

a. If s=t p-a.e. onkE, then I (s) = Iy(t) forevery F C E.

b. Ifs <t p-a.e.onE, then I}(s) < I;(t) forevery F CE.

PROOF. (@) Let E; = {w € E : s(w) = t(w)}, and E; = E ~ E;. Then u(E;3) = 0.
For an arbitrary F C E, define

Fi=FnNE, and F,=FnNE,.

Then p(F,) = 0. Observe that I}l (s) = I;l (t) by (S3), and I;z (s) = I}z ®H =0
by (S2)(a). It follows from (S7) that

Ir() =I5 )+ Ip, () =I5 () =I5 () = I () + I, (0) = TR ().

(b) Let £y = {w € E : s(w) < t(w)}, and E, = E ~ Ey; then pu(E;) = 0. For an
arbitrary F C E, define F; = FN E; and F, = F N E,. Then I;l (s) < val ®)
and I;z (s) = I}z (t) = 0. By (S§7) we get the result. |

6.2 STAGE TwO: NONNEGATIVE FUNCTIONS

» EXERCISE 179 (6.2.1). Prove
a. N3)If f=gup-a.e.onE,then IL(f)=I}(g) forany F C E.
b. N4)If f <gp-a.e.onE,then I%(f) < I¢(g) forany F CE.
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¢ N7)If f.fi. foo... € Nand f = lim, f, u-a.e. on E, then IL(f) =
lim, I%(fn)-

d. If f <M p-a.e.on E for some M € [0,00], then I%(f) < Mu(E).

PROOF. (@) Llet E; ={w € E : f(w) # g(w)} and E; = E~ E;.Let F; = FN E;
and F, = F N E,. Then u(F) < u(E,) =0, i.e., u(F,) = 0. Thus,

Ip(f) =T up () =I5 () + I5(f) =I5 (f) = IF (8) = IE(2).
(b) Similar to (a) and so is omitted.
(c) Let £, = {w € E : f(w) # lim, f,(w)} and E; = E ~ E,. Then u(E;) = 0,
and so

IR = T8N+ I8,(f) = I3, (/) = im I% (f,) = Hm IE(f,).

d) Let £ ={w e E: f(w) > M} and E; = E ~ E,. Then f < M on E; and
W(E,) = 0. Thus,

TE(f) = TIE, (f) s IE, (M) = Mu(Ey) = Mu(E). O

» EXERCISE 180 (6.2.2). It was claimed in (N5) that I%(cf) = cI%(f) for every
¢ € [0,00). This result in fact holds in ¢ = oo as well: I} (cof) = colZ(f).
Therefore, (N5) holds for all ¢ € [0, 00]. Similarly, we may allow the numbers
€1,...,Cy to be in [0, o] in the statement (N8).

PROOF. If f =0 p-a.e.on E, thenoof =0 p-a.e.on E and so Iz (cof) =
00l (f) = 0. So assume that there exists F € ¥ withF C E and u(F) > 0
such that f > 0on F.Then oo f = oo on F. Thus, I} (cof) = I}%(00) = oo, and
00l % (f) = 00l}(f) = oc; thatis, I (oo f) = ool (f) = oc. O

» EXERCISE 181 (6.2.3). This exercise concerns Fatou’s Lemma.

a. Let {A,} denote a sequence of ¥ -sets. Show that p(liminf 4,) < liminf u(4,)
by using Fatou’s Lemma applied to the sequence of indicator functions

{]]An }?lo=1'

b. Consider (R, B,7). If s, = n*1jo.1/n] for each n € N, then I"(liminfs,) = 0
while liminf 7" (s,,) = oo,hence strict inequality may hold in Fatou’s Lemma.

c. In (b), with E € B, the sequence 1g,1 — 1g,1g,1 — 1g,... provides another
example where strict inequality holds in Fatou’s Lemma.

d. It is not necessarily the case that limsup I (f,) < IZ(limsup f,) if n(E) =
0o. However, if uw(E) < oo, the inequality holds, hence we have

I%(liminf f,) < liminf I%(f,) <limsup I%(f,) < IZ(limsup f,)

by putting everything together.
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PROOF. (a)Itis evident that {14,} € @ € N and liminf, 14, € N since {4,} C ¥.
For every n € N, let
&n = il’lf{ﬂAn, T]A"+] e }

Then the sequence {g,} is nondecreasing and so lim, g, exists. Thus,
limg, = sup g, = sup inf 14,, = liminf 1y,
n n n m=n n

and g, < T4, for all n € N. Also note that I"(14,) = I*(14,) = p(4,), and
which implies that

1" (limg,) = I"(iminf 1,) = I" (himnt, 4,) = A (lirr}linf An) ,

where the second equality is from Exercise 64 (p. 36). Invoking Lebesgue’s
Monotone Convergence Theorem (MCT), we have

m (liminf A,,) = I"(limg,) = lim I"(g,) = liminf I™(g,)
n n n n
< liminf 7™ (14,)
n
= liminf u(4,).
(b) We first show that

0 ifw#0

liminfs, (w) =
n n(®) {oo if w =0.

Suppose that there exists w # 0 such that liminf, s,(w) = « > 0. Then for
an arbitrary ¢ € (0,«), there exists N € N such that s,(w) > ¢ for alln = N.
However, when n is large enough, s, (w) = 0. A contradiction. Thus, liminf, s, =
0OA-a.e.onR.

Therefore, I”(liminf, s,) = 0. Nevertheless, I"(s,) = n?A[0,1/n] = n, and
so liminf I"(s,) = lim, n = oc.

(c) Write 1 — 1g as 1gc. Then liminf,{1g, 1gc,...} = 0 and so
I”(lirr}linf{ﬂE, Tge,...)} =0.
However, I"(1g) = A(E) and I"™(1gc) = A (E€) imply that
liminf {7 (1), I"(1gc), ...} = min {)L(E),)L (EC)}.
(d) We first extend Fatou’s Lemma: If there exists g € L! and f,, > g on E, then
I (liminf f,) < lim inf I%(fo)-

In this case, we have f,, — g = 0 on E and
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I3 (iminf(f, — ¢)) < liminf I (f, — ¢)
by Fatou’s Lemma. So
Ipimint f,) — T3 (g) < liminf I3(f,) — I3 (g).

The result follows by cancelling I7%(g).
Now if f, < g, then — f,, > —g € L', and the extended Fatou’s Lemma gives

I% (liminf(— f,)) < liminf I% (- f,).
n n
so that
1% (—liminf(-f,)) = —liminf T% (- f,):
that is, Iz (limsup,, f,) = limsup, I% (/). |

» EXERCISE 182 (6.2.4). Let 2 denote an arbitrary nonempty set, and fix atten-
tion upon a particular wy € 2. Let ¥ = 2%, and define u: ¥ — R by writing
w(A) =1lifwy € A and u(A) =0 ifwy ¢ A.

a. (22, %, ) is a measure space.
b. Every f: 2 — R is ¥/ B*-measurable.

C. LetEc¥ and f e N. Then I}(f) = f(wo)1g(wo).

PROOF. () It is evident that ¥ is a o-field, so it suffices to show that u is
a measure on ¥. It is clear that u(4) = 0 for all 4 € ¥ and w(@) = 0. To
see u is countably additive, let {4,}52, be a disjoint sequence of #-sets. If
wo ¢ ey An, then wg ¢ A, for all n € N; hence

p (U An) =0=) pu(An).
n=1 n=1

Otherwise, if there exists 4, such that wy € Ay, then wy € | J,~, 4, and so

128 (U An) =1= ZM(An)
n=1 n=1

(b) Every f: 2 — R is trivially ¥ /8*-measurable since ¥ = 2%: for every
B e B*,wehave f~1(B) e ¥.

(©) If wo ¢ E, then u(E) = Tg(wo) = 0; thus, IZ(f) = f(wo)le(wo) = 0. If
wg € E, then w(E) = 1g(wp) = 1. Hence,

TR = I3y () + Th oy () = Ty () = f(@0). 0
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» EXERCISE 183 (6.2.5). Let 2 denote an uncountable set, and let ¥ = {A C
2: A is amc or A is amc}. Define u: ¥ — R for all A € ¥ by writing u(A) = 0
if A is amc and u(A) = 1 if A° is amc.

a. (2,%, ) is a measure space.

b. f: 2 — Ris F/B*-measurable iff there is ¢ € R [depending on f]with f = ¢
[L-a.e.on 2.

c. Let E € ¥ and f € M, then I} (f) = c- n(E), where c is the constant such
that f = c p-a.e. on 2 [as given in (b)].

PROOF. (a) () 2 € ¥ since 2¢ = @ is amc. (ii) If A € ¥, then either A4 is amc or
A€ is amc. If A is amc, then A¢ € ¥ since (A°)¢ = A is amc; if A€ is amc, then
A€ e ¥ . (iii) Let {4,} € F. Then either each A4, is amc or at least one A¢ is amc.
In the first case, | J 4, € ¥ since countable unions of amc sets is itself amc; in
the second case, let us assume that A is amc. We have (| 4,)¢ = () 45 € A4S,
so (| 4,)¢ is amc. It follows that | J 4, € ¥ as well.

(b) First suppose that f = ¢ w-a.e. for some ¢ € R; that is, there exists N €
with w(N) = 0 such that f(w) = ¢ for all w € £ ~ N. By definition, N is
amc; thus, every subset of N is in . With this observation, we see that f is
F /B*-measurable.

Conversely, suppose that f is ¥ /8*-measurable. Let

C={teR: f[—o0,1] is amc}.

Note that f~!(-o0) € F.If [f~1(—o0)]¢ = f~1(~o00,00] is amc, then f = —co
u-a.e.. So we suppose that —oo € C. Also, if —oc0 < b < a with a € C, then
b € C since f~1[—o0,b] € f~'[~00,a]. Thus, C = {—oc} or C is some type of
unbounded interval containing —oc.

e If C = {—o0}, then for any r > —oo, the set f~![—o0,¢] is not amc, and so
is not in F; hence (f~'[—o0,t])¢ = f~!(t,00] is amc and is in ¥ since f is
¥ /B*-measurable. Hence, u({w € 2 : f(w) # —o0}) = 0; that is, f = —o0
i-a.e.

e If C is an interval containing —oo, let ¢ = sup C, so that —oo < ¢ < o0. Let
t; <t <--- be such thatt, — ¢ and t, < ¢ for each n € N. Then f~![—o0, #,]
is amc for each n € N. Thus,

U s ooutal = 71 (Ulootal) = 7' =o0.0)

is amc,i.e.,c € C.If ¢ = 00, then 2 = f~![—00, o0] is amc; but £ is uncount-
able so we get a contradiction. Hence, —oo < ¢ < oo. Now, for every d > c,
the set f~1[—o0,d] is not amc; hence, f~!(d,o0] is amc. Let t; > t, > --- be
such that 7, — ¢ and ¢, > ¢ for each n € N. Then f~!(z,, oc] is amc for each
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n e N, and so f~!(c, 0] is amc. In sum, the sets f~![—o0,c) and f~1(c, 0]
are both amc; thus,

1w € 21 f(w) #c}) = u(f ' [=00,0) U f (e, o)) = 0;
thatis, f =c u-a.e..

(c) Let N € ¥ be the set such that u(N) = 0 and f(w) = c on £2 ~ N. Let
Eiy=ENN and E, = E ~ E;. Then u(E;) = 0 and

IE(f) = I3, (0) = cp(Er) = cp(E). 0

» EXERCISE 184 (6.2.6). Let 2 denote an arbitrary nonempty set, let A C £2,
and let f: 2 — [0, 0o] be given. Write

weA weF

Zf(w)=3up{2f(w):FgA,Fﬁnite}.

a. Suppose A = {w1,...,wu}. Then Y i, f(w) = Y 7_, f(w;), hence the defini-
tion above is consistent with what we’re used to in the finite case.

b. Suppose A = {w1,w,, ...} [a countable set]. Then'y ., f(®) =Y 2, f().

PROOF. (@) It is easy to see that >/, f(w) < Yo, f(w) since A € A and A
is finite here. For the converse inclusion, observe that every F C A is finite;
thus, >, cp f(@) < 3, e f(@) since f(w) = 0. We thus have > » _, f(w) <
ZweA f(w).

(b) Consider a sequence {4,}°2, with 4, = {wi,...,w,} for all n € N. Then
An 1 A. Also observe that for any finite set F C A, there exists A, containing
F. Thus,

weA w€eAy, w€EeA,

> flo) = sup{ > f(w)} =lm ) f(@) =) flo). O
i=1

» EXERCISE 185 (6.2.7). Let 2 denote a nonempty set, let ¥ = 2%, and let
w: F — R be such that (A) = the number of points in A when A is finite, and
w(A) = oo otherwise.

a. (2, %, ) is a measure space. The measure  is called the counting measure
since . “counts” the number of points in each ¥ -set.

b. Every f: 2 — R is ¥ / B*-measurable.

c. Givenany E € ¥ and f € W, we have I%(f) =Y 0 g ().

PROOF. (a) and (b) are straightforward, so I just do (c). If /' € @ and f > 0 only
on a finite subset of E, then I%(f) = I£(f) = Y neg f(@).
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Now let f € 0 and let F C E be finite. Then f1r € G and f > 0 only on a
finite subset of F; hence

RN 2 IE(fIR) = IR =) fl) =) flo).

weF weF

Since F is an arbitrary finite subset of E, we have IZ(f) = Yo ek f(w). This
gives one inequality.

If Yr p f(w) = oo, the previous inequality forces the result, so we may
assume that )" _ f(») < occ. For any s € G, we have

*

D s@) <) flw) < oo

w€eE w€eE

from this deduce that s > 0 only on a finite subset of E; hence, we may find
finite F € E withs =0 on E ~ F. Then

It =) s@) =) s <) fl@<) flo)
weE weF w€eF weE

Since the above holds for any s € &y, it follows that
TE(f) = sup I5(s) < ) flw). u
SG@/‘ weE

» EXERCISE 186 (6.2.12). Let 2 denote a nonempty set, and let ¥ denote a o-
field on 2. For each n € N, let u, denote a measure with domain ¥ . For each
ne€N,let) ], u; denote the measure that assigns the value >";_, n;(A) to each
AeF.

a. Lets € @ andn € N. Then T (s; Y 7_; i) = Y r—y T5(s5 i)
b. Let f e Mandn e N. Then T (f;> 71— i) = Yi—qy TR (S5 ).
PROOF. (a) Lets = Z;';l ¢jl4; € ©@and n € N. Then

I%(S;Z,ui) = ch . ZM,‘ (Aj N E) = ZZC,‘ - Wi (Aj N E)
i=1 =1 i=1 i=1j=1
=D Th(siu).
i=1

(b) Let /' € N. By (MF18), there exists a nondecreasing sequence {si}z—; C ©
such that s,, — f. Then by Lebesgue’s Monotone Convergence Theorem,



SECTION 6.2 ~ STAGE TWO: NONNEGATIVE FUNCTIONS 103

gm;‘m) = I};(h,g,nsm;;) = Tp(imsy: ) pi) = WM TE(smi ) i)

i=1 i=1

n
w3 T )
i=1
n
= 3l TG )
i=1
n
= IE(fim). O
i=1

» EXERCISE 187 (6.2.14). Keep (£2, ¥, ) general. Suppose that ¥ C ¥ isao-
field on £2, and let 11y denote the restriction of . to wo. If a nonnegative ¥ /| 8*-
measurable function f defined on $2 also happens to be 5,/ 8*-measurable in
addition, then I%(f:n) = I%(f: o) for every E € Fy.

PROOF. First consider the case of f = 1g where E € F. Then I}%(f:pn) =
R(E) = po(E) = ITR(f; o). Next, let f = Y"7_, ¢ily, € . Then

n n
TE(fiw) =Y i TEQasmw) = ) ci- TE(Lagi o) = I3(S: o).
i=1 i=1

Finally, let / € M. Then there exists a nondecreasing sequence {s,},o; C ©
such that s, — f. Hence,

TE(fip) = T imes,; p) = Wm Ig (sp; p) = Hm Ig (s pro) = T (f5 o). D

» EXERCISE 188 (6.2.16, N17). Let f denote a nonnegative ¥'/B*-measurable
function. We have the two equalities

I"(foTiu)=I"(fipoT™h (6.9)
and
Ii ([ oTiw) = I5(fipeT™) VA eF. (6.10)
PROOF. We have
(Q.F ) ——— e (2. F o T
I /
(R, B*, %)

o Let f = T4,where A" € ¥'.Then f oT = Ir-1(4,, and

I"(Ug o T3 1) = I"(Ipoi s ) = (TH(A) = (o T7H)(A))
= I"(laspo T,
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e Let f = Z?=1 Ci]]A; S @(Q/,?/,M o T_l). Then f oT = Z?:l CiﬂT—l(A;.)- It
follows from (N8) that

n n
I"(foT;p) = I"(ZG“T-I(A;);M) = Zcif"(ﬂT—l(A;);M)
i=1 i=1

n
=Zci'fn(“A;;M°T_l)

i=1

n
=I"()_cilgipoT™)

i=1
=I"(fipeoTH.

o Let f e M(2,F', woT™1). By (MF18), there exists a nondecreasing sequence
{sp} € &(2',F', uoT V) such thats, — f.Thus, {s,0T} C &(R2',F', uoT™")
is a nondecreasing sequence and s, o T — f o T. It follows from MCT that

I"(foT;pn)=I"(lims,oT;pu) =limI"(s, o T;p)
=limI"(sy; o T7Y)
n
= I"(lims,; o T7Y)
=I"(fipeTh.
Replace f by f14. It suffices to show that
(fla)oT = (f o T)Ig—1(4).

