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SET THEORY AND METRIC SPACES

1.1 SET THEORY

1A. Russell’s Paradox

» EXERCISE 1. The phenomenon to be presented here was first exhibited by
Russell in 1901, and consequently is known as Russell’s Paradox.

Suppose we allow as sets things A for which A € A. Let P be the set of all
sets. Then P can be divided into two nonempty subsets, P, = {A EP:A¢ A}
and P>, = {Ae€ P: A€ A}. Show that this results in the contradiction: ; €
P < P ¢ P1. Does our (naive) restriction on sets given in 1.1 eliminate the
contradiction?

PROOF.Ifﬂ’lefl,thenﬂ)lEﬂ’z,i.e.,ﬂ)l¢<7’1.Butif<7’1¢J’1,then5)1€5)1.A
contradiction. O
1B. De Morgan’s laws and the distributive laws

» EXERCISE 2. a. A~ ((Njeq Bi) = Ujen (A~ By).

c. If Ay is a subset of A forn = 1,2,...andm = 1,2, ..., is it necessarily true
that
o0 o0 o0 o0
U m Apm | = ﬂ U Apm |?
n=1 | m=1 m=1 | n=1

PROOF. (@) If x € A~ ((Necq Ba), then x € 4 and x ¢ (¢4 Ba; thus, x € 4
and x ¢ B; for some A, so x € (A~ B,) for some A; hence x € | J;c4 (4~ By).
On the other hand, if x € (J;c4 (4~ By), then x € A~ B, for some A € A,
ie,x € Aand x ¢ B, for some A € A. Thus, x € 4 and x ¢ (),c4 Ba; that is,

x € A~ (Niea Br)-
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(b) If xe BU (ﬂleA BA), then x € B, for all A, then x € (B U B,) for all A, i.e.,
X € ();ea(B U By). On the other hand, if x € ();c4(B U By), then x € (B U B))
forall ,i.e., x € B or x € B; for all A; thatis, x € BU (¢4 Ba)-

(c) They are one and the same set. O

1C. Ordered pairs

» EXERCISE 3. Show that, if (x1,x,) is defined to be {{xi},{x1.x2}}, then
(x1,X2) = (¥1,y2) iff x1 = y1 and xa = y,.

PROOF. If x; = y; and x; = y,, then, clearly, (x;.x2) = {{x1}.{x1.x2}} =
{1} 1. 923} = (1. y2)- Now assume that {{xi}.{x1.x2}} = {{y1}.{y1.v2}}-
If x; # x, then {x;} = {y1} and {x1, x>} = {y1, y2}. So, first, x; = y; and then
{Xl,XZ} = {yl, yz} implies that X2 = Y»2. If X1 = X»p, then {{Xl}, {X],X]}} = {{X]}}
So {y1} = {y1.y2} = {x1}, and we get y; = y, = x1, S0 x; = y; and x = y;
holds in this case, too. O

1D. Cartesian products

» EXERCISE 4. Provide an inductive definition of “the ordered n-tuple (x1, ..., xy)
of elements x1,...,x, of a set” so that (x1,...,x,) and (y1,...,yn) are equal iff
their coordinates are equal in order, i.e., iff x1 = y1....,Xn = Yn.

PROOF. Define (x1,...,x,) = {(1,x1),...,(n,x,)} as a finite sequence. |
» EXERCISE 5. Given sets X1,..., X, define the Cartesian product X, x --- X X,

a. by using the definition of ordered n-tuple you gave in Exercise 4,

b. inductively from the definition of the Cartesian product of two sets,
and show that the two approaches are the same.

PROOF. (@) X1 x---x X, = {f € (Ui_; X)": f(i) € X;}.

(b) From the definition of the Cartesian product of two sets, X; x --- x X,, =

{(x1,...,xn): x; € X;}, where (x1,...,x,) = ((X1,...,Xn—1), Xn)-
These two definitions are equal essentially since there is a bijection between
them. |

» EXERCISE 6. Given sets Xy,..., X, let X = X|x---x X, and let X* be the set of
all functions f from{1,...,n} into\J;_, Xx having the property that f (k) € X
foreachk = 1,...,n. Show that X* is the “same” set as X.