Note that 14 is defined on £2’, while Ir—1(ay 18 defined on £2. For an arbitrary
w € 2, we have

[(fT1a) o T (@) = f(T(@)) - T (T(@)) = (f o T) @) - Ir-1(4r)(@)
= [(f e T)Ir-104](@). O

6.3 STAGE THREE: GENERAL MEASURABLE FUNCTIONS

» EXERCISE 189 (6.3.1). Let E € ¥ be such that u(E) < oo, and let f € IR be
such that f = 0on E° andm < f < M on E, where m,M € R. Then I?(f)
exists and is finite. Furthermore, we have mu(E) < I%(f) < Mu(E).

PROOF. Let M’ = max{|M|,|m|}. Then f*, f~ < M’ on E. It follows that
IR IR(fT) S TE(M') = M'W(E) < oo

hence, T%.(f) eaif. The second claim follows (G6) since that m, M € M(E). O
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» EXERCISE 190 (6.3.2). Let E € ¥, > 0 and let f € M be such that 1% z(f)
exists and is finite. There exists a subset F C E such that u(F) < oo and

IE() = Ir(N)l <e.
PROOF. First let f € N. We first show that for all x > 0,
ww e E: f(w) > x}) < oo.

Suppose there exists x > 0 such that u({w € E : f(w) > x}) = oco. Then

I3 2 I payony 3 1E) = xu({w € E & f(0) > x}) = 00

A contradiction. For each n € N, let

E,={weE: f(w)=1/n}.
Then for each n € N, we have E, 1 {w € E : f(w) =0} = E and u(E,) < oo. It
follows that

T4 = TR = Ly, 5, (/) = h;n I3 (f) =lim 1%, (/).

Thus, there exists Ey such that |I (f)— (f)| < e¢.Let F = Epn and we are
done.

Next let /€ M. Since I%(f) < oo, we know that I%(fT) <ocoand I4(f7) <
oo. By the previous argument, there exist F’, F” C E such that

IE(f) =I5 (Dl <e/2 and |[IL(f7) =17, (f7)l <e/2.
Let F = F'U F'. We get
IeN) = IeNDI =T = I ) = I+ IR
SIEUD = IFUDNI+IIEG) = IR
SILUD - I UDNI+IIEUD) =I5, ()

<é&. 0O

» EXERCISE 191 (6.3.3). f is such that I%(f) exists and is finite iff for any e > 0
there are functions g and h in M such thath < f < g on E and 1% z(g—h) <e.

PROOF. Suppose first that I%(f) eaif. Then both I%(f*) and I% (/™) are fi-
nite. Given ¢ > 0, let ¢ = ¢/4u(E). Let

h=f—c and g=f +c.

Then
I%(g—h)=I%(@/2n(E)) =¢/2 <e.

Now suppose that for every ¢ > 0 there exist g,h € 9t such thath < f < g
on E and I%(g—h) < e. Since h < g, we have g —h € N, and so I%(g —h) =
I%(g—h)=0.Theng—h=0p-a.e. onE, and so g and / are ﬁmte and g = h



106 CHAPTER 6  THE LEBESGUE INTEGRAL

p-a.e.on E, and so f is finite u-a.e. on E. This proves that I%(f) eaif on
E. o

» EXERCISE 192 (6.3.4). Let f, f1. f>,... denote a sequence of nonnegative
functions in M. For eachn € N and E € ¥, define v,(E) = I%(f,,;,u) and
V(E) = I%(f:p). Furthermore, assume that v(£2),v1(£2).v2(£2).... are finite
and f, — f u-a.e.on 2. Then

SUp{|v(E) — vy (E)| : E € F} < I9(|fu — fl; ) > 0 asn — oo.
PROOF. Since f, f1, f2,... € Jtand f, 2% f on £, we get
sup [v(E) — va(E)| = sup [IL(f; 1) = % (fus )|

Ec¥ Ee¥

= sup|I%(f — fus )|
Ee¥F

<sup IZ(1f = fuli)
Eec¥

<IH(fu— fliw)

— 0. O

» EXERCISE 193 (6.3.5). Let (2, %, 1) = (R, BX ) with E € ¥, and let f € M
be such that I%(f) exists and is finite.

a. Suppose that { f,} is a sequence of functions in I such that

f(x) ifxissuchthat|f(x)| <nandl|x|| <n
0 otherwise.

In(x) =

Then lim, I%(f,) exists and equals I%(lim, f,).

b. Reset everything in (a), and this time let f,(x) = f(x)exp(—||x||?>/n) for each
x € R¥ andn € N. Thenlim, I%(f,) = I%(f).

PROOF. () Since I%(f) eaif, I¢(|f]) is finite by (G7). It is clear that | f,| < | f]|
and f, — f (see Figure 6.1), all the claims follow from DCT.

(b) Observe that f, — f (see Figure 6.2). O

» EXERCISE 194 (6.3.6). Suppose that u($2) < oo, { f»} is a sequence of functions
in M such that there exists M € R with | f,| < M for eachn € N, and let f € M
be such that f, — f uniformly on E. Thenlim, I%(f,) = I%(f).

PROOF. u(£2) < oo and M € Ry implies that I} (M) = Mu(£2) < oco. Then for
each E € ¥, we have T % (M) < oo. The claim then follows from the DCT since
uniform convergence implies pointwise convergence: lim, f, = f. O
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FIGURE 6.1. f] and f>.

FIGURE 6.2. f, — f

» EXERCISE 195 (6.3.7). Let { f,}—, denote a nondecreasing sequence of func-
tions in I such that I% (fa) exists and is finite for eachn € N and sup,,cy I% (fn) <
oo. Then 1% (lim, f,) exists, is finite, and equals lim, I%(f,). This is one form of
Beppo Levi’s Theorem.

PROOF. Let g, = f, — f1 for all n € N. Then {g,},~,; C N, is nondecreasing,
gn 1 lim, f, — f1, and lim, 1% (gn) = lim, I%(fn — f1) = lim, I%(fn)—I%(f1) =
sup, I%(fx) — I%(f1) < oco. Then by MCT, I%(lim, g,) = lim, I%(g.). Since

I1%(limg,) = I%(lim f, — £1) = I§(lim f) — I5(f),
lim 9 (¢,) = lim I (fu — f1) = im I§(f,) = I%(f),
and T % (f1) < oo, we get the Beppo Levi’s Theorem. |

» EXERCISE 196 (6.3.8). Let {f,}, {gn}, and {h,} denote sequences of functions
in M such that f, 28 f&n 28 g, and hy, 2h for some functions f, g, h € M.
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Suppose for any p € {g.g1.82.....h.h1. hy,...} that I%(p) exists and is finite.
Furthermore, suppose thatlim, 1% (gn) = I%(g) andlim, I%(h,) = I%(h). Also,
assume that g, < f, < h, for everyn € N.

a. I%(fu) exists and is finite for all n € N, I%(f) exists and is finite, and
lim, I%(fa) = I%(f).

b. DCT may be obtained from (a).

PROOF. () Since f, < h, and I%(h,) < oo, we have I%(f,) < I%(h,) < oo for
all n € N; that is, I%(f,) exists and is finite for all n € N.

Since f, < h, for all n, we get lim,, f, <lim, h,, i.e., f < h; since Ié (h) < o0,
we have I%(f) exists and is finite.

Since f, < h, for all n, we have h,, — f,, = 0 p-a.e.. Fatou’s Lemma yields

I3 —IE(f) = Ig(h— f) = T3 0im(h, — f))
=19 (lin}linf(hn — fn)
< lirrbian%(hn — fn)
= lim inf (I (hn) — I%(fa))
= I3(h) + liminf (~I5 (/)
thatis, 7%(f) = limsup I% (/).

Finally, observe that g, < f, vields f, — g, = 0 w-a.e.. Applying Fatou’s
Lemma once again, we obtain

(N -Ig@ =13 -8 = f%(li}}l(fn —&n))
= I%(limninf(fn — &n))
< lin'}iinffi(fn —gn)
= lirr}liani(fn) —I%(9)

that is, 7%(f,) < liminf, I%(f,). We thus get lim, I%(f,) = I%(f).
(b) Observe thatif |f| < g, then —g < f < g. By (a) we get DCT. O

» EXERCISE 197 (6.3.12). Suppose that IG""—l g (f) exists and is finite, where

{En}S2, is a disjoint sequence of ¥ -sets. Then If)?f’:l g, ()= Some1 1%, (f), and

the convergence of the series is absolute.

PROOF. Since Iéw—l z (f) eaif, (G1-b) implies that each of I7 (f) eaif. There-

fore, oo (f%). IV (f7). T4, (f5). I, (f7) < co. We have
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oo 5 ()= Uoo £, () =Tl g (f7)

= f+)—ZI f7)

[IE,, (F5) =18, (/)]

ﬁMs& A agkR

En(f)

We now show that > 72 |T %n (f)| converges. Since T %n (f) exists (and is
finite), by (G7) we have |17 (f)| < I} (|f]) for any n € N; since I7 (f) eaif
for any n € N, we know that I%n (|.f]) eaif for any n € N. Therefore,

Z! 14 ()] < ZI (1f) = Tfp (1) <00

4
since IU"O E, (f) eaif. |

» EXERCISE 198 (6.3.14). Suppose that { f,},—, is a sequence of elements of N
converging to some f € N. Furthermore, assume that there is0 < M < oo such
that 1%(f,) < M for each n € N. Then I¢(f) exists, is finite, and is no more
than M.

PROOF. Let f, — f.Then lim, f, = liminf, f,.By Fatou’s Lemma,

I7(f) = I?*(iminf f,) < liminf 7%(f,) <limsup I¢(f,) < M. O

6.4 STAGE FOUR: ALMOST EVERYWHERE DEFINED FUNCTIONS

» EXERCISE 199 (6.4.1). (L10) If f € LY(E) and|g| < f p-a.e. on E, then
g € LY(E). Also, any f that is bounded 1. -a. e. on a set E with u(E) < oo and
is zero p-a.e. on E€ is in L'(E).

(L16) We have the following, where A’ € ¥':
a. Ife=0,then [, 4ypo fdu= Jypod(ue f71).

b.  For general ¢, [;—i 4 ¢ f du exists and is finite iff [, ¢ d (no f7) exists
and is finite, and in this case equality obtains.

PROOF. We first prove (L10). f € LY(E) <= I%(f*) < oo; since |g| < f
w-a.e, we have g** < f* p-a.e. and g*~ < f* p-a.e.. Then the conclusion
follows (G9). O






INTEGRALS RELATIVE TO LEBESGUE MEASURE

7.1 SEMICONTINUITY

» EXERCISE 200 (7.1.1). (SC4b) If f(x) = —oo, then f is USC at x iff limy_,» f(y) =

—OQ.
(SC7b)  f is USC, and is the minimal USC function > f.

(SC9) Let A denote a generic nonempty index set. For each a € A, suppose that
fx Is a function from R¥ into R. We have the following:

a. If f, is LSC for each a € A, then supycy fo is LSC.
b. If f, is USC for each o € A, then infycy4 fy is USC.

PROOF. (SC4b) Assume f is USC at x. Pick 1 > f(x) = —oo. Then there is
8 > 0 such that f(y) < ¢ for each y € B (x,§). Since ¢ is arbitrary, we
have lim,_,y f(y) = —oo. Conversely, assume that lim,_,, f(y) = —co and
pick any ¢ > f(x) = —oo. Then there is § > 0 such that f(y) < ¢ for each
y € B (x,§). Since ¢ is generic, f is USC at x by definition.

(SC7b) We show that infsso Sup,cp(.5) f(¥) < f(x) for each x; then f is
USC by (SC6). Suppose there is x so that the preceding inequality fails, then
there exists ¢ such that infsoo SUP,ep(es) f(¥) > ¢ > f(x). It follows that
SUP e B (x,5) f(y) >t for any § > 0, and therefore, there exists y € B (x,§)
so that f(y) > ¢ for any B (x,§). Now consider an open ball of y, B (y,r) C
B (x,8). We have

Fo)=inf sup f< sw )< sup S
>OzEB(y,8/) zeB(y,r) z€B(x,0)

that is, for any B (x, §), we have sup,cp(, ) f(2) = f(y) > t. But this implies
that

f(x) =inf sup f(z)>1t.
§>0 zeB(x,8)

A contradiction.

111
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With this outcome, we can show that f is LSC. Take any x € 9¢. Then

—f(x)=inf sup (=f)(y)=—sup iBr%f 5 f(y) =—f(x).

§>0 yeB(x.8) §>0 YEB(x
Since — f is USC, —(— f) is LSC, that is, f/ = —(—f) = —(—f) is LSC.

(SC9a) Take any x € R¥ and ¢ < sup,c4 fo(x). Then there exists o’ € 4 such
that f,/(x) > t; since f,s is LSC, there is B (x,§) such that f,/(y) > ¢ for all
y € B(x,6). Since supyey fo(y) = fo(y), we know that sup,c4 fo is LSC.

(SC9b)  f, is USC implies that — f,, is LSC; then sup,c4(— fo) = —infyeq fo iS
LSC. Hence, infyc4 fo is USC.
O

» EXERCISE 201 (7.1.2). Let E C RF.
a. E isopeniffig is LSC.

b. E is closed iff 1g is USC.

c. We have g = lgo and g = 1.

PROOF. O



THE L? SPACES

8.1 L? SPACE: THE CASE 1 < p < 400

» EXERCISE 202 (8.1.1). Pick A, B € £P. Then A + B € £ and |A + B, <
1A, + 1%B]]-

PROOF. Leth € A + B, so that h = f + g for some f € A and g € B. Now

[ =(f1s +g|P)P/p < [(/ Ifl”)l/p +(f |g|l’)w}p < +o0

by Minkowski’s Inequality, and hence A + 8 € £7. The above display also
implies that
j2 + B2 < (120, + 1Bl,)” .

Le, [0+ B, < [Allp + 1Bl =

» EXERCISE 203 (8.1.2). Prove the Cauchy-Schwarz inequality

k n
< ‘/Zai‘/Zbi.
k=1 k=1

PROOF. Let p = p’ = 2; then Holder’s Inequality becomes

Vfg

Let 2 = {wy,...,w,}, F = 2%, u be the counting measure, f (v;) = a;, and
g (@) =bi. Then | [ fg| =13, co [ (@) g (@) | =|Xk—; arbel,

1/2
1/2 n
1/, = (/ |f|2) = (Z |f(wl-)|2) = /> at
w,—e.Q k=1

n
Zakbk
k=1

< 1f 12 gl (8.1)

113
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and similarly for |g|,. Put these into (8.1) and we get the Cauchy-Schwarz
inequality. See Shirali and Vasudeva (2006, Theorem 1.1.4) for a direct proof.
]

» EXERCISE 204 (8.1.3). Let1 < py,..., pp < 400 besuchthatl1/py+---+1/p, =
1, and pick functions f; € LP,..., f, € LP». We wish to generalize Hélder’s

Inequality by showing that [1;_, fi € L' and | [TT/—; fil <TTi=i 1fillp; -

a. Show first thatay ---a, < a?'/py + -+ + ak"/ pn by generalizing the calculus
result given in the section. [Here 0 < aq,...,a, < +00.]

b. If | fillp, =0 or...or | fullp, =0, the claim is trivial.
c. Use (a) to prove the claim when || fip, = - = || fallp, = 1.

d. Prove the claim when || fillp,..... || f2llp, are positive.

PROOF. (a) This is the arithmetic mean-geometric mean inequality, or AM-GM
inequality, for short. Since In is concave, we have

n n 1

Zilnxi <In Z—xi ,

i1 Pi iz Pi

i.e.,
n n X n n X
pi | < il 1/pi il
In Hxi <In Zpi e l_[xi S
i=1 i=1

i=1 i=1
Let xil/p" = a;, then x; = " and we have the desired result.

(b) Let || fi|l,; =0; then f; =0 pn-a.e.on £2. But then [[/_, f; =0 u-a.e. on £2,
hence [7_, fi € L' and the desired inequality in this case is actually the trivial
equation 0 = 0.

© If | fillp, =--- = I fullp, = 1, observe that
n n n 1 A
[1Ai@]|=T]lfi)l< Z;Ifi(w)l’” Ve,
i=1 i=1 1

i=

by the Am-GM inequality. Therefore,

n “ 1 o1
JIT <o 1A = Al = 1.
=l i1 Pi iz Pi

This shows that []/_, f; € L.

(d) Define f;* = fi/| fill,, foranyi =1,...,n. We have

(J1aer) " = (framanr) ™ - (Wﬁmm)lm -
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which shows that f* € L? and |f*|, = 1. By (o), [[i=, f;* € L' and
ST, fFl < 1. Since TTi, fi = (TT=y 1 fillp;) (TTi= /i*), we have

JITLA = (Tt ) [ITTA7] < TT0A D <+
i=1 i=1 i=1 i=1

giving [/, fi € L', and

‘/]—[ﬁ < Hﬁ- “TTAl <110 o
=1 i=1 1 i=1

» EXERCISE 205 (8.1.4). We have equality in Hélder’s Inequality iff there are
nonnegative numbers A and B, not both zero, with A|f|? = B|g|?’ u-a.e. on
2.

PROOF. We have equality in Holder’s Inequality iff

AL gl 1P 1 gl
171, Tel — 2171 7 el

pu-a.e. on 2,

which holds iff the AM-GM holds equality, that is,

/17 lgl”
J2 ’
1715 gl

p-a.e.on £2. O

» EXERCISE 206 (8.1.5). Given f € L” [1 < p < +oc], there is g € L?" with
Igllyy = 1and [ fg =11,

PROOF. Let g = (f/ | f||p)P—1. Then

fre = /'(u}ﬁu [‘Ilfll,,

i.e, ||gll,» = 1. We also have

p
=] ”]',11',7,_1 £, g

» EXERCISE 207 (8.1.6). We now explore conditions for equality in Minkowski’s
Inequality. Let f,g € L?.

T
p_ Wy _
p [ 1117 = T

IIfllp

a. When p = 1, | f +gl, = |flp + lgll, iff there exists positive F /B*-
measurable h > 0 defined on 2 with fh = g n-a.e.on{w € 2 : f(w)g(w) #
0}.

b. For 1 < p < 400, equality obtains iff there are nonnegative real numbers A
and B, not both zero, such that Af = Bg p-a.e. on £2.
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PROOF. (@) When p = 1, we have

|u+mh=wm+mm<=>/v+m=]lﬂ+/m
¢:>/Uf+gh4ﬂ—m0=0

= |f+el=I1fI+]gl n-ae
< 3% /B*-measurable i > 0 defined on 2

With fh = g j1-a.e. on [f(w)g(@) # 0]
(b) When 1 < p < oo, we have
I+l = [ 15 + b
— [1r +el-1f + gl
< [1rris velr s [1gl1r + g

k%
S lp - ILf + g7 e + llgllp - IS + g7l
= (171l + Iglp) ILf +gl5~"

Hence, the Minkowski’s Inequality holds with equality iff (x) and (*x) hold with
equality. The result follows from Exercise 205 that (xx) immediately. O

» EXERCISE 208 (8.1.7). Let1 < p,q,r < 400 be such that1/r =1/p + 1/q. Let
felLPandg e L. Then fg e L" and || fgl, < /1, glg-

PROOF. Let p’ = p/r and ¢’ = g/r. Then 1/p' + 1/q’ = r/p +r/q = 1. Let
f*= f"and g* = ¢g". Then

/If*l” - / frIpl = / 1f17 < 400,
/|g*|q’ - [ g7l = / 1817 < +oo.

ie., f* e L? and g* € LY. By the AM-GM inequality, for any w € £2,

and

* * * * 1 * / 1 * ’
|f*(@)g* ()] = |f* ()] |g" ()] < ?If (@)]? +?|g (@)
Integrate the left and right sides of the above display, obtaining

L1 SV B
/|fg|’=/|fg|s;[|f |P+?/|g|q<+oo,

that is, fg € L” and f*g* € L. Then by Holder’s Inequality, we have

g Il < 1Lf " Mlpr g™ llq:
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therefore,
/|fg|’ =/|f*g*| < (/|f*|p/)1/1f ([ |g*|q/)1/q/
1/p 1/¢7"
_ [(/w’) (/ Igl") }
= (171, lgla) "
that is, || fgll, < /1, l<la- .

» EXERCISE 209 (8.1.8). If1 < p < +o0o, Minkowski’s Inequality gives||| f ||, — lIgllp| <
If —gll, forevery f.g € LP.

PROOF. Write f = (f — g) + g. We first show that f — g € L” when f,g € L”.

Jir =g < [+ [1glr < +o0

Then by the Minkowski’s Inequality, we have

Il =1 —8) +gllp < 1 —gllo + llgllp-

Rearrange the above display and we get the desired result. O

8.2 THE RIESZ-FISCHER THEOREM

» EXERCISE 210 (8.2.1). Return to the formal definition of L?.
a. Write out the formal definition of convergence in L?.

b. State and prove the formal version of the Riesz-Fischer Theorem.

P
PROOF. (a) Let , F1.&2,... € LP. {Fn},—, converges to F in L?, F, £ &, if
and only if lim,, |§, — &ll, = 0.
(b) Straightforward. |

» EXERCISE 211 (8.2.2). Let (X, p) denote a generic metric space. Let €,(X)
denote the collection of continuous real-valued bounded functions on X. For
f e Cy(X), write || f|| = sup,ex | f(x)], the usual supremum norm. Then €, (X)
is a Banach space.

PROOF. Let {f,} be a Cauchy sequence in €,(X). Then for every ¢ > 0, there
exists N, € N such that for all n, m = N, we have

”fn - fm” = Sg}() |fn(x) - fm(X)| < &.
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Therefore, for every x € X, we get | f,(x) — fin(x)| < ¢ for all n,m = N,; that is,
{ fx(x)} is Cauchy in R. The completeness of R yields

Je(x) = f(x),

for some f(x) € R. Now fix n = N,. Since | - | is continuous, we get
o) = F@)] = M| £,(x) = fn(@)] < &
Hence, for every n = N, we have

If = fall = Sg}l?lfn(X)—f(X)l <e.

What has been just shown is that || f — f,|| — 0 as n — oc. Note that this
implies that f, — f uniformly on X. Thus, f is continuous since every f, is
continuous. Also,

1A =<1 = full + I full < o0.
Hence f € €,(X) and so €,(X) is a Banach space. |

» EXERCISE 212 (8.2.3). A function f on R¥ is said to vanish at infinity iff
f(x) = 0 as ||x|| = oo. Show that the collection of continuous functions on R¥
that vanish at infinity is a Banach space relative to the supremum norm given
in the previous exercise.

PROOF. Let €(R¥) denote the collection of continuous functions on R that
vanish at infinity. We use an alternative definition (Rudin, 1986, Definition
3.16): A complex function f on a locally compact Hausdorff space X is said to
vanish at infinity if to every ¢ > 0 there exists a compact set K € X such that
| f(x)] <eforall x ¢ K.

Let {f,} be a Cauchy sequence in €,(R¥), i.e., assume that {f,} converges
uniformly. Then its pointwise limit function f is continuous. Given ¢ > 0,
there exists an n so that || f, — f|| < &/2 and there is a compact set K so that
| fn(x)| < /2 outside K. Hence | f(x)| < ¢ outside K, and we have proved that
£ vanishes at infinity. Thus €,(R¥) is complete. |

» EXERCISE 213 (8.2.4). Let €.(R¥) denote the collection of continuous functions
on R¥ with compact support, and again consider the supremum norm. This
collection is dense in the collection in the previous exercise, but it fails to be a
Banach space.

PROOF. Refer Hewitt and Stromberg (1965, §7) and Rudin (1986, p. 69-71). The
support of a (complex) function f on a topological space X is the closure of
the set {x € X : f(x) # 0}.

Given f € € (R¥) and ¢ > 0, there is a compact set K so that |f(x)| < ¢
outside K. Urysohn’s lemma (Rudin, 1986, 2.12) gives us a function g € €, (R¥)



SECTION 8.3  L¥ SPACE: THECASEO0 < P <1 119

such that 0 < g < 1 and g(x) = 1 on K. Put h = fg. Then h € €.(R¥) and
| f — k| < e. This proves that €.(RF) = €, (R¥). 0

» EXERCISE 214 (8.2.5). A sequence {f,} in L? may converge in pth mean to
some f € L? but at the same time fail to converge pointwise to f at any point in
2. Therefore, convergence in L? does not in general imply convergence i -a.e.

PROOF. Consider ([0, 1], B[0, 1], A). Consider the sequence
Ti0,1/215 12,11 Tjo,1/41> V[1/4,1/215 W1y2,3/41: U3/4,10 Djo,1/8]s - - -

Then f, LS 0, but obviously f(x) 4 0 for all x € [0, 1]. |

8.3 L? SPACE: THE CASEO < p <1

» EXERCISE 215 (8.3.1). Let f,g € L?, where0 < p < 1. We know that f+g € L?
by the Minkowski-like Inequality result given earlier.

a. We have (a + b)? < a? + b? forevery0 < a,b < oc.

b. From (a), we have [ |f +g|? < [|f|? + [ |g|?.

c. If we write || f — g||5 for the distance between f and g, then this distance
function is truly a metric, if we identify functions equal |1 -a. e. on 2.

d. Writing || f — gll, for the distance between f and g does not define a metric
onL?.

PROOF. (@) If 0 < a = b < oo, we have
(a +b)? =2Pa? <24 =a? + b?.

Next we assume that 0 < a < b < co. Since 0 < p < 1, the function x? defined
on (0, o) is concave. Write b as a convex combination of ¢ and « + b as follows:

a b—a
b-;a-i— 5 (a+b).
Then ) » )
P — E —a <g p —a p.
b (ba—i— 5 (a—i—b)) \ba + 5 (a + D)?;
that is,

bP+1 _ap+1 _ (b _a)(ap + bp) .
b—a h b—a N
where the second inequality holds since

(a+b)? < af +b?,

(b —a)(@? + bP) = bP+! —qP+! 4 g (ap—l - b”‘l) > pPrl _gp+l,
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(b) It follows from (a) that

[ir+er< [asieienr < fasr+ign = [1717+ [1a07
(c) We use the informal definition. To see |/ — g||7 is a metric on L?, we need
to verify:

o 0<|f—gl} <ocforevery f,g € L?.Itis true because by (b):
o<if gl = [17-gP< [1517+ [1gr < o0

e |f—flp =0foreach f € L?,and || f — g5 = 0 forces f = g p-a.e. on
£2. The first claim is obvious, so we focus on the second one. If || f — g[|; =
J1f—gl?=0,then|f —g|?=0pu-a.e,then f =g p-a.e.

o | f—glf =llg— fI|5 for every f,g € L?. This is evident.
o | f—hlh <|f—2glh+llg—h|} for every f,g,h € LP. It also follows from
(b):
1 =hlg = [ 1f =07 = [ 1 =)+ @ =P

S/ﬂf—g%Hg—MV

<[1r-err+ [1g-nr

=f —slly +llg —Al7.

Thus, || f — gl is @ metric on L? when 0 < p < 1.

(d) It follows from the Minkowski-like equality that the triangle inequality fails
for | f —gll, when0 < p < 1. O

» EXERCISE 216 (8.3.2). Consider the space 2 = (0,1) and let 0 < p < 1. Write
B for the Borel subsets of (0, 1), and write A for Lebesgue measure restricted to
B. We will show that there exists no norm || || on L? such that limy || fx|, = 0
forces limy || fx|| = 0.

a. Suppose that such a norm || || exists. Then there is C = 0 such that || f| <
C|fll, foreach f € L?.

Pick the minimal such C from (a).

b. Thereis0 <c <1 with [5|f|? =[£I =1 [ 1fI7.

c. Let g = fl, andh = flq, so that f = g+ h. Then ||g|, = |hll, =
2712 fllp and || £ < llgll + Al < Cligll, + Cllkl, = C x2' V2| f| . Use the
minimality of C to obtain C < C2'~V/?, and deduce C = 0.
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d. Conclude that || f|| = 0 for every f € LP, and hence the assumption in (a)
entails a contradiction.

PROOF. (a) Suppose that for every C = 0 there is f € L? with || f|| > C| f|l,-
Then for every k € N thereis f; € L? with || fi|| > k|l fi |- Define g = fi/ll fel
for each k € N. Then |gx|| = I and for every k € N

1= llgkll > kllgllp.

ie, |lgkll < 1/k. Hence, limg ||gk|, = 0, so limg ||gx| = 0 by the assumption
that such a norm exists. But limy, | g || = 1.

(b) The function fox | |7 is continuous and increasing with respect to x. The
claim follows immediately.

(0) It follows from (b) that [lg|7 = [[A]Z = LI £, ie.,

Igly = ll, =272 f .

Since || || is a norm, we have
1A= llg + Al < llgll + 121l < Cliglp + Cllhl, = C2'7V2| £l

The minimality of C implies that C < C2!~/?, Hence, C = 0.

(d) By (a) and (c) we get || f|| < 0|l f ||, = 0; thatis, || f|| = 0 for all f € L?. But
then || || is not a norm. A contradiction. O

» EXERCISE 217 (8.3.3). Let 0 < py < oo and let f € LP° be nonnegative. Let
Ei={weR: flw=0},E={weR:0< flw)<1},and Ez; ={w e 2:
f(w) > 1}.

a. lim, o+ [, [f17 = p(E2).

b. lim, o+ [5, |f17 = pn(E3).

c. lim, o+ [|f17 = p{w € 2: f(w) # 0}).

PROOF. (a) The function x? decreasing with respect to p when 0 < x < 1. By
MCT we have

tm [ 1717 =[ lim |f|”=/Ezl=u(Ez).

p—0t E, p—>0t
(b) It follows from DCT.

(c) Let {p,} be a decreasing sequence converging to 0. Then

tim [ 117 = lim ([E e f Iflp) =tim [ 1517+t [ 1gp

= u(E2) + u(Es)
= plf(@) # 0]. O
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» EXERCISE 218 (8.3.4). Say u(2) = 1, and let f € L' be nonnegative. Write
log0 = —o0.

a. [logf <log/ fiflog f e L.

b. If log f ¢ L', then [(log f)* < oo under the assumption f € L', so it must
be the case that [(log /)~ = oco. Conclude that even if log f ¢ L', [log f
still exists and equals —oo, giving the inequality in (a).

c. (f"—1)/r decreasestolog f asr — 0%, hencelim,_ o+ ([ f"—1)/r = [log f.

d. Verify the inequalities

%[/f’—l}B%log/f’?%/logf’:/bgf.

e. Conclude thatlim,_, o+ || f ||, exists and equals exp([log f).If log f ¢ L', this
is interpreted as lim,_ o+ || f |l = 0.

PROOF. @) If || f|ly = [ f =0, then f = 0 pu-a.e.. Hence, [logf =log [ f =
—oo. Now assume that || f||; > 0. Since log x < x — 1 when 0 < x < oo, we have

Jrosrr < [ (1) - ||ff]||€1 - =

[ 1087 <1081 =108 [ 1.

hence,

(b) Observe that

0 it f(w) €[0,1]

log f)"(w) =
(log /)™ () glogf(w) if f(w) € (1, 00].

Also, log f(w) < f(w) —1 when o € (1,00]. Since f € L', we have [ f < oo.

Thus,
Jaogrt=[ rgr<| (f-n<ox.
[f(@)>1] [f (@)]>1
Therefore, it must be the case that [(log /)~ = oo, and so

[ 1087 = [0g 17~ [t0g. )7 = ~oc.
(c) Fix an arbitrary w € 2. We have

lim —f(a)) -1
r—>0+ r

= log f(w);

hence, (f" —1)/r | log f as r — 0T, and consequently,

(f—fr_l)T(f—logf) asr — 0%,

r
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It follows from the MCT that
. fr—1 _/ Y /f’—l
g [ (1= 5) = [ [
. fr=1
= — |1
[ m s
— [ s~ [108 .

Since [ f < oo and u(£2) = 1, we get the desired result.

(d) The first inequality follows from the fact f” > 0 and under this case
log f" < f" — 1. The second inequality follows from (a) and (b).

(e) O

8.4 L? SPACE: THE CASE p = +00

» EXERCISE 219 (8.4.2). Consider the o-finite measure space (2, ¥, iv).

a. f € L* iff there is a bounded ¥ | B*-measurable function g on 2 such that
f=gpn-a.e onf2.

b. If f € L, then | f ||oo = Inf{sup,ceo |g(®)| : g is as in (a)}.

PROOF. (a) First assume that there exists a bounded % /8*-measurable func-
tion g on £2 such that f = g u-a. e.. Then there exists M > 0 such that |g|] < M.
Hence, | f| < M p-a.e; thatis, esssupf < M, and so f € L.

Now suppose that f € L. Define g on §2 by letting

flw) if |f(w)] < esssupf
0 otherwise.

g(w) = {

This g is bounded, ¥ /8*-measurable, and f = g u-a.e..

(b) We first show that sup,cq |g(w)| = || f |l for all g as in (a). Suppose that
Supyen |g(@)] < || flo- Define

A=

w e 2:[flw)]> sup Ig(w)l}-

Then wu(A4) > 0; for otherwise || flleo < SUPyepo |g(@)]. But which means that
f >gon Aand pu(A) > 0. A contradiction. This shows that

inf {sug lg(w)| : g asin (a)§ Z | f lloo-
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We next show the reverse inclusion. Let B := {w € 2 : | f(w)| < || f|lo}; then
Ww(B€) = 0. Let ¢ = f1p. Then g is bounded, ¥ /8*-measurable, and f = ¢
u-a.e.. Furthermore,

sup [(f18)(@)] < || flloo-
wes

This prove that || flleco € {SUDPyep : |g(@)] : g asin (a)}, and the proof is com-
pleted. O

» EXERCISE 220 (8.4.4). Quickly prove the p = oo version of Holder’s Inequality.

PROOF. Let f € L° and g € L!. By Claim 1 we get

| fg| <esssupfg p-a.e.

Observe that
esssup fg = [glesssup f = |g| - || [ lloos

so we have

/UMS[MWUM=WMMMM<&
Hence, fg € L' and | fgll1 < | flloollgll1- O

» EXERCISE 221 (8.4.5). Let (£2, ¥, ) be such that u(£2) < oo, and let f denote
a bounded ¥ | B*-measurable function on S2.

a. Forevery 1 < p < oo we have f € L?, hence || f||, exists.
b. limy oo [ fllp = I flloo-

PROOF. (a) Since f is bounded, there exists 0 < M < oo such that |f| < M.
Then esssup f < M; that is, || /|| exists. Now consider 1 < p < co. We have

[ < [mr =mru@) <o,

ie., || f|, exists.