PROOF. Each function f can be written as {(1, x1), ..., (n,x,)}. So define F: X* —
Xas F(f)=(x1,...,Xn)- O
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» EXERCISE 7. Use what you learned in Exercise 6 to define the Cartesian prod-
uct X1 x X, x --- of denumerably many sets as a collection of certain functions
with domain N.

PROOF. XX X,x--- consists of functions f: N — U:o=1 X, such that f(n) € X,
forall n € N. O
1.2 METRIC SPACES

2A. Metrics on R”

» EXERCISE 8. Verify that each of the following is a metric on R":

n

Z(Xi - )’i)2-

i=1

a. p(x,y) =

b. p1(x.y) =Y Ixi — yil.
C. pa(x,y) =max{|x; — yil,.. -, |Xn — yul}-

PROOF. Clearly, it suffices to verify the triangle inequalities for all of the three
functions. Pick arbitrary x, y,z € R".

(a) By Minkowski’s Inequality, we have

p(x.2) = | (i —z)* = [ D [(xi —yi) + (i — 2
i=1

i=1

< o=y 4 D i —z)?

i=1 i=1
= p(x,y) + p(y,2).
(b) We have

n n
pr(x.2) = |xi—zil =) (1xi —yil +lyi —zi)) = p1(x, 9) + p1(y, 2).

i=1 i=1

(c) We have
p2(x,z) = max{|x; — z1|,..., |Xn — znl}
smax{|x; — yi| + |y1 = z1ls oo oo [Xn = Yul + |yn — znl}
$1’l’laX{|x1 _YI|7~--a|xn _Yn|}+max{|YI _Zl|v---v|yn_2n|}

= p2(x,y) + p2(y.2). O
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2B. Metrics on €(I)

» EXERCISE 9. Let €(I) denote the set of all continuous real-valued functions on
the unit interval 1 and let xo be a fixed point of 1.

a. p(f.g) = sup,er | f(x) — g(x)| is a metric on €().
b. a(f.g) = [y |f(x) — g(x)| dx is a metric on €(I).
c. n(f,g) = |f(x0) — g(xo)| is a pseudometric on €(I).

PROOF. Let f, g,h € €(I). It is clear that p, o, and 5 are positive, symmetric; it
is also clear that p and o satisfy M-b.

(a) We have
p(fih) = 81213 |f(x) —h(x)| < Sg)(lf(X) — g+ [g(x) —h(x)])
< Slglo [f(x) —g(x)]+ Slglj lg(x) — h(x)]

= p(f. g) + p(g.h).

(b) We have

1 1 1
G(ﬁh)=/0 |f(x>—h(x>|s/0 |f(x)—g(x)|+/0 g() — h(x)|
=o(f.g)+o(g.h).

(c) For arbitrary f, g € €(I) with f(x¢) = g(xo) we have n(f,g) =0,s0n(f,g) =
0 does not imply that f = g. Further, n(f,h) = | f(xo) —h(xo)| < | f(x0)—g(x0)|+
|g (x0) — h(xo)| = n(f. &) + n(g.h). 0

2C. Pseudometrics

» EXERCISE 10. Let (M, p) be a pseudometric space. Define a relation ~ on M
by x ~ y iff p(x,y) = 0. Then ~ is an equivalence relation.

PROOF. (i) x ~ x since p(x,x) = 0 for all x € M. (ii) x ~ y iff p(x,y) = 0 iff
p(y,x) = 0iff y ~ x. (ili) Suppose x ~ y and y ~ z. Then p(x,z) < p(x,y) +
p(y,z) = 0; that is, p(x,z) = 0. S0 x ~ z. |

» EXERCISE 11. If M* is he set of equivalence classes in M under the equiva-
lence relation ~ and if p* is defined on M* by p*([x],[y]) = p(x, y), then p* is a
well-defined metric on M*.

PROOF. p* is well-defined since it does not dependent on the representative of
[x]: let x” € [x] and y’ € [y]. Then

p(x',y") < p(x’, x) + p(x, y) + p(y.¥") = p(x.y).
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Symmetrically, p(x, y) < p(x’,y’). To verify p* is a metric on M*, it suffices to
show that p* satisfies the triangle inequality. Let [x], [y], [z] € M *. Then

p*([x]. [2]) = p(x.z2) < p(x,y) + p(y.2) = p*([x]. [y]) + p*([¥]. [2]). 0

» EXERCISE 12. If h: M — M* is the mapping h(x) = [x], then a set A in M is
closed (open) iff h(A) is closed (open) in M*.