() If f =0p-a.e,then | f|, = I[flloc =0 for all p, and the claim is trivial.
So assume that f # 0 on a set of positive measure, so that || f|. > 0. We
first show that liminf, o || fllp = || flleo- Let # € (0, || f|loo)- By the Chebyshev’s
Inequality (Exercise 224) we have

1S llp = tull f(@)] = 1"
If u[] f(w)| = t] = oo, the claim is trivial. If u[| f(w)| = t] < oo, then
liminf || f |, = liminfzu[| f(0)| = 1]V = lim ru]| f(w)| = )7 = 1.
p—>0 p—>0 p—>00

Since t € (0, || f ||o) is arbitrary, we have lim, o || fll; = || f [l co-
We next show that limsup,_, | fll < Il .flleo- It follows from (a) that || f|lco
exists, and so | f| < || flloo 1 -a.e.. Then
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nﬂg=[vws/wmfwﬂ&mm;
that is, | fllp < ||/ leoit(2)!/7. Then
limsup [ £ [}, < [/ .
p—>00

Summarizing the findings, we have lim,_o || fll, = || f llco- O

8.5 CONTAINMENT RELATIONS FOR L? SPACES
» EXERCISE 222 (8.5.1). Consider the measure space (R, B,1). Let1 < p < g <
oo, and let r be such that 1/q <r < 1/p.

a. Define f on R by writing f(x) = x "1(,1)(x) for each x € R. Then f € L?
but f ¢ L4. Therefore, we do not in general have L? C LY when p < q.

b. Let g(x) = x7"1(1,00)(x) for every x € R. Then g € L? but g ¢ L?. Therefore,
we do not in general have LY C L? when p < q.

PROOF. (@) We have —rq < —1 < —rp. Hence,

1

1-rp 1
/VV=/ =g = < o0,
©,1) 1—rp o 1—rp
1
/|f|q=/ x = X! = o0;
0,1) l1—rg 0
thatis, f € L?,but f ¢ L49.
(b) We have
1-rq o0 1
[Igl" =/ = $ = < o0,
(1,00) 1—rg . rqg—1
o0
[|g|p:/ x P = X = o0;
(1,00) l—rq|,
hence, g € L7 but g ¢ L?. O

REMARK (Folland 1999, p.185). Thus we see two reasons why a function f may
fail to be in L?: either | f|? blows up too rapidly near some point, or it fails to
decay sufficiently rapidly at infinity. In the first situation the behavior of | f|?
becomes worse as p increases, while in the second it becomes better. In other
words, if p < ¢, functions in L? can be locally more singular than functions in
L4, whereas functions in L? can be globally more spread out than functions in
L?. See Figure 8.1.
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FIGURE 8.1. f? and f9.
» EXERCISE 223 (8.5.2). Let0 < p <r <oo. Then L? N L*® C L", and for any
feLPnL® wehave| fl. </ fl57".

PROOF. Let A :={w € 2 : |f(®)| < || floo}, SO that u(A¢) = 0. Then
/|f|’=/A|f|'=/A|f|'—P|f|P < ||f||2$"/A|f|”= AP 112 < oo

Hence, f € L" and || /1l < | fI5"" 11 /lls”"" 0

» EXERCISE 224 (8.5.3). Forany 0 < p < oo and0 < M < oo we have

1/
(/ Ifl") " Multw e 2: 11 @) = My,

PROOF. Let Ey :={w € 2 : |f(w)| = M}. Then
||f||,’,’=/|f|1’>f IfI"BM"/ 1 = MP?p(Enr):
Em Em

that is, u[| f(w)| = M] < (|| f ],/ M)?. O

» EXERCISE 225 (8.5.4). Let 0 < r < oo and assume that f € L™ N L, so
that f € L? for every r < p < oo by Exercise 223. We wish to show that
lim,—o0 || fIl, = || lloo- Follow this outline:

a. Ignoring the trivial case where f = 0 pu-a.e. on £2, let f # 0 on a set of
positive measure, so that | f e > 0. Show that liminf, . || fll; = || f lco-

b. Show thatlimsup,_, || 1, < [ flco-

c. Put (a) and (b) together to prove the claim.

PROOF. (@) Pick an arbitrary ¢ € (0, f|oo)- It follows from the Chebyshev’s
Inequality (Exercise 224) that
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1flp =t ullf (@) =07

If uf|f(w)] = t] = oo, then | f|l, = oo for all p, and the claim is trivial. If
ullf(@)] = 1] < oo, then limy .0 ul] f(@)| = 1]V7 = 1 and so iminf,—co | £, >
t.Since t € (0, f|loo) is chosen arbitrarily, we get

liminf || £, = 1| /e (8.2)
p—00

(b) By Exercise 223 we have || f|l, < |fI/7llf]%"/?, for every p € (r.c0).
Hence,
limsup || £, < 1/ lloo- (8.3)
p—00

(c) Combining (8.2) and (8.3) we get

1/ lleo < liminf || f]l, < limsup || £, < [[f oo
p—>o0 p—>00

Hence, lim, oo | /I, = [1/ lloo- O

» EXERCISE 226 (8.5.5). Let u(2) = 1 and 1 < p < g < oo. Show for arbitrary

f that 1 1
[iri<([1rr) " (fire) " < esssupy.

sothat || fll < 1fllp < 1/ llg < 11/ loo-

PROOF. It follows from Claim 1 and the assumption that ©(£2) = 1. |

8.6 APPROXIMATION

8.7 MORE CONVERGENCE CONCEPTS

» EXERCISE 227 (8.7.1). Prove the following simple claims.

a. Let { f,}°2, denote a Cauchy sequence in L?, where 0 < p < oo. Show that
{fn}o>, is a Cauchy sequence in measure: for every e > 0 and § > 0 there is
N € N such that for every n,m = N we have u({w € 2 : | fn(®) — fm(®)| >
8} < e.

4
b. Let f, f1, f>.... € L? and suppose that f, L_) £, where0 < p < oo.Ifg € L,
L?
then fg, fig, f>g,... € L? and f,g — fg.

PROOF. (a) Choose arbitrary ¢ > 0 and § > 0. It follows from Chebyshev’s
Inequality that

Ifn = fmllp

wll fr(@) = fm(w)| = 8] < —

)
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Let &/ = ¢!/7§. Then there exists N € N such that || f, — fin|, < & whenn,m = N
since { f,} is Cauchy in L?. Hence, when n,m > N we get

p

)
HlLfa(@) = fu@)] 2 8] < <o = .

(b) We have
T =/|fg|p =/|f|”|g|” $/|f|pllg||§o - IIgIIé’o/IfI” —1£121g12,
< o0;

thatis, fg € L?. Similarly we can show that f,g € L? for all n € N. Finally,
[ thag = 1ot = [ 1s = 117161 = ligly [ 15— 717 >0

. L?
since f, — f. O

» EXERCISE 228 (8.7.2). While convergence in pth mean implies convergence in
measure, it is not the case that convergence in measure implies convergence in
pthe mean.

PrROOF. Consider the probability space ([0, 1], Bjo,17. 4), where A is Lebesgue
measure and set

Jo =2"T0,1/n)-
Then
limA( f, — 0] > &) = lim A(0, 1/n) = 0.
n n

However,

/|fn|1’ = 2" /0 > .

E—

p
FIGURE 8.2. f, al 0, but f;, #—> 0.
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Thus, convergence in measure does not imply L? convergence. What can go
wrong is that the nth function in the sequence can be huge on a very small set
(see Figure 8.2). O

» EXERCISE 229 (8.7.3). It is possible for a sequence { f,}5>, in L? to converge
u-a.e. to some f € LP but not in pth mean. That is, convergence i -a.e. does
not force convergence in pth mean.

PROOF. Consider the setting in the previous exercise again. O

» EXERCISE 230 (8.7.4). It is possible for a sequence { f,}5°, in L? to converge
in pth mean to zero, but { 1,132, converges at no point of 2.

PROOEF. Consider ([0, 1], Bjo,15, A). Set

i =Tp,172] fo=Tu.
f3 = To,1/31, Ja = T1y3,2/3) fs = Tp/310s
fo = To,1/41-

For every p > 0,

[1ar = [15r =3,
[ = [isr = [15r =3,
[ =5

LP
So [| fu|? — 0 and f, —> 0. However, { f,} converges at no point. O

» EXERCISE 231 (8.7.5). It is possible to have functions f, f1, f>,... € LP1 N LP2
such that f, A, f but f, ﬁ f.

PrOOF. Consider ((0, 00), B(0,00), A)- Set
fn = n_l]](n,Zn);
see Figure 8.3. Then

n —
[ 1htr = 2 =,

L?
The sequence {n'~?} converges if p > 1, and diverges if p < 1. Thus, f, — 0
when 1 < p < oo, but || f,|; fails to converge to 0. |

8.8 PRELUDE TO THE RIESZ REPRESENTATION THEOREM
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9.1 THE RADON-NIKODYM THEOREM, PART I

» EXERCISE 232 (9.1.1). In the definition of an additive set function, show that
the series Y ;> | ¢(A,) must converge absolutely.

PROOF. Observe that | J;2; 4, = Uy~ 4n, for every rearrangement {n;}%
of the positive integers, hence both Y 7> | ¢(4,) and Y =, ¢(Ay, ) should be
defined and equal, that is, the series is unconditionally convergent. By the
Riemann series theorem, it is absolutely convergent. O

» EXERCISE 233 (9.1.2). In Claim 4, quickly verify that ¢~ is a finite measure
with support A™.

PROOF. For all A € ¥ we have A N A~ C A~, and the negativity of A~ with
respect to ¢ implies that ¢~ (4) = —¢p(4A N A7) = 0. Therefore, ¢~ is nonnega-
tive. Next, ¢~ (@) = ¢(@) = 0. We now exhibit countable additivity for ¢~. Let
{A,}32 , denote a disjoint sequence of ¥ -sets. Then

o0 o o

e U] ==l U4n|nda | =—|J@na)
n=1 n=1 n=1
o
==Y ¢AunAT)
n=1
o0
=Y [~e (4, n 4]
n=1
o0
= Z‘P_(An)
n=1
This shows that ¢~ is a measure. Since ¢~ (2) = —p (A7) € R, ¢~ is a fi-
nite measure. To see that A~ is a support of ¢~, observe that ¢~ ((A‘)c) =
(A7) NA7)=—p(@) =0. O

131
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» EXERCISE 234 (9.1.3). Suppose that (AT, A~) and (B*,B~) are Hahn de-
compositions with respect to an additive set function ¢. Then ¢ (ATABT) =
9 (ATAB7) =0.

PROOEF. We first do the set operations:

ATABY =AY UBT) ~ATNBT)=UATUBT)~(A“NB™)
=ATUBY)~ (A" UB™)"
=(ATUB")N(A UB)

- (A+ N B—) U (A— n B+),

and (AT NB~7)N (A~ NB*t)=g.Since At N B~ C AT, we have ¢ (AT NB7) =
0; since At N B~ < AT < B~, we have ¢ (AT NB~ S AT) < 0; hence,
(ATt N B~ c AT) = 0. Similarly, ¢ (A" N BT) = 0, and so ¢ (ATABT) = 0.
Using this way, we can also show that ¢ (A"AB™) = 0. O

» EXERCISE 235 (9.1.4). The Jordan decomposition of an additive set function ¢
is unique.

PROOF. Let (41, A7) and (B™, B~) denote Hahn decomposition of £2 with re-
spect to ¢. Let ¢ (E) = ¢ (EN A™) and ¢ (E) = ¢ (E N BT) for every E € ¥;
define ¢ and ¢ similarly. Then ¢ = go;f — @ is the Jordan decomposition of ¢
relative to the Hahn decomposition (4", 47) and ¢ = ¢# —¢jp is the Jordan de-
composition of ¢ relative to the Hahn decomposition (B*, B~). We now show
that ¢ = ¢ and ¢; = ¢p. For any E € ¥, we have

of (E) :gp(E mA+) = go(E N (B+ U B—) mA+)
=<p(EﬂA+ﬂB+)+(p<EﬂA+ﬂB_)
=<p(EﬂA+ﬂB+),
where ¢ (EN AT N B~) =0since: (i) ENATNB~ C A" implies that p(EN A+ N

B7) = 0;(i)) ENAT N B~ < B~ implies that ¢ (E N At N B™) < 0. Similarly, we
can show g3 = ¢ (EN AT N B*) = ¢} and ¢ = ¢5. 0

» EXERCISE 236 (9.1.5). This problem relates somewhat the notion of absolute
continuity with the familiar -6 concepts.

a. Let u and v denote measures with common domain ¥ and such that v is
finite. Then v < u iff for every ¢ > 0 there is § > 0 such that j1(A) < § forces
V(A) <e.

b. The claim in (a) is not necessarily true if v is infinite, since the conditionv < u
does not imply the ¢-6 condition.
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PROOF. (@) Suppose first that for every ¢ > 0 there is § > 0 such that u(4) < §
forces v(A4) < e. We desire to show that v <« u. If u(A) = 0 and ¢ > 0 is given
(and the corresponding § is found), then u(A4) < §, hence v(A) < . Since ¢ > 0
is arbitrary, it follows that v(4) = 0, whence v < p.

To show the other direction, suppose that there is ¢ > 0 such that for every
§ > 0 there is a set A € ¥ with u(4) < § and v(A4) = &. In particular, there is
e > 0 such that there is a sequence {4,}>°, of #-sets with u(4) < 1/n? and
v(4) = ¢ foreachn € N. Let A = lim 4, = N2, UX_, 4. For every n € N we
have

o0 o0 o0 1
p@<p| UAm|< 2 nldn) < 3 —.
m=n m=n m=n

so u(A) = 0. However, we also have
v(A) =v (EA,,) >limv(4,)=¢>0

by property (M10) in Section 2.2. This shows that there is A € ¥ such that
uw(A) =0and v(A) > 0,s0v K u.

(b) Let 2 = Z, let ¥ = 29, let v denote the counting measure, so that v
is infinite, and let u be such that u ({n}) = -5 for each n € Z, so that y is
finite. |

» EXERCISE 237 (9.1.6). Let u, v, vy, and v, denote measures, each having com-
mon domain ¥ .

a. Ifvy Luandvy, L pu, thenvy + vy L p.

b. Ifvi €« w and v, K u, then vy + vy K .

c. Ifvi < pandv, L pu, thenvy L v,.

d. If v puandv L u, thenv = 0.

e. If uw L u, thenu = 0.

f. If u and v are o-finite withv < u, thenv({w € 2 : S—Z(a)) =0}) =0.

PROOF. (@) Let vi L w and v, L u. Then there exist D; € ¥ with vy (D) =
p(D$) =0, and D, € F with v, (D2) = p(D5) = 0.Let D = Dy N D,. We show
that D supports u and D€ supports v; + v,. As for u, we have

p (D) = pu(Df U DS) < u(DS) + pu(D5) = 0.
As for vy + vy, we have
(vi +v2) (D) =v1 (D1 N D2) +v2(D1 N D3) < pp (D1) +v2(D2) =0.

Therefore, (v{ + v3) (D) = u (D) = 0, that is, vy + vy L u.
(b) If u(A) = 0, then (v1 + v2)(A) = v1(A4) + v2(A) = 0; hence, v; + v, K .
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(c) Since v, L u, there exists D € ¥ with vy (D) = u (D) = 0; since v; K
W, L (D) = 0 forces vy (D€) = 0. Therefore, there is D € ¥ with vy (D¢) =
1% (D) =0, that is, v L vs.

(d) Since v L u, thereis D € ¥ with v (D) = u (D) = 0. For any E € ¥, we
have
V(E)=v(END)+v(END)=0+0=0,

where v(EN D) =0sincev(END)<v(D)=0,andv(END°) <v(D) =0
since u (D) =0and v K u.

(e) Let v = u in (d) and we get the result.

(f) We have q
v[dv/du:O]:/ —vd/L=0. |
[dv/du=0] Ai

» EXERCISE 238 (9.1.8). Let f € L'(2, ¥, ). Define v(E) = [ f du for every
Ec¥.

a. v is an additive set function such that vt(E) = [, fTdu and v (E) =
Jg f~du forevery E € 7.

b. IfAT = {w € 2 : f(w) > 0} and A~ = AT, then (A*, A™) is a Hahn decom-
position with respect to v.

PROOF. (b) We first show (b). For every E € ¥ with E € AT, we have

o) = [ rap= [ rdu=[ ruedi= [ rrduzo

and for every E € ¥ with E C A~ we have

vy = [ sdu= [ rdu=[ ru-du=[ rau<o

Hence, (A", A7) is a Hahn decomposition with respect to v.

(a) It follows from (L6) (p. 251) that v is an additive set function. Now by part
(b) and the uniqueness of Hahn decomposition (Exercise 234), we get the de-
sired result. ]

» EXERCISE 239 (9.1.9). Let 9N denote the collection of additive set functions ¢
with domain % .

a. M is a linear space over R: fora,b € R and ¢y, ¢ € M we have ap; +byp, € M.

b. Given ¢ € M, define | ¢| = ¢T(2) + ¢~ (£2), where ¢ = ¢ — ¢~ is the Jordan
decomposition of ¢. Then | || is a norm on .

c. Is M a Banach space?
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PROOF. () It is clear that ap; + by, : F — R, and for a disjoint sequence
{A,} € F we have

(a¢1+b<pz)(UAn =a<p1(UAn +b¢2(UAn)

n=1 n=1 n=1

= Z 1(An >+wa2(A )

n=1

[ap(An) + bpa(4n)]

M8 I

3
Il
-

Me 1t

(ag1 + bp2)(A4n).

3
Il
—-

(b) Clearly, |l¢|| = 0 for all ¢ € M, and ||o|| = 0, where o(E) =0 forall E € ¥.
Now if |l¢|| = 0, then ¢*(2) + ¢~ (£2) = 0 implies that ¢7(2) = ¢~ (2) = 0.
Since ¢ and ¢~ are finite measures on ¥ (by Claim 4, p. 373), for every E €
we have o1 (E) < o1 (2) =0 and ¢ (E) < ¢~ (£2) = 0; that is,

9(E) = 9" (E) — ¢~ (E) = 0.
We finally show that the triangle inequality. Let ¢y, ¢, € . Then

o1 + @2l = (@1 + 92)T(2) + (91 + ¢2) " (2)
<o (R2) + 95 (2) + o7 (2) + ¢~ (2)
= o1l + lle2l.

This proves that (M, || ||) is a normed space. |

» EXERCISE 240 (9.1.10). Let (A1, A7) denote a Hahn decomposition of the ad-
ditive set function ¢, and let ¢ = ¢ — ¢~ denote the Jordan decomposition. We
have

¢t (A) =sup{p(E): E € ¥, E C A},
¢ (A) = —inf{p(E): E € ¥, E C A},

forevery A e ¥
PROOF. Let A, E € ¥ with E € A. Then
9(E)=@(ENAY) +o(ENAT) =¢T(E)— ¢ (E) < 9T (E) < ¢t (A).

Thus, ¢t (4) is an upper bound of {¢(E) : E € F,E C A}. We next show that
¢t (A) is actually in the former set: let E = AN At. Then E € ¥, E C A, and

9(E) = (AN AT) = 9™ (4).

We then have
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¢~ (A) = 9T (A) — p(A) = sup{p(E) : E € ¥, E C A} — ¢(A)
=sup{gp(E)—¢(A) : E€ ¥F,E C A}
=sup{—-p(A~E): Ec ¥ ,E C A}
=sup{—¢(F): Fe ¥, F C A}
=—inf{p(F): F € ¥,F C A}. O

» EXERCISE 241 (9.1.12). Let u, v, vy, v, and p denote o -finite measures having
domain ¥ . We have the following claims.

a. Ifvi K pandv, < p, thend (vi £v2) /dpu = dvy/dp £ dps/dp p-a.s. on 2.
dv _ dvd

b. Ifv < pand p < p, thenv < p and g = ﬁd—g u-a.e. on 2.

c. Ifv < pand < v, then §& = Vg, /av=0] X gujay #-2-€ 0N £2.

d. Let u € pandv < p. Thenv K u if and only ifp[g—; > 0,% > 0] =0, in

which case we have

dv 1 dv/dp
e~ lawae=0l X qud,

PROOF. (a) Since v; < p and v, < u, we get v; + v, K i, and that for every

Eef¥,
dv dv
vl(E>=/ Vg, Vz(E)Z/ &2 4,
e du E du

and
d(l)l + 1)2)
— 1= 2 4.

o1 £ va)(E) = [ S
E H

Clearly, (vi + v2)(E) = v1(E) £ v»(E). Hence,

d(vi£vy) dvy dv,

=422

du du du

(b) Let v « p and pu < p. Take an arbitrary E € ¥ so that p(E) = 0; then
u(E) = 0; then v(E) = 0 and so v <« p. Next, for every E € ¥, we have

dv d dv
W(E) = / . (E) = / Wep. and v(E) = f Tdp.
E du E dp g dp

It follows from (L14) (p. 259) that

dv dv du
V(E) = —du = ——dp;
(E) edn T Jpdpdp ™
that is, 3—; = g—l‘i?i—‘;.
(c) It follows from (b) that
& dvdp
dv  dpdv’

Therefore,
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dv q 1
@ - [du,/dv>0] X d,bL/d])

(d O

» EXERCISE 242 (9.1.15). Suppose that . and v are o -finite measures on ¥ . The
Lebesgue decomposition of v with respect to u is unique. That is, if v = vac + vg
where vy and vs are o-finite measures with vee < n and vs L pu, and if in
addition v = v}. + v, where v. and v} are o-finite measures with v). < p and
vy L w, then vae = v}, and vs = vl.

PROOF. Since vg 1 pu, there exists A € ¥ such that A4 supports vg and A€
supports u; that is,
vs(A) = u(A) = 0.

Since v} L u, there exists B € ¥ such that B supports v, and B¢ supports u;
that is,
v (B) = u(B) = 0.

Since vs(A° N B€) < vg(A4A°) = 0, and vz(4° N B€) < v{(B¢) = 0, we have that
AU B supports both vs and v. Since u(AU B) < u(A4) + n(B) = 0, we have that
(A U B)¢ supports u. Let S := AU B, so that

p(S) = vs(8€) = vg(§°) =0
We now show that v, = v}.. For every E € ¥, we have

Vac(E) = Vac(E N S) + vac(E N S) = vac(E N S) [Vac < 1]
= Vac(E NS 4+ vs(E N S°)
=v(ENS°
=V (E NS+ vi(E NS
= (ENS°)
=V (ENSY) + v (ENS)
=V (E).

/

Hence, vae = vy,

and so vs = ;. O
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PRODUCTS OF TWO MEASURE SPACES

10.1 PRODUCT MEASURES

REMARK.
(ANB)x(CND)=(AxC)N(BxD),
(AUB)x(CUD)# (AxC)U(BxD),
Ax(BNC)=AxB)NAxC),
AXx(BUC)=(AxB)U(AxC).
» EXERCISE 243 (10.1.1). Let £2; denote an uncountable set, and let ¥, denote
the o -field of subsets of 2, that are at most countable or have at most countable
complements. Let 2, and %, be identical to 21 and %1, respectively. Let D =

{(w1,w2) € 21 X 2, : w1 = wy}. We have D,, € ¥, and D2 € F;, for every
w1 € Ql anda)z S .{22, but D ¢ \771 ® 372.

PROOF. For every w;, we have D, = {w,} with w, = w;. For every w, € §2,, we
have D“2 = {w,} with w; = w,. Hence, D, € ¥, and D*2 € #;. |

» EXERCISE 244 (10.1.2). Let A C £21 and B C £2,.
a. Supposethat Ax B+ &. ThenAx B e ¥ %, iff A€ ¥, and B € #,.

b. Suppose that A x B = @. Then obviously A x B € %1 ® %5, but it is not always
the case that A € ¥1 and B € %,.

PROOF. (a) The if partis evident since 1 x ¥, C ¥; ® ¥>. Now take an arbitrary
w1 € A (such a point exists because 4 x B # @ implies that A # @). Then
(A x B)w, = B € %,. Similarly we show that 4 € ¥;.

(b) If there exists A ¢ %1, then we have 4 x ¥ = @ € ¥ ® F,. But obviously
A ¢ 7. O

» EXERCISE 245 (10.1.3). Prove the following set-theoretical facts.

139



140 CHAPTER 10  PRODUCTS OF TWO MEASURE SPACES

a. Let A1 x B; and Az X By both be nonempty. Then A1 x By C A, x By lﬁAl C A,
and B C Bs,.

b. Let A; x By and A, x B, both be nonempty. Then A{ x By = Ay x B, iff A1 = A,
and B = B,.

c. Let Ax B, Ay x By, and A, x B, be nonempty. Then A x B is the disjoint union
of A1 x By and A, x B, iff either (i) A is the disjoint union of A, and A, and
B = By = B, or (ii) A = Ay = A, and B is the disjoint union of B, and B,.

d. The “only if” parts of (a) and (b) do not necessarily hold for empty Cartesian
products. What about (c)?

PROOF. (a) The if part is automatic, so we only do the only if part. Suppose
that A; x By € A x By. If, say, A1 € A, then there exists w; € A; ~ As.
Take an arbitrary w, € B;. Then (w],w2) € A1 x By but (0], wz) ¢ A x By. A
contradiction.

(b) Using the fact that A1 X By = Ay X By iff A1 X By € Ay X B, and Ay X B, C
Ay x By, and the result in (a), we get the desired outcome.

(c) Straightforward. O

» EXERCISE 246 (10.1.5). Let 1 and %> denote o-fields on $2, and $2,, respec-
tively. It may not be the case that ¥, x %, is a o-field on 2, x £2,.

PROOF. Consider (R¥, 8% 1) and (R, 8™, A,,). Then 8% x 8" c B* @ 8. O

» EXERCISE 247 (10.1.6). Prove Claims 2(b) and 3(b) by mimicking the proofs
of Claims 2(a) and 3(a).

PROOEF. (2(b)) We show that if £ € 1 ® %>, then E“2 € ¥; for every w, € 2.
Define
D ={E € F ®F: EY? c F for every w, € $2,}.

First observe that 2, x £2, € 1 x 3 € F1 ® ¥, and (2 x £27)¥2 = £, € F;
for every w, € $£2,. Therefore, £2; x £, € D. Next, if E € D, then we have
E¢ € $1 ® ¥, and (E€)“2 = (E®2)¢ € ¥, for every w, € £2,, so that E¢ € D.
Next, if {E,} is a sequence of D-sets, then | JE, € ¥1 ® ¥, and (| En)*? =
U(E»)®2 € F; for every w, € £2,, whence | J E,, € D. Therefore, D is a o-field
on 21 x 2, and D < F ® F>. We desire to strengthen this inclusion to an
equality. To do this, let E; € ¥, and E, € %,. Then for every w, € £2, we have

E, ifw,€E
(ElXEz)wz = ! 2 2 € f1.
(%] lfa)2¢E2

This shows that #7 x > € D. Since D is a o-filed, we have ;1 ® %, € D. This
yields D = F; ® 7.
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(3(b)) We show that if f: £2; x £2, — R be #; ® %»/8*-measurable, then f®2
is #1/8*-measurable for every w, € £2,. To do this, first consider the case of
f = 1g,where E € 1 ® F5. Next, pick w; € £2; and w, € £2,. We have

(1) (w1) =1 <= lg(w1.02) =1 < (01,02) € E <= w; € E®?
& lgox(w) =1,

and hence
(1g)*? = Tgwa.

By Claim 2(b), £ € ¥ ® 5, forces E®2 € #;. Therefore, if f = 1g where
E € 1 ® ¥, we have that f“2 is the indicator function 1g«> of the #;-set
E®2, and hence is #;/8*-measurable. This proves 3(b) when f is an indicator
function on £2; x £2, of a setin | ® %>.

Next, let f =", ¢;il1g;, where Eq, ..., E, € ¥1 ® ¥, are disjoint with union

21 x £, and c¢y,...,¢p, € R, so that f is an ¥ ® ¥,/B*-measurable simple
function on £, x £,. For every w, € §2,, observe that f*2 = }"7_, ¢;1(g,)e2,
a finite linear combination of the indicator functions (1g,)*2,..., (1g,)*?, and

each of these is #;/8*-measurable by the previous paragraph. It follows that
f®2 is ¥/ 8B*-measurable for every w, € §2,. This proves the result when f is
an ¥ ® ¥»/B*-measurable simple function on £2; x £2,.

Next, suppose that f is a nonnegative ¥ ® #,/8*-measurable function on
21 x §2,. There exists a nondecreasing sequence {s,} of nonnegative finite-
valued #; ® #,/B*-measurable simple functions on 2, x §2, with lim, s, = f.
By the previous paragraph, we have that (s,)*? is #;/8*-measurable for every
wy € §25 and n € N. Since

w2
fe2 = (limsn) = lim(s,)*2
n n

for every w, € £2,, we have that f“2 is the limit of a sequence of ¥;/8*-
measurable functions and hence is itself #;/8*-measurable. This proves the
result when f is a nonnegative ¥ ® %,/8*-measurable function on £2; x £2,.

Finally, if f is a general ¥ ® %,/8*-measurable function on £2; x £,, then
the functions f* and f~, both being nonnegative ¥; ® %,/8*-measurable
functions on £, x £2,, are such that (f7)®2 and (f~)®2 are ¥,/ 8*-measurable
for every w, € £2,. Observing that

[R=T =2 =N - (f)*

for every w, € £2,, we see for every w, € §2, that f“2 is the difference of two
F1/8*-measurable functions on £2; x £2, and hence is %7 /8*-measurable. This
completes the proof. O

» EXERCISE 248 (10.1.7). The product of (R*, 8%, Ay) and (R™, B™, A,,) is

(REF™M BEH™ ) ki)
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In other words, B @ 8™ = B and Ay ® A = Ajgm.

PROOF. We first show that 8% @ 8™ = B8%*™ visa showing that 8% x 8™
Bk+m (proper subset). Consider the projection n; : RFt” — RK. Let 9% and
©@k+m e the set of open sets of R¥ and R¥*™, respectively. Endowed with
Tychonoff’ topology, 7 is continuous. Hence,

7Tk_l($k) — 7Tk_l(0((9k)) — O'(T[k_l((gk)) C U(0k+m) — $k+m.
Similarly, we have ;' (8™) € 8%*". Therefore,
8% x 8™ = 771 (8%) N, (B™) € B

To see that the containment is strict, observe that the open unit ball D in 8%*+™
cannot be written as A; x 4, with 4; € R¥ and 4, € R™, let along with 4; € 8%
and A, € B8™. From the above argument, we have

B* ® B™ = o(B* x 8™) c Bk,

Define +; = intervals of the form (—oc, x]. We have A¥+t™ = Ak x A" c 8% x
B™; hence,
BFHm = (AT C 5(BF x B™) = 8* @ 8™

It follows from Claim 4 of Section 4.2 that Agy,,(A x B) = Ax(A)An(B) for
every A € 8% and B € B8™. Since (R¥, 8%, A;) and (R, 8™, A,,) are o-finite, by
Claim 6 we have A1, = Ax ® Ap,. O

» EXERCISE 249 (10.1.8). Let £2, = §2, = [0,1]. Let ¥1 = ¥, denote the Borel
subsets of [0, 1]. Let i, denote Lebesgue measure restricted to 51, and let u,
denote the counting measure on [0, 1]. Let E = {(w1, w2) € 21 X 25 : w1 = wy}.

a. E e 371 ® 372.
b. [, 12(Ew) dpi(or) = 1.
C. f_qz w1 (E®?)dps(wz) = 0.

PROOF. (a) We prove E € ¥1 ® ¥, by showing that E is closed in [0, 1] x [0, 1]. It
is true because [0, 1] is Hausdorff (see Willard, 2004, Theorem 13.7).

(b) Since u, is a counting measure, we have

/ u2(Ep,) dpg(wr) Z/ p2(wz2) dpg (wr) Z/ Ldpi(w1) = 1.
21 2

21
(c) We have
[ p1(E“?) dpa(wz2) = / pi(wr) dps(wz) = / 0duz(w2) = 0. O
22 22 2

» EXERCISE 250 (10.1.10, Cavalieri’s Principle). If E, F € 1 ® ¥, are such that
p2(Ew,) = ua(Fo,) for every oy € 21, then uy ® ua(E) = u1 ® ua(F).
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PROOF. We have

1 ® pu2(E) =/

[ ,Mz(Ewl)d/Ll=/ 1o (Fo) dits = iy ® pa(F). O
1

2

10.2 THE FUBINI THEOREMS
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ARBITRARY PRODUCTS OF MEASURE SPACES

11.1 NOTATION AND CONVENTIONS

» EXERCISE 251 (11.1.1). Let £2; denote a nonempty set, and let A denote a
nonempty collection of subsets of §21. Let §2, denote a nonempty set, and let B
denote a nonempty collection of subsets of §2,.

a. Let B C §2, be nonempty. Then oo, xp(A x {B}) = o(A) x {B}.
b. o(A x B) = o(c(A) X 0 (B)).
PROOF. (@) Since 4 x {B} C o(+4A) x {B}, and o(+4) x {B} is a o-field on £2; x B,

we get
02,xB (A X {B}) S o(A) x {B}.

To see the converse inclusion, define
€:={Aeco(A): Ax B cogxp(Ax{B})}.

If A e A, then Ax B € Ax{B} C og,xp(4x{B}),s0o A € €; thus 4 C €. We
then show that € is a o-field. (i) £2; € €. ({i) If A € €, then (A x B)° = A°x B €
0o, xB(A x {B}), e, A° € €. (iii) If {4,}52, € €, then (J 4,) x B = |J(4, x B),
i.e,, | J A, € €. Therefore, o(4A) = €.

(b) Since A x B8 C o(A) X 0(B), we have
o(AXB) Co(o(A) xa(B)).

Next, for every B € o(8) we have o(A) x {B} = 0g,xB(A x {B}) C o(4 x B) by
(a). Therefore,

U [o(A) x {B}] S o (A x B);

Beo(8B)
that is, o(A) x 0(8) C o(A x B). But then o (o () x o(B)) C (A x B). O

» EXERCISE 252 (11.1.2). Prove the claim in the Identification Lemma for the
case where P is a two-element set, which case is really the only one that we use.

145
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PROOF. By the assumption, P = {1,2}. Then
No = Fp, X ¥p,.

Let #4; denote the collection of sets of the form Xiep, Ais where A; € %; for
eachi € D; and at most finitely many 4;’s differ from §2;. Then ¥p, = o(#4;).
Let 4, denote the collection of sets of the form Xiep, Ai, where 4; € F; for
each i € D, and at most finitely many A;’s differ from ;. Then ¥p, = o(#4»),
and

N1 = Ay X As.