PROOF. Let A be open in M and h(x) = [x] € h(A) for some x € A. Since A4 is
open, there exist an e-disk U,(x,¢) contained in A. For each y € U,(x,¢), we
have h(y) = [y] € h(A), and p*([x],[y]) = p(x,y) < . Hence, for each [x] € h(A4),
there exists an e-disk U,«([x], &) = h(U,(x, ¢)) contained in /(A4); that is, #(A4) is
open in M*. Since & is surjective, it is now easy to see that i(A) is closed in
M* whenever A is closed in M. O

» EXERCISE 13. If f is any real-valued function on a set M, then the distance
function ps(x,y) = | f(x) — f(»)| is a pseudometric on M.

PROOF. Easy. ad

» EXERCISE 14. If (M, p) is any pseudometric space, then a function f: M — R
is continuous iff each set open in (M, py) is open in (M, p).

PROOF. Suppose that f is continuous and G is open in (M, pr). For each x € G,
there is an ¢ > 0 such thatif | f(y)— f(x)| < ¢ then y € G. The continuity of f at
x implies that there exists § > 0 such that if p(y, x) < § then | f(y) — f(x)| < &,
and so y € U. We thus proved that for each x € U there exists a §-disk U,(x, p)
contained in G; that is, G is open in (M, p).

Conversely, suppose that each set is open in (M, p) whenever it is open in
(M, pr). For each x € (M, py), there is an e-disk U, (x, ¢) contained in M since
M is open under ps; then Uy, (x, ¢) is open in (M, p) since U, (x,¢) is open in
(M, pr). Hence, there is an §-disk U,(x, §) such that U,(x,8) C U, (x,¢); that is,
if p(y,x) < 8, then | f(y) — f(x)| < &. So f is continuous on M. O

2D. Disks Are Open

» EXERCISE 15. For any subset A of a metric space M and any ¢ > 0, the set
U(A,¢) is open.

PROOF. Let A C M and ¢ > 0. Take an arbitrary point x € U(A4,¢); take an
arbitrary point y € A4 such that p(x, y) < ¢. Observe that every e-disk U(y, ¢) is
contained in U(A4, ¢). Since x € U(y, ¢) and U(y, ¢) is open, there exists an §-disk
U(x, ) contained in U(y, ¢). Therefore, U(A4, ¢) is open. O
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2E. Bounded Metrics

» EXERCISE 16. If p is any metric on M, the distance function p*(x,y) =
min{p(x, y,), 1} is a metric also and is bounded.

PROOF. To see p* is a metric, it suffices to show the triangle inequality. Let
x,y,z € M. Then

p*(x,z) = min{p(x, z), 1} < min{p(x, y) + p(y, z), 1}
< min{p(x, y), 1} + min{p(y, z). 1}
=p"(x,y) +p" (¥, 2).

It is clear that p* is bounded above by 1. |

» EXERCISE 17. A function f is continuous on (M, p) iff it is continuous on
(M, p*).

PROOF. It suffices to show that p and p* are equivalent. If G is open in (M, p),
then for each x € G there is an e-disk U,(x,¢) C G. Since Up«(x,&) C Uy(x,¢),
we know G is open in (M, p*). Similarly, we can show that G is open in (M, p*)
whenever it is open in (M, p). |

2F. The Hausdorff Metric

Let p be a bounded metric on M; that is, for some constant 4, p(x, y) < A for
all x and y in M.

» EXERCISE 18. Show that the elevation of p to the power set ® (M) as defined
in 2.4 is not necessarily a pseudometric on ®(M).