Therefore, o(Ny) = o (M) iff
0 (0(A1) X 0(A2)) = 0 (A1 X A2).
The above equality follows from Exercise 251(b) immediately. O

» EXERCISE 253 (11.1.3). Prove the Identification Lemma in full generality for
the case where P is an arbitrary set.

PROOF. By definition, N is the collection of sets X pep 4D, where Ap, € #p,
for each p € P and Ap, # $2p, for at most finitely many p € P. Further, # is
the collection of sets of the form

X(X Ai),
pEP \ieDy

where A; # £2; for at most finitely many i € | J,cp D,. For each p € P, let #4p,
denote the collection of X ;. 4. We then have

o(No) =0<X ?Dp),

peEP

o(N) =0 (X AD,,> .

peP

Notice that #p, = o(Ap,) for every p € P. Thus we need to show that

o (X O'(ADP)) =0 (X :AD,,) .
DEP pEP

Generalizing the result in Exercise 251(b) yields the desired outcome. O
» EXERCISE 254 (11.1.4). Show that & is a semiring on 2.

PROOF. Given a finite subset F C I, we define & by writing

Er =X A; : A; € F; foreveryi € F

ieF
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Clearly, @ € &F. Take two sets B, C € & and write them as B = X ;. B; and
C = X,ef Ci, where B;,C; € ¥; for each i € F. Then

BﬂCZ(XB,)ﬂ(XCl) = X(B,-ﬂC,-)eSF.
ieF ieF ieF

Finally, suppose that @ # B C C (otherwise the proof is trivial). Then B; C C;
for every i € F. It is easy to see that C ~ B is a finite disjoint union of &g-
sets. O

» EXERCISE 255 (11.1.5). Let A denote a semiring on $2,, and let B denote a
semiring on 2,. Then A x B is a semiring on 21 x §2,.

PROOEF. It is evident that 4 x B contains @ and is a #-system. Now let 4; x B; C
A, X B, where Ay, A, € A and By, B, € 8. Then A; C A, and B; C By, and

(A2 X By) ~ (A1 x By) = [A1 X (B2 ~ By)] U [(A2 ~ A1) X By].

Observe that B, ~ B; may be written as a finite disjoint union |_|f-‘=1 D; of B-
sets, and A, ~ A; may be written as a finite disjoint union Ule C;. It follows
that

(A2 x Bo)~ (A x By = | Arx | || Di | |u || L] G| x B2
i=1 j=1

k )4
= || ] x Do) [ u ||| x By

i=1 j=1

Hence (A4, x By) ~ (A1 X Bp) is a finite disjoint union of sets in 4 x 8. O

11.2 CONSTRUCTION OF THE PRODUCT MEASURE

» EXERCISE 256 (11.2.1). Refer to the proof of Claim 4.
a. Prove Subclaim 1.
b. Prove Subclaim 2.

c. Why can’t we use the same type of proof as used to demonstrate the finite
additivity of n to show that u as defined on J# is countably additive?

PROOF. (a) We show that if Ar, € FF,, then there exists Cr,ur, € Fr,ur, With
the property that

®r (AF, X 2p¢) = PEuE, (CFUF, X 2(F,UF)C)- (11.1)

Define the collection
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€ :={AF, € FF, : thereis Cr,ur, € Fr,ur, such that (11.1) holds} .

Then € C FF,.
We first show that €, C €. Take an arbitrary X,cr, 4i € EF,. Then

Pr, <>< A,-)xszple = X 0i.

ieF iel
where Q; = 4; for eachi € F; and Q; = £2; for each i € Ff. Define the set

Criur, = X Ri,
ieFlUF>

where R; = A; for eachi € F; and R; = §2; for each i € F,. We have Cr,uF, €

8F1UF2 c 37F1UF2’ and

QEIIUFZ [CF1 UF, X Q(FlUFz)C] = X Qi~

iel

Comparing the last two displayed equations shows that X ;. F Ai €T That is,
we have &f, C €.

We now turn to showing that € is a o-filed on 2r,. We first show that 2, €
€. This is because

(plzll(QFl X -QFf) =8 = ¢;11UF2(QF1UF2 X $2(FyUF,)°)s

and 2p,ur, € Frur,- We now discuss closure under complementation. Sup-
pose that Ar, € €, and let Cr,ur, € ¥F,ur, be such that (11.1) holds. Then

O (4G, x 2pe) = B [(Qpl X Qpe)~ (AF, X .QFIC)]
= @5 (25, X QFe) ~ PF (AF, X 2p¢)
= ¢1?11UF2 (‘QFIUFZ X 'Q(F1UF2)C) ~ (plzllqu (CFIUF2 X 'Q(F1UF2)")
=Pk, [(QFlqu X 82(F,UF2)e) ~ (CFUF, X -Q(FIUFZ)C)]
= ¢;11UF2 (CICTIUFZ X 'Q(F1UF2)C) .

Since C;lUFz € FF,uF,, it follows that Aﬁ,l e €.
We now show that € is closed under countable intersections. Let {ASL'I)} C €,

and let C z(vrf)u r, € FFuF, denote the corresponding sets for Ag’l) that satisfies
(11.1) for every n € N:

-1 (n) -1 (n)
Pp, (Algl X QF{’) =P ur, (CF’:UFZ x Q(Flqu)C) .

We have
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o0 o0
-1 () e (n)
ot | [ AR | x 2 | = @7 | () (4% x 2r)
n=1 n=1
o0
Mol (4D
B m(p 1 (AFI X'QFlc)
n=1

-1 (n)
PruF, (CFlqu X Q(Flumf)

I
DX

3
Il
—-

o0

— =1 (n)

- cDF] UF, ﬂ (CFr:UFz x Q(FIUF2)C)
n=1

o0
_ o1 (n)
- ¢F1UF2 ﬂ CF]UFZ x Q(Fl UF2)¢

n=1
Since (72, Cz(v’:)qu € Fr,ur,, it follows that (N2, Ag’l) € €. Therefore, € is a

o-filed on £2F,, and &r, C €. Hence, ¥f, = €.

(b) We prove that if Ar, € F,, then
G5 (Ar, x Qpg) = O [@;I{F3(AF] X 2pp,) X QF;] . (11.2)

Let
€ ={AF, € Fr, : (11.2) holds for Ap,}.

We first show that €, C €. Pick X;cf, 4i € €F,. Then

®;11 (X Ai) X‘QFIC = X 0,

ieF iel

where Q; = 4, for eachi € F; and Q; = §2; for each i € Ff. Similarly, we have

¢;11,F3 (X Ai) X 2r<rF | = X Ri,

ieF; i€F3

where R; = A; for each i € F; and R; = £2; for each i € F3 ~ F;. Hence,

¢;31 ¢;11,F3 (X AFI) X 82py<Fy | X QF{ = ¢;31 (X Ri) = X Si,

ieF, ieF; el
where
Aj ifi Fi
R ifieF; , A; ifieF
Si = o = _Qi ifi e F3 ~ Fl = o
£2; lfl€F3c . $2; lflGFlc.
§2; ifi e F§
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Therefore, X, ., A;i € C; thatis, € C €.
We next show that € is a o-field on £2F,. It is clear that

O; (2F, X 2pe) = 2 = OF! [cp;l{FS(QF1 X Q2pyp,) ¥ .QFX]
S0 2, € €. Now suppose that A, € €. Then
7! (4%, x 2r¢ ) = OF) [(QF, x QFlc> ~(4r, % .QFlc)}
= 07! (2r, x 25 ) ~ 05! (AF1 x .QFlc>
= 2~ 05! |97 b, (AR X 2Eyr) X 2]
= o7 —(9F3 x 2r¢) ~ (97! p, (AR X 2rr) % QFBc)]

= @;31 (,QF3 ~ (D;ll’& (AF1 X -QF3\F1)> X QF§i|

= (DI:; (DI:II,F3 (A(jp1 X QF3\F1> X .QFSC:| ;

that is, A%l € € whenever Af, € €. We finally show that € is closed under
countable intersections. Take an arbitrary sequence {Ag’l)} C €. Then

o o

-1 (n) — p-1 (n)
ot || (AR | x 2 | = @7 | () (4% x 2r)
n=1 n=1

o

— —1( 4m)

- (Yost (42 < )
n=1
o0

— — (n)

= m 0} 31 I:(DFllsFS (AI;l1 X -QF3\F1) X 'QFSC]

n=1

3

| —1 (n)
_¢F3 ¢F1,F3 ﬂAI"‘ll X.QF3\F1 X.pr
n=1
Thus, € is a o-field containing &f,, and so € = FF,.

(c) Given a sequence {F,} of finite subsets of I, it is not necessarily the case
that | J,—, Fy is a finite subset of /. O

» EXERCISE 257 (11.2.2). Prove equalities (%) and (xx) given in the proof of
Subclaim 3 of Claim 7.

PROOF. (%) Take j € N. Let @: Qu,,;, — £n,, X 2pn+1,...m+;3 be the bijec-
tion that associates each (wy,...,wm+;) With ((01,...,0m), (On+1s- -, Om+j))-
We first prove
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m+J

Py, (An, x 2ug,) = ) [‘p—l (AN X 2pmt1,..m+j3) X 2ne ] (%)

Define
€ = {An,, € Fn,, : () holds for Ay,,} .

Asusual, we show that &y,, < € and € is ao-filed on 2y,,. Let Aw,, = X7, 4i,
where A; € ¥; for eachi € {1,...,m}. Then

qbnqln
! i

m
¢D§,1y,+j o1 (i>=<1Ai)x.Q{m+1 ,,,,, mj | X 82ng,

Xz

Ai)XQD\lfn :AlX"‘XAmXQm+1XQm+2X~~',
1

and

= djnan-i—j [(A] X"'XAm X.Qm+1 X---X.Qm_|_j) X‘QN;Hrj]
=A1X---XAmXQm+1 X9m+2X"' .

Hence, &y, € €.
We turn to show that € is a o-field on £2y,,. It is evident that 2y, € € since

@lﬁ,ln (2w, % Ru5,) = 2 = oy [¢_1 (20, X Rpms1,m+53) X 2ne ] :

m+j

Now suppose that Ay,, € €. Then
ot (45, % 2u5,) = 25} [ (2w, % 25) ~ (4w, x 20|
= Q\(Al X"'XAm Xth-‘rl X9m+2X"'),

and
—1 -1
PN, |:45 ( Ny X Rpmt1,... m+_i}) x QIN%J”}

m+j
— -1 )
- ¢[Nm+j [ (QNm+./' x QN;;,Jrj)
~ ((A1 XX Ap X 2myj X o0 X Qm+j) X‘QanH)]

Z'Q\(AlX"'XAmXQm+1XQm+2X-..);

= oyt [<~me+j S (A1 X X Ay X gy X e X ‘Q’”“)) x QNf"*-’}

that is, Aw,, € € forces A&m € €. To verify that € is closed under countable
unions, take an arbitrary sequence {A(Dﬁ;} C €. We then have
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[ele) [e%e)
-1 (n) -1 (n)
(Dle U An\rllm X QIN?" = U (me (Anf‘lm x QN%’) ’
n=1

n=1

and

o
ol 1o [ U AR | % ontrmrsy | X 2ue

m+j
n=1

o0
= ¢g;+j U @_1 (Ag:?n X Q{erl ..... m+]}) X QNC

m+j

o
-1 -1 (4
= Ui, [ (42, % 2 men) <205,

n=1
oo
= U oq, (450, x 2us,)
n=1
oo
= o | [ AR | x 2w
n=1

Hence, UZ":] AE’; € €. Therefore, € is a o-filed containing &y,,, and so € =
FN,,-

(%*) We now prove

(%)
= ﬂAENm (Sl,...,én,wn+1,...,wm).

Define
D = {Ay,, € Fn,, : (+*) holds for each w11 € 2pt1.....0m € 2} .

Once again, we prove this claim by showing that &y,, € D and D is a o-filed
on 2n,,-

Let An,, = X/, A;, where A; € #; for eachi € {1....,m}. Then
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1 vevsEn, . N
¢71[(X7’=1 A,-)x.rz{mﬂ AAAAA m+_,‘}:| (Sl Eny On41 wm+1)

m
= (1. EnOnt1ee. . Ompj) €] (X Ai) X mi 1, m+j}
i=1

< (Sl,...,Sn,a)n+1,...,wm+j) € Ay X - X A X 2m+1 X---X9m+j
— (El,...,én,wm_;_l...,wm) € Ay x--- Ay,

— ﬂAlX...XAm (51,...,§n,wm+1 ...,a)m) =1;

that is, &y, € D.
We next show that O is a o-field on £2y,,. It is easy to see that

=1= ﬂQNm (El,...,&‘n,wm“,...,wm),

So 2\, € D. Suppose that Ay, € O. Then

)(51,...,én,wm+1,--~vwm+j) =1

v
5

N
(Slv- .. 7$n9wm+17' .. 7a)m+j) € ¢_1 (A(E\Im X Q{m-‘rl,,erJ})

ﬂAtNm (El,...,é,,,a)mﬂ,...,wm) =0

ﬂA@m (E1vee o EnOmtts e 0m) = 1

Hence, Af € O whenever Ay, € D. Finally, we verify that D is closed under
countable unions. Take an arbitrary sequence {A(D:’r)”} C P. Observe that

1 =1
—1 (n) X
45—1[(U;’,°=1Agg'3n)xg{m+l _____ mH}] UsZi @1 (48, X2umt1.mt3)
=supl )
,,p ‘P_I(A(N",),IXQ{erl ..... m+j})
and
1 y =supl .
U A, = S
Since
=1 (A X@omt1, et & Sn @1 mt)
=1]A§.::) 1. Omtrs . 0m)
m

for every n € N, we get
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D T4 sy ) B 01 )

= sup ]]A(n) (El,...,én,wm.l,_],...,a)m);
n N

that is, Jr2, A(Dj’; € D. This proves that D = Fy,,,. O
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The Lord by wisdom founded the earth, by
understanding he established the heavens.

— Proverbs 3:19
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SETS

1.1 INTRODUCTION TO SETS

No exercises.

1.2 PROPERTIES

No exercises.

1.3 THE AXIOMS

» EXERCISE 1 (1.3.1). Show that the set of all x such that x € A and x ¢ B exists.
PROOF. Notice that
{x:xeAdandx ¢ B} ={xeA:x ¢ B}.

Then by the Axiom Schema of Comprehension, we know that such a set does
exist. O

» EXERCISE 2 (1.3.2). Replace The Axiom of Existence by the following weaker
postulate:

Weak Axiom of Existence: Some set exists.

Prove the Axiom of Existence using the Weak Axiom of Existence and the
Comprehension Schema.

PROOEF. Let A be a set known to exist. By the Axiom Schema of Comprehension,
there is a set X such that

X={x€A:x7éx}.
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There is no subjects x satisfying x # x, so there is no elements in X, which
proves the Axiom of Existence. O

» EXERCISE 3 (1.3.3). a. Prove that a “set of all sets” does not exist.

b. Prove that for any set A there is some x ¢ A.

PROOEF. (a) Suppose that there exists a universe set (a set of all sets) V. Then
by the Axiom Schema of Comprehension, there is a set B = {x € V: x ¢ x};
that is

xX€B < xeVandx ¢ x. (1.1)

Now we show that B ¢ V, that is, B is not a set. Indeed, if B € V, then either
B € B,or B ¢ B.If B € B, then, by the “=” direction of (1.1), B € V
and B ¢ B. A contradiction; if B ¢ B, then, by the “<=" direction of (1.1),
the assumption B € V and B ¢ B yield B € B. A contradiction again. This
completes the proof that B ¢ V.

(b) If there were a set A4 such that x € 4 for all x, then 4 is “a set of all sets”,
which, as we have proven, does not exist. O

» EXERCISE 4 (1.3.4). Let A and B be sets. Show that there exists a unique set C
such that x € C if and only if either x € Aand x ¢ B or x € B and x ¢ A.

PROOF. Let 4 and B be sets. The following two sets exist:

Ci={x:xcAdandx ¢ B} ={xeA:x¢ B},
C={x:x¢Aandxe B} ={xeB:x¢A}.

Then C = C;UC, exists by the Axiom of Union. The uniques of C follows from
the Axiom of Extensionality. |

» EXERCISE 5 (1.3.5). a. Given A, B, and C, there is a set P such that x € P iff
x=Aorx=Borx=C.

b. Generalize to four elements.

PROOF. (a) By the Axiom of Pair, there exist two sets: {4, B} and {C,C} =
{C}. By the Axiom of Union, there exists set P satisfying P = {4, B} U{C} =
{A,B,C}.

(b) Suppose there are four sets 4, B, C, and D. Then the Axiom of Pair implies
that there exist {4, B} and {C, D}, and the Axiom of Union implies that there
exists

P={A,B}U{C,D}={A,B,C,D}. O

» EXERCISE 6 (1.3.6). Show that ®(X) C X is false for any X. In particular,
®(X) # X for any X. This proves again that a “set of all sets” does not exist.
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PROOF. Let X be an arbitrary set; then there exists aset Y = {u € X: u ¢ u}.
Obviously, Y € X, so Y € ®(X) by the Axiom of Power Set. If Y € X, then we
have Y € Y if and only if Y ¢ Y [See Exercise 3(a)]. This proves that ®(X) € X,
and ®(X) # X by the Axiom of Extensionality. |

» EXERCISE 7 (1.3.7). The Axiom of Pair, the Axiom of Union, and the Axiom of
Power Set can be replaced by the following weaker versions.