PROOF. Let M := {(x1,x;) € R? : x? + x2 < 1}, and let p be the usual metric.
Then p is a bounded metric on M. We show that the function p*: (E, F)
infreg yer p(x,y), for all E,F € ®(M), is not a pseudometric on ®(M) by
showing that the triangle inequality fails. Let £, F,G € ®(M), where E =
Up((—1/4,0),1/4), G = U,((1/4,0),1/4), and F meets both E and G. Then
p*(E,G) > 0,but p*(E, F) = p*(F,G) = 0. |

» EXERCISE 19. Let ¥ (M) be all nonempty closed subsets of M and for A, B €
F (M) define

dqa(B) = sup{p(4,x) : x € B}
d(A, B) = max{d4(B),dg(A)}.

Then d is a metric on ¥ (M) with the property that d({x},{y}) = p(x,y). It is
called the Hausdorff metric on ¥ (M).
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PROOF. Clearly, d is nonnegative and symmetric. If d(A4, B) = 0, then d4(B) =
dp(A) =0, i.e., sup,cp p(A,y) = SUP,cy4 p(B, x) = 0. But then p(4, y) = 0 for all
y € B and p(B,x) = 0 for all x € A. Since 4 is closed, we have y € A for all
y € B; thatis, B C A. Similarly, A C B. Hence, A = B.

We next show the triangle inequality of d. Let 4, B,C € ¥ (M). For an ar-
bitrary point a € A, take a point » € C such that p(a,b) = p(B,a) (since B is
closed, such a point exists). Then

pla,b) < sup p(B,x) = dp(A) < d(A, B).
x€A

For this b € B, we take a point ¢ € C such that p(b,c) < d(B, C). Therefore,
pla,c) < pla,b) + p(b,c) < d(A, B) + d(B,C).

We thus proved that for every a € A, there exists ¢ € C (depends on a), such
that p(a,c) < d(A, B) + d(B, C). In particular, we have

pla,C) = in(i; pla,z) <d(A,B) +d(B,C).
A4S
Since the above inequality holds for all ¢ € A4, we obtain

dc(A) = sup p(a, C) < d(A, B) + d(B, C). (1.1)
xeA

Similarly, for each ¢ € C there exists b € B with p(c,b) < d(B, C); for this b,
there exists a € A with p(a,b) < d(A, B). Hence p(a,c) < d(A, B) + d(B,C) for
all ¢ € C. The same argument shows that

da(C) < d(A,B) +d(B,C). (1.2)

Combining (1.1) and (1.2) we get the desired result.
Finally, notice that di,({y}) = dg({x}) = p(x,y); hence, d({x},{y}) =
p(x, ). O

» EXERCISE 20. Prove that closed sets A and B are “close” in the Hausdorff
metric iff they are “uniformly close”; that is, d(A, B) < ¢ iff A C Uy(B,¢) and
B CU,(A,e).

PROOF. If d(A, B) < ¢, then sup,cp p(A.y) = pa(B) < g; that is, p(A4,y) < e for
all y € B,so B C U,(4, ¢). Similarly, A C U,(B, ¢).

Conversely, if A C U,(B,¢), then p(B.x) < ¢ for all x € A. Since 4 is closed,
we have dp(A4) < ¢; similarly, B C U,(A,¢) implies that dq(B) < e. Hence,
d(A,B) <e. O
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2G. Isometry

Metric spaces (M, p) and (N, o) are isometric iff there is a one-one function f
from M onto N such that p(x,y) = o(f(x), f(y)) for all x and y in M; f is
called an isometry.

» EXERCISE 21. If f is an isometry from M to N, then both f and f~! are
continuous functions.

PROOF. By definition, f is (uniformly) continuous on M: for every ¢ > 0, let
8 = ¢g; then p(x, y) < § implies that o(f(x), f(¥)) = p(x,y) <e.

On the other hand, for every ¢ > 0 and y € N, pick the unique f~!(y) €
M (since f is bijective). For each z € N with o(y,z) < ¢ we must have
p(f7 ), 1) = o (f(fT (), f(fTH(2) = 0(y,2) < thatis, f~! is con-

tinuous. 0
» EXERCISE 22. R is not isometric to R? (each with its usual metric).

PROOF. Consider S! = {(x,y) € R? : x2 + y2 = 1}. Notice that there are only
two points around f~1(0,0) with distance 1. O

» EXERCISE 23. I is isometric to any other closed interval in R of the same
length.