Weak Axiom of Pair For any A and B, there is a set C such that A € C and
B eC.

Weak Axiom of Union For any S, there exists U such thatif X e Aand A € S,
then X € U.

Weak Axiom of Power Set For any set S, there exists P such that X C S
implies X € P.

Prove the Axiom of Pair, the Axiom of Union, and the Axiom of Power Set using
these weaker versions.

PROOF. We just prove the first axiom. By the Weak Axiom of Pair, for any A4
and B, there exists a set C’ such that A € C’ and B € C’. Now by the Axiom
Schema of Comprehension, there is a set C such that C = {x € C' : x =
Aorx = B}. O

1.4 ELEMENTARY OPERATIONS ON SETS

» EXERCISE 8 (1.4.1). Prove all the displayed formulas in this section and visu-
alize them using Venn diagrams.

PROOF. Omitted. O

» EXERCISE 9 (1.4.2). Prove

a. A C Bifand only if ANB = A if and only if AU B = B if and only if
A~B=0.

b. ACBNCifandonlyif A< Band A CC.
c. BUC CAifandonlyif B< A andC C A.
d ANB=(AUB)~B=A~(ANB).

e. ANB=A~ (A~ B).
f.AN(B~C)=(A~B)UANC).

g. A= B ifandonly if AAB = @.
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PROOF. (a) We first prove that A € B =—> AN B = A. Suppose A C B. Note
that AN B C Ais clear sincea € ANB — a € Aanda € B — a € A.
To prove A € A N B under the assumption that 4 C B, notice that [a € A] A
[ACBl= acAlAJlaeB] = ae€ AN B.Hence, A C B=— ANB = A.
Tosee ANB =A=— AC B,notethat A = ANB =— A C ANB =
[AC AIA[AC B]= ACB.

To see A € B —> AU B = B, notice first that B € A4 U B holds trivially.
Hence, we need only to show A4 U B € B. But this is true because [a € AU B] A
[ACBl]=[ac€c AVvace B|Alae A= a € B] = a € B. The direction AUB =
B — A C B holds because AUB=B— AUBC B— AC B.

A C B =— A~ B = @ holds by definition of difference of sets: A ~ B :=
{xed | x ¢ B}. By this definition, if A € B and a € 4, then a € B, which
contradicts the requirement @ ¢ B; hence, A~ B = @ when 4 C B. To prove
A~ B =@ = A C B, we use its false antecedent. Suppose B C A. Then there
exists a € A and a ¢ B since B is a proper subset of A, but which means that
A~ B # 2.

b)IfACBNC,thena € A = ae€ BNC = [a € B] Ala € C]. The other
direction is just by definition.

(c) Tosee BUC CA=— BC Aand C C A,letae Blae C],thenae BUC C
Ala € BUC C A]. To prove the inverse direction, let a € B or a € C; that is,
a€ BUC.But B < Aand C C A4, we have a € A, too.

(d) To prove A ~ B = (AUB) ~ B, notice that « €¢ (AUB) ~ B <=
[ac AvaeBlAla¢ B] — [acAlAla¢ B] < a € A~ B.To prove
A~ B = A~ (AN B), notice that

a€A~(ANB) < [ac A|A[-(a € AN B)]
ﬂ(aeA/\aeB)]
agéAvagéB]

a ¢ B

< [ac AlA
& [ac AN

e

& [ac Al A
< ae€ A~ B.

(€ a € AN(ANB) < [ac AIN[~ (@€ A~B)| & [acAr\fa¢ Avac B] <
[ae AlAJlae B] &= ac ANB.

(f) First,a € AN(B~C)iff [a € A]A[=(a € B~C)]iff [a € A]Ala ¢ BvaeC].
Then, a € (A~B)U(ANC) <= [acAra¢B|VaeAraclC]
[acAln[a¢ BVvaeC].

@A=B > [ACBIABCA <L U~B=0]A[B~A=0]

(ANB)U(B~A) =2 < AAB = 0. O

» EXERCISE 10 (1.4.3). Omitted.
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» EXERCISE 11 (1.4.4). Let A be a set; show that a “complement” of A does not
exist.

PROOF. Suppose A° exists. Then, by the Axiom of Union, there is a set V =
AU A°. But in this case, V is a universe. A contradiction [See Exercise 3 (a)]. O

» EXERCISE 12 (1.4.5). Let S # @ and A be sets.

a. SetT), ={Y e ®(A): Y = AN X forsome X € S}, andprove AN|JS = Th
(generalized distributive law).

b. SetT, ={Y € ®(A): Y = A~X for some X € S}, and prove A~(IJS) = N T2,
A~ (NS) = UT> (generalized De Morgan laws).

PROOF. (@) x € AN|JS iff x € 4 and there is X € S such that x € X iff there
exists X € S such thatx € AN X iff x € T7.

(b) We have

xeA\(US) = [xeA]A[—-(erS)]
[xeA]/\[—-(EIXeSsuchthatxeX)]

[x € A]A[x ¢ XV X €S]
[xeA/\xgéX]VXeS
[xe ANX]VXeS

111117

and

xeA\(ﬂS

N—

P11t 1 7

[xeﬂA[ﬁGG(]ﬂ]
[xeAA[-(xeXVXEeS)]

[x € A]A[3X € S such that x ¢ X|
3X e Ssuchthat [x e AAx ¢ X]
3 X € S such that [x € 4 ~ X]

xeLﬂA\m
XEUTz. O

» EXERCISE 13 (1.4.6). Prove that () S exists for all S # @. Where is the assump-
tion S # @ used in the proof?

PROOF. If S # @, we can take a set A € S.Let P(x) denote “x € X forall X € S”.
Then

(S ={xed:Px)}
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exists by the Axiom Schema of Comprehension.

Butif S = @, then () S is a “set of all sets”; thatis, x € (| @ for all x. Suppose
not, then there must exist a set A € @ such that x ¢ A4, but obviously we cannot
find such a set A. O

REMARK. While () @ is not defined, we do have

o =2.

Suppose not, then there exists x € [ J @, that is, there exists 4 € @ such that
x € A. Now consider the antecedent

x¢A VAeo. (1.2)

Obviously (1.2) cannot hold since there does not exist such a set A € @. We
thus prove that | Jo = @.



2

RELATIONS, FUNCTIONS, AND ORDERINGS

2.1 ORDERED PAIRS

» EXERCISE 14 (2.1.1). Prove that (a,b) € ®(®({a,b})) and a,b € | J(a, b). More
generally, ifa € A and b € A, then (a,b) € P(P(A)).

PROOF. Notice that (a.b) = {{a}.{a.b}}, and ®({a.b}) = {@.{a}. (b} {a.b}}.
Therefore, (a,b) C ®({a,b}) and so (a,b) € ® (P({a,b})). Further, (J(a,b) =
U {{a}.{a.b}} = {a,b}; hence, a,b € | J(a.b).

If a e Aand b € A, then {a} € A and {a,b} € A. Then {a} € ®(A) and
{a.b} € P(A); that is, {{a},{a,b}} € @ ({4}). Then by the Axiom of Power Set,
(a.b) = {{a}.{a.b}} € ®(P(A)). O

REMARK. If a € A and b € B, then (a,b) € P(®P({A U B})).

PROOF. We have {a} € A € AUB, {bp} € AU B, and {a,b} € AU B.
Then {a},{a,b} € ®(A U B); that is, {{a},{a,b}} € ®(4A U B). Hence, (a,b) =
({a},{a,b}} € P(P(A U B)). o

» EXERCISE 15 (2.1.2). Prove that (a,b), (a,b,c), and (a,b,c,d) exist for all
a,b,c,andd.

PROOF. By The Axiom of Pair, both {a} = {a,a} and {a, b} exist. Then, use
this axiom once again, we know (a,b) = {{a},{a,b}} exists. Since (a,b,c) =
((a,b),c), it follows that the ordered triple exists. (a,b,c,d) exists because
(a,b,c,d) = ((a,b,c),d). O

» EXERCISE 16 (2.1.3). Prove: If (a,b) = (b,a), thena = b.

PROOF. Let (a,b) = (b.a), that is, {{a},{a.b}} = {{b}.{a.b}}. If a # b, then
{a} = {b}, which implies that « = b. A contradiction. |

» EXERCISE 17 (2.1.4). Prove that (a,b,c) = (a',b’,c’) impliesa = a’, b = b/,
and ¢ = ¢’. State and prove an analogous property of quadruples.
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PROOF. Note that (a,b,c) = (d’,b’,c") iff ((a,b),c) = ((@'.b'),c), iff (a,b) =
(@’,b") and ¢ = ¢’. Now, (a,b) = (d’,b’) iff a = o’ and b = b’. The quadruples
case can be easily extended. O

» EXERCISE 18 (2.1.5). Find a, b, and ¢ such that ((a,b),c) # (a,(b,c)). Of
course, we could use the second set to define ordered triples, with equal success.

PROOF. Leta = b = c. Then

((@,a).a) = {{(a,a)}.{(a.a).a}} = {{{a}}. {a}.a}} .
(a.(a.a)) = {{a}.{a. (a.a)}} = {{a}.{a. {a}}}.

Thus, ((a,a),a) # (a, (a,a)). Note that while (A x B)xC # A x (B xC) generally,
there is a bijection between them. O

» EXERCISE 19 (2.1.6). To give an alternative definition of ordered pairs, choose
two different sets O and A (for example, 0 = @, A = {@}) and define

(a,b) = {{a, 00}, {b, A}} .

State and prove an analogue of Theovem 1.2 [p. 18] for this notion of ordered
pairs. Define ordered triples and quadruples.

PROOF. We are going to show that

(a,b) ={a'.b') <= a=d andb =1V

Ifa =a and b = b/, then (a.b) = {{a. O}, {b. A}} = {{a’. O} {b'. A}} = (a'. b').
For the inverse direction, let {{a, 0}, {b, A}} = {{a’.O},{b’, A}}. There are
two cases:

e Ifa # b, then: (i) If « = A and b = O (note that O # A by assumption), then
{{a. O}, {b, A}} = {{O, A}}, which enforces «’ = A and b’ = O0. (i) If a # A
or b # O (or both), then {a, O} # {b, A}. We first show that it is impossible
that {a¢,0} = {b’, A} and {b, A} = {da’,O}; for otherwise ¢« = A and b = 0.
Hence, it must be the case that

{a.0} = {a’.0} and {b, A} = {b', A},
ie,a=d andb =10
e If a = b, then
{{a, O} {b, A} = {{a, O} {a, A} = {{a’, O}, {1, A}

implies that {¢,0} = {¢/,0} and {a, A} = {b’, A}; thatis,a = da’ = b = b.
Note that it is impossible that {¢,0} = {6’, A} and {a, A} = {a’,0O}; for
otherwise, ¢ = A = 0. A contradiction. |
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2.2 RELATIONS

» EXERCISE 20 (2.2.1). Let R be a binary relation; let A = | ({J R). Prove that
(x,y) € R implies x € A and y € A. Conclude from this that 9 and R exist.

PROOF. By the Axiom of Union,

zeU(UR) — zerorsomeBeUR

<= ze€ B e C for some C € R.

If (x,y) € R, then C = {{x},{x,y}} € R, B = {x,y} € C, and x, y € B; that is,
x € Aand y € A. Hence,

Pr = {x: xRy for some y} = {x € A: xRy for some y}.

Since |J (J R) has been proven exist by the Axiom of Union, the existence of
D follows from the Axiom Schema of Comprehension. The existence of ® g
can be proved with the same logic. |

» EXERCISE 21 (2.2.2). a. Show that R~ and S o R exist.

b. Show that A x B x C exist.

PROOF. (a) Since R C g x Rpg, it follows that R~! € Rr x Dg. Since Dg, Ry,
and Rz x Dr exist, we know that R~! exists.

Since S o R = {(x,z): (x,y) € R and (y,z) € S for some y}, we have S o R C
Pr X Rg. Therefore, S o R exists.

(b) Note that A x B x C = (A x B) x C. Since A x B exists, (A x B) x C exists,
too. Particularly,

AxXxBxC =

(a,b,c) e(P[(P [((P((P(AUB)))UCH caedbeBeecl. o

» EXERCISE 22 (2.2.3). Let R be a binary relation and A and B sets. Prove:
a. R[AU B] = R[A] U R[B].
b. R[AN B] C R[A] N R[B].
C. R[A~ B] 2 R[A]~ R[B].

d. Show by an example that C and 2 in parts (b) and (c) cannot be replaced by

e. Prove parts (a)—(b) with R™! instead of R.

f. R7'[R[A]] 2 ANDgr and R[R™'[B]] 2 BNRg; give examples where equality
does not hold.
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PROOF. (@) If y € R[A U B], then there exists x € A U B such that xRy; that is,
either x € 4 and xRy, or x € B and xRy. Hence, y € R[A] U R[B].

Now let y € R[A] U R[B]. Then there exists x € A such that xRy, or there
exists x € B such that xRy. In both case, x € AU B, and so y € R[A U B].

(b) If y € R[A N B], then there exists x € A N B such that xRy; that is, there
exists x € A for which xRy, and there exists x € B for which xRy. Hence,
y € R[A] N R[B].

(c) If y € R[A] ~ R[B], then there is x € A4 such that xRy, but there is no
x" € B such that x’Ry. Hence, there exists x € A ~ B such that xRy; that is,
y € R[A~ B].

(d) Let us consider the following binary relation
R={((x.9). (x.0) : (x3) € [0.17}

that is, R projects the xy-plane onto the x-axis, carrying the point (x, y) into
the (x,0); See Figure 2.1.

(x,y)

(x,0)

v

FIGURE 2.1. R

o Let A = {(x,y):x€[0,1],y =1}, and B = {(x,y): x € [0,1],y = 1/2}. Then
AN B = @, and consequently, R[4 N B] = @. However, R[A] N R[B] = [0, 1].

e Notice that R[4] = R[B] = [0, 1], so R[A] ~ R[B] = @. However, A~ B = 4,
and consequently, R[4 ~ B] = R[A] = [0, 1].

(e) Just treat R~! as a relation [notice that (a)-(c) hold for an arbitrary binary
relation R/, so we can let R~! = R’].

(f) If x € AN Dpg, then x € 4 and there exists y € R[A] such that yR~!x. Hence,
xeR7! [R [A]]. To show that the equality does not hold, consider R in part (d).
Note that A N dom(R) = 4; however, R~![R[4]] = [0, 1]2.

For the second claim, just notice that R™! is also a binary relation with
Pr-1 = Rp (see the next exercise). |
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» EXERCISE 23 (2.2.4). Let R € X x Y. Prove:

a. R[X] = Rg and R7'[Y] = Dkg.

b. Ifa ¢ Dr, R[{a}] = @; ifb ¢ Re, R7'[{b}] = @.

C. DR =Rp-1;Rr = Dp-1.

d. (R"H)"1 =R.

e. RF1oRD Idg,; Ro R 1D Idg .

PROOF. (a) y € R[X] iff there exists x € X such that xRy iff y € Rg, so R[X] =
®g. Similarly, x € R™! [Y] iff there exists y € Y such that xRy iff x € Dg.

(b) Suppose that R[{a}] # @; let b € R[{a}]. But then there exists b € R for
which aRb; that is, a € Dg. A contradiction. Similarly, let ¢ € R™![{b}]. Then
aRb; thatis, b € Rg. A contradiction.

(c) x € 9 iff there exists y € Y such that xRy, iff there exists y € Y for which
yR™1x, iff x € Rz—1. Similarly, y € Ry iff there exists x € X such that xRy, iff
there exists x € X such that yR™!x, if and only if y € D-1.

(d) For every (x,y) € X x Y, we have x(R™ ')~ !y iff yR™!x iff xRy. Hence,
(R"H™ ' =R.

(e) We have (x,y) € Idg, iff x € 9 and x = y. We now show that (x, x) €
R 1o R for all x € Dg. Since x € D, there exists y such that (x,y) € R, i.e.,
(y,x) € R~'. Hence, there exists y such that (x, y) € R and (y, x) € R™!; that is,
(x,x) e R"'oR.

Now let (x, y) € Idg,. Then x = y and y € ® . Then there exists x such that
(x,y) € R,i.e., (y,x) € R~!. Therefore, (y,y) € Ro R O

» EXERCISE 24 (2.2.5). Let X = {@,{@}}, Y = ®(X). Describe
a. €y;
b. Idy.
PROOF. Y = P(X) = {@,{@},{{@}} : {@,{@}}}. Then
€y ={(a,b):acY,beY,anda € b}
= {(2.19}), (2.{2.12}}). (12}, {2}), (12}, {2, {2} ,
and

Idy = {(a.b)|acY,beY,anda =b}
= {(@.2).(e}.{2). {{e}}. {{e}). (o.{a}}.{2.{z}))} . O

» EXERCISE 25 (2.2.6). Prove that for any three binary relations R, S, and T

To(SoR)=(ToS)oR.
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PROOEF. Let R, S, and T be binary relations. Then

(w,z) € To(SoR) < there exists y for which w(S o R)y, yTz
<= there exists y and x for which wRx, xSy, yTz
<= there exists x for which x(7 o §)z, wRx
< (w,z) €(ToS)oR. O

» EXERCISE 26 (2.2.7). Give examples of sets X, Y, and Z such that

a XxY #Y xX.

b. Xx(Y xZ)£(XxY)xZ.

C X3#£XxX%fie, X xX)xX #Xx(XxX)].

PROOF. (@) Let X = {1} and Y = {2,3}. Then X xY = {(1,2),(1,3)},but Y x X =

{2, D, G, D}

(b) Let X = {1}, Y = {2}, and Z = {3}. Then X x (Y x Z) = {(1,(2,3))}, and
(X xY)xZ ={((1,2),3)}. But (1, (2,3)) # ((1,2),3) since 1 # (1,2) and (2, 3) # 3.

(¢) Let X = {a}. Then X3 = {((a,a),a)} = {({{a}}.a)},but XxX? = {(a,(a,a))} =
{(a,{{a}})}. Itis clear that X3 # X x X? since a # {{a}}. [Remember that a = (a)
is an “one-tuple”, but {{a}} = (a,«) is an ordered pair.] O

» EXERCISE 27 (2.2.8). Prove:
a. AxB=gifandonlyif A= @ or B = @.
b. (A1 U Ay)x B = (A1 x B)U (A, x B), and A x (B; U By) = (A x B1)U (4 x Bs).
c. Same as part (b), with U replaced by N, ~, and A.
PROOF. @) Ax B =g iff ~[Jac Aand b € B|iff [Aa c A]v[Ab e B]iff A=
or B =@.
(b) We have

(a,b) e (A{UA3)x B < ac€ AiUA,and b € B

[a € Ay and b € B] or [a € A, and b € B]

—
< [(a.b) € A; x B] or [(a.b) € A> x B]
<= (a,b) € (A1 x B)U (43 x B),

and

(a,b) € Ax (B1 U By) ac€Aand [b € By or b € B;]
[a# € Aand b € By] or [a € Aand b € B;|
[(a.b) € Ax By] or [(a.b) € Ax B,]

—
—
—
< (a,b) € (A x By) U (A x By).
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(c) We just prove the first part.

(a,b)e (AiNA)xB < [ac Ay na € A2] A [b € B]
< [a€ AyAbe B]lAfa€ Ay Ab € B]
<= (a,b) € (A; x B) N (A2 X B),
(a,b) € (A1 ~A3) X B <— [aEAl/\agéAz]/\[beB]
& [ac Ay AbeBlAla ¢ A
< [(a.b) € Ay x B] A[(a.b) ¢ Ay x B]
< (a,b) € (A1 x B)~ (42 x B),

and

(AyAdz) x B = [(A; ~ A2) U (A ~ A1)] x B
= [(A41 ~ A2) x B]U [(A2 ~ A2) x B]
= [(A1 x B) ~ (A2 x B)] U[(A2 x B) ~ (4 x B)]
= (A; X B)A(A; x B). O

2.3 FUNCTIONS

» EXERCISE 28 (2.3.1). Prove:If Ry C D, then D,.r = Dy.

PROOF. It is clear that Doy = Dy N f71[Dg] € Dy. For the other inclusion
direction, we have

Dgor =D N fTHD 297 N 71 [Rr] = Dy,
where we use the fact that f ' [R/] = 9y:

xe fT'[®s] & 3y € Ry suchthat (y.x) e f!
<= 3y e Ry such that (x,y) € f
— xe$f. O

» EXERCISE 29 (2.3.2). The functions f;,i = 1,2,3 are defined as follows:
fi=2x—1:xeR),
f (ﬁ Tx > 0),
fa=(l/x:x e R x #0).

Describe each of the following functions, and determine their domains and

ranges: f> o fi, fio fa, f3o fi, and fio f3.
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PROOF. The domain of f, o f; is determined as'

Dfyos; = Dy N fl_1 [$f2]
= RO [Res]
={xelR:x>1/2}.
fao fi ={(x.z): x > 1/2 and, for some y,2x — 1 =y and ,/y = z}
=<«/2x—1:x>1/2>.

=V

FIGURE 2.2.
Further, Do, = Dp, N /3 [Df] = Ret N 3[Rl = Riy, and fi0 fo =
<2ﬁ —lix> o>. o

» EXERCISE 30 (2.3.3). Prove that the function fi, f», f3 from Exercise 29 are
one-to-one, and find the inverse functions. In each case, verify that Dy, = (Rf—l s
Ry = Dy

PROOF. As an example, we consider f.

FIGURE 2.3. f> and f5!.

! Throughout this book, R4+ :={x € R|x > 0},and R+ :={x e R| x = 0}.



SECTION 2.3  FUNCTIONS 15

We have (x,y) € f; Liff (y,x) € fpiff x = /y and y > 0 iff y = x? and
x > 0. d

» EXERCISE 31 (2.3.4). Prove:
a. If f isinvertible, f~' o f =1dg,, fo f7! =Idg,.

b. Let f be a function. If there exists a function g such that g o f = 1dg, then
f is invertible and f~!' = g | ®Ry. If there exists a function h such that
f oh=1dg, then f may fail to be invertible.

PROOF. (@) We have proven in Exercise 23 (e) that [since f is a relation]
f~'o f 2Idg, and f o f~! 2 1dg,; hence, we need only to show the inverse
directions. To see f~!1o f C Idg,, let x € ©y. Then

(x,y)e f7lo f = 3z suchthat (x,z) € f and (z,y) € f!
= 3z such that (x,z) € f and (y,z) € f
= x = y since f is invertible
= (x,y) €ldg,.

Tosee fo f~! ClIdg,,let y € Rs. Then

(y,x)€ fof'=3dzsuchthat(y,z) e f'and (z,x) € f
— Jzsuchthat (z,y) € f and (z,x) € f
— )y =X
= (y,x) € ldg,.

(b) Suppose that there exists a function g such that go f = Idg . Let x,x" € Oy
with x # x’. Then (x,x) € go f and (x’,x’') € go f. Thus

3 y such that (x,y) € f and (y,x) € g, (2.1)

3y’ such that (x’,y") € f and (y',x') € g. (2.2)

It follows that y # y’; for otherwise, by (2.1) and (2.2), we would have (y, x) €
g and (v, x’) € g, which contradicts the fact that g is a function.

To see that f~! = g } Ry, first notice that g o f = Idp, implies that
9y N f7De] = 9y, which implies that D, < f~1[D,], which implies that
fI97] = Ry C fIf D] = D, since f is invertible. Hence,

$8T(Rf =$gﬂ(Rf Z(Rf =$f71.

Further, for every y € 9,1, there exists x such that x = f~!(y), i.e,, y = f(x).
Theng | Ry (y) = (g | Ry o f)(x) = x.Hence, g } Ry = f~ L.

Finally, as in Figure 2.4, let f: {x;,x2} — {y} defined by f(x;) = f(x2) = y.
Let h: {y} — {x;} defined by h(y) = x;. Then f o h: {y} — {y} is given by
(f oh)(y) = y; thatis, f oh =Idg,. However, f is not invertible since it is not
injective. O
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_ h S

Ye =xol »>e )

[ ]
X2

FIGURE 2.4. f is not invertible

» EXERCISE 32 (2.3.5). Prove: If f and g are one-to-one functions, g o f is also
a one-to-one function, and (go f)™' = f~log L

PROOF. Let x,y € Dgor and (g o f)(x) = (g o f)(¥). Then f(x) = f(y) since g
is injective; then x = y since f is injective. Thus, g o f is injective.

/ Y

$o
, |
Z

FIGURE 2.5.

To see that (go f)™' = f~! o g71, notice that

(z.x)e@eo /)™ &= (x,2)egof
<= 3Jysuchthat (x,y)e fand (y,z) e g

<= 3Jysuchthat (y,x) e fland (z,y) e g~!

— (z,x)e flog L O
» EXERCISE 33 (2.3.6). The images and inverse images of sets by functions have

the properties exhibited in Exercise 22, but some of the inequalities can now be
replaced by equalities. Prove

a. If f is a function, f~'[ANB] = f~'[A]Nn f~'[B].
b. If f is a function, f~'[A~ Bl = f~'[A]~ f7'[B].
PROOF. (@)If x € f~'[4 N B], then f (x) € ANB, so that f(x) € Aand f(x) € B.
But then x € f~'[A] and x € f~![B], i.e,, x € f~[4] N f~[B]. Conversely, if

x € f7UA]N f~'[B], then x € f~'[4] and x € f~![B]. Therefore, f(x) € A and
f(x) € B,ie., f(x) € AN B.But then x € f~[4A N B].

() If x € f~'[A~ B], then f(x) € A~ B, so that f(x) € 4 and f(x) ¢ B.
But then x € f~![4] and x ¢ f~![B], i.e.,, x € f~'[A] ~ f~![B]. Conversely, if



SECTION 2.3  FUNCTIONS 17

x € f7UA]~ f~'[B], then x € f~![4] and x ¢ f~'[B]. Therefore, f(x) € A and
f(x) ¢ B,lie. f(x)e A~ B.Butthen x € f~1[4~ B]. 0

» EXERCISE 34 (2.3.7). Give an example of a function f and a set A such that

fnA>#f 1A

PROOF. Let f(x’) = y’, where x’ € A and y’ ¢ A. Then (x’,y') € f } A, but
(x',y') ¢ fn A2 |

» EXERCISE 35 (2.3.8). Show that every system of sets A can be indexed by a
function.

PROOF. For every system of sets A4, consider Id: A — A. Then A = {Id(i): i €
A} o

» EXERCISE 36 (2.3.9). a. Show that the set B4 exists.

b. Let (S;: i € I) be an indexed system of sets; show that [[;c; Si exists.

PROOF. (@) f € Ax B forall f € B4, and so f € ®(4x B). Then B4 € ®(Ax B).
Therefore, B4 = {f e ®(Ax B): f: A — B} exists by the Axiom Schema of
Comprehension.

(b) By definition, [[;c; Si = {f: fisafunctionon/ and f; € S; foralli € I}.
Hence, for all f € [[;¢; Si, if (i,s:) € f, then (i,s;) € I x S; € I x |J;¢; Si; that
is, f € I x ;¢ Si- Hence, f € ®(I x |J;¢; Si) for all f € [];c; Si, and hence
[lies Si € ® xU;er Si)- Therefore, the existence of [ [;; S; follows the Axiom
Schema of Comprehension. O

» EXERCISE 37 (2.3.10). Show that unions and intersections satisfy the following
general form of the associative law:

U r=U (UFa), N Fo={) (ﬂFa),
aels ces \aeC acJs ces \aeC

if S is a nonempty system of nonempty sets.
PROOF. We have

X € U F, EIanSsuchthatxeFa
aeJs

<= JdaeC €S, suchthatx € F,

(:»er(UFa),

CeS \aeC

and
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x e ﬂ F, — xeF,,,VanS
aeys

«— xe€kF,,vCeS,VaeC

<:>xeﬂ ﬂFa. O

CeS \aeC

» EXERCISE 38 (2.3.11). Other properties of unions and intersections can be
generalized similarly.

De Morgan Laws

UJF|=(B~F). B~|(F|=JB~Fa).

acA acA acA acA

Distributive Laws

UF N UGb = U (Fa N Gp),

acA beB (a,b)eAxB
N F|u[(G|= () FUGy.
acA beB (a,b)eAxB

PROOF. We have

x € B~ UF,, < [x e B]A er
a4 acd
& [x € B] /\[ EaeAsuchthatxeF)]
< [x e B]A VaeAxgéF]
= VaeA[xeB/\xgéFa]
> xe[)(B~Fo).

acA

and
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xeB\(ﬂFa) [x € B] A —-(xeﬂFa)
acA

acA

[xeBIA[=(VacA xeF,)
[x € BIA[3a € Asuch that x ¢ F,]
Ja e Asuchthat [x e BAX ¢ F,]
Ja € A such that [x € B ~ F,]

xelJB~F).

acA

|:xeaLJ4Fa:| A |:xebng:|

<= da € A such that x € F, and
1b € B such that x € Gy,
3 (a,b) € A x B such that x € F, N Gy

xe |J (FanaGy).
(a,b)eAxB

ptore 1

and

X € (g‘Fa)ﬂ(lng

!

—
—

Finally,

xe(ﬂFa)U(me) — |:xeﬂFa:|\/|:xeﬂGb:|

<= [Vae A, xe F,JVv[VbeB, x Gy
<= V(a,b) e AXB [x € F; vV x € Gp]

e xe [\ (FaUGy). O
(a,b)eAxB

» EXERCISE 39 (2.3.12). Let f be a function. Then

f UFa ZUf[Fa]» f_l UFa ZUf_l[Fa]’

acA acA acA acA

FINFa| S\ fIFL f7 () Fa| =) F R

acA acA acA acA

If f is one-to-one, then C in the third formula can be replaced by =.

PROOF. Let f be a function. Then
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yef{UFa}

dx e U F, such that (x, y) € f

acA

da € Asuch that y € f [F,]
velJ riFd,

acA

—
< Jae€ A, Ix € F,, suchthat (x,y) e f (2.3)
—
—

and

xe f! {UE} = fxelJF

acA acA
<= da e Asuchthat f(x) € F, (2.4)
&= Jae Asuchthatx € f7![F,]
= xe|JF

acA

and

yef|:ﬂ Fai| < 3Jxe ﬂFa such that (x,y) € f

acA acA
&= VacA, xe€F;suchthat (x,y) € f (%) (2.5)
= VYaecA ye f[F,] (xx%)
—ye()SIFd:

acA

hence, f [(Nyea Fa] € Naea f [Fal- Butif f is not one-to-one, then (xx) does
not imply (x) in (2.5). For example, let y € f[F;] N f[F,], but it is possible that
f(x1) = f(x2) = y, where x; € Fi, x, € F,, and x; # x,. However, if f is one-
to-one, then it must be that x; = x,. More explicitly, to derive (x) from (xx) in
(2.5), notice that

VaceA, yef[Fa]:>3!xeﬂFa such that (x, y) € f

acA

<= VaeA, x € F,such that (x,y) € f.

Finally,

xe f! {ﬂ Fa:| = fx)e()Fa

acA acA
&< VacAd, f(x)eF,
— YaeAd, xe fF,

> xe () fFd. O

acA
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» EXERCISE 40 (2.3.13). Prove the following form of the distributive law:

NUFs|=U [N For@ |-

acA \beB feBA \acA
assuming that F,,, N F,p, = @ for alla € A and by, b, € B, by # b,.

PROOF. First note that

Fy 1) € U Fap (2.6)
beB

for any f € B4 since f € B“ [there exists b € B such that b = f(a)]. Hence

() Far@ S ()| U Fas (2.7)

acA ac€A \beB

follows (2.6), and which proves that

U [N For@ || U Fas |- (2.8)

feBA \a€A acA \beB

To prove the inverse direction, pick any x € (N,c4 (Upep Fap)- Put (a.b) € f
if and only if x € F, ;. We now need to show that f is a function on 4 into B.
Because x € (\,e4 (Upep Fap), for any a € 4,

X € U F,p <= 3b e Bsuchthatx € F,;
beB

hence, for any a € A4, there exists b € B such that x € F,;, that is, for any
a € A, there exists b € B such that (a,b) € f, which is just the definition of a
function. Since we have proven that f € B4, we obtain

xeﬂ UFa,b <=>VaeA,erFa,b
acA \beB beB

< VaeA, 3be Bsuchthatx e F,
= VYaeA, 3 feB?suchthat f(a) =b and x € F,, ()

— X € m Fa,f(a)

acA
— X € U ﬂ Fa,f(a)
feBA \a€A

(2.9)

Therefore, (2.8) and (2.9) imply the claim. O
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2.4 EQUIVALENCES AND PARTITIONS

» EXERCISE 41 (2.4.1). For each of the following relations, determine whether
they are reflexive, symmetric, or transitive:

a. Integer x is greater than integer y.

b. Integer n divides integer m.

C. x # y in the set of all natural numbers.
d. € and < in ®(A).

e. ging.

f. @ in a nonempty set A.

SOLUTION. (a) is transitive; (b) is reflexive and transitive; (c) is symmetric; (d):
C is an equivalence relation, but < is not reflexive; (e) and (f) are equivalence
relations. O

» EXERCISE 42 (2.4.2). Let f be a function on A onto B. Define a relation E in
A by: aEb if and only if f(a) = f(b).
a. Show that E is an equivalence relation on A.

b. Define a function ¢ on A/E onto B by ¢([alg) = f(a) (verify that ¢(la]g) =
¢([a'lg) iflale = [d']E).

c. Let j be the function on A onto A/ E given by j(a) = [a]g. Show that poj = f.

PROOF. (@) E is an equivalence relation on A since (i) aEa as f(a) = f(a);
(i) aEb iff f(a) = f(b) iff f(b) = f(a) iff bEa; (iii) Let a Eb and bEc; that is,
f(a) = f(b) and f(b) = f(c). Then f(a) = f(c) and so aEc.

(b) Let p([a]g) = f(a) for any [a]g € A/E.If [a]lg = [d']E, then &’ Ea. Therefore,
f(a) = f(a’) by the definition of E. Thus, ¢([a]g) = f(a) = f(d') = ¢([d]E).

(c) First, Dyo; = Dy = A since Dyo; = ;N j 7 HDy] = AN j7[A/E] = A. Next,
(¢ o j)(x) =¢(x]g) = f(x) for all x € A. 0
» EXERCISE 43 (2.4.3). Let P = {(r,y) € R x R: r > 0}, where R is the set of all

real numbers. View elements of P as polar coordinates of points in the plane,
and define a relation on P by

(r,y) ~ ',y ifand only if r = r' and y — y’ is an integer multiple of 2.

Show that ~ is an equivalence relation on P. Show that each equivalence class
contains a unique pair (r,y) with 0 < y < 2n. The set of all such pairs is there-
fore a set of representatives for ~.