PROOF. Consider the function f: 1 — [a,a + 1] defined by f(x) = a + x for all
x el. 0



2

TOPOLOGICAL SPACES

2.1 FUNDAMENTAL CONCEPTS

3A. Examples of Topologies

» EXERCISE 24. If ¥ is the collection of all closed, bounded subset of R (in its
usual topology), together with R itself, then ¥ is the family of closed sets for a
topology on R strictly weaker than the usual topology.

PROOF. It is easy to see that % is a topology. Further, for instance, (—o0, 0] is a
closed set of R, but it is not in %. O

» EXERCISE 25. If A C X, show that the family of all subsets of X which contain
A, together with the empty set @, is a topology on X. Describe the closure and
interior operations. What topology results when A = @? when A = X?

PROOE. Let
E={ECX:ACE}U{J}.

Now suppose that E; € & for each A € A. Then A C |J, E, C X and so
J E, € &. The other postulates are easy to check.
For any set B C X, if A C B, then B € & and so B° = B; if not, then B° = @.
If A = @, then & is the discrete topology; if A = X, then & = {&, X}. O

3D. Regularly Open and Regularly Closed Sets

An open subset G in a topological space is regular open iff G is the interior of
its closure. A closed subset is regularly closed iff it is the closure of its interior.

» EXERCISE 26. The complement of a regularly open set is regularly closed and
vice versa.

PROOF. Suppose G is regular open; that is, G = (G)°. Then
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X~G=X~G)P°=X~G=X~G)P.
Hence, X ~ G is regularly closed. If F is regular closed, i.e., F = F°, then
X~F=X~F°=(X~F)°=X~F)
that is, X ~ F is regularly open. O
» EXERCISE 27. There are open sets in R which are not regularly open.

PROOF. Consider Q. We have (Q)° = R° = R # Q. So @ is not regularly open.
o

» EXERCISE 28. If A is any subset of a topological space, then int(cl(A)) is reg-
ularly open.

PROOF. Let A4 be a subset of a topological space X. We then have
int(cl(A4)) c cl(int(cl(4))) = int(cl(4)) = int(int(cl(A4))) C int(cl(int(cl(A)))),
and

int(cl(A4)) C cl(4) = cl(int(cl(A))) C cl(cl(4)) = cl(A4)
— int(cl(int(cl(A)))) C int(cl(A)).

Therefore, int(cl(4)) = int(cl(int(cl(4)))); that is, int(cl(A4)) is regularly open.
O

» EXERCISE 29. The intersection, but not necessarily the union, of two regularly
open sets is regularly open.

PROOF. Let 4 and B be two regularly open sets in a topological space X. Then
(ANB)° C (AN B)°=(A)°N(B)° =ANB,
and
(ANB) = (A)°N(B)°=ANBCANB
— ANB=(ANB)° = [(/Tm §)°]° c (AN B)°.

Hence, AN B = (AN B)°.
To see that the union of two regularly open sets is not necessarily regularly
open, consider A = (0,1) and B = (1,2) in R with its usual topology. Then

(AUB)° =[0,2]° = (0,2) # AU B. O
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3E. Metrizable Spaces

Let X be a metrizable space whose topology is generated by a metric p.

» EXERCISE 30. The metric 2p defined by 2p(x,y) = 2 - p(x,y) generates the
same topology on X .

PROOF. Let 9, be the collection of open sets in (X, p), and let 9, be the col-
lection of open sets in (X, 2p). If O € O,, then for every x € O, there exists an
open ball B,(x,¢) € O; but then B,,(x,&/2) C O. Hence, O € 0»,. Similarly, we
can show that 9, C 0,. In fact, p and 2p are equivalent metrics. O

» EXERCISE 31. The closure of aset E C X isgivenby E = {y € X : p(E,y) = 0}.

PROOF. Denote E := {y € X : p(E,y) = 0}. We first show that E is closed
(see Definition 2.5, p. 17). Take an arbitrary x € X such that for every n € N,
there exists y, € E with p(x, y,) < 1/2n. For each y, € E, take z, € E with
0(Vn,zn) < 1/2n. Then

o(x,zp) < p(x, yn) + p(¥n,zn) < 1/n, foralln e N.

Thus, p(x, E) = 0, i.e., x € E. Therefore, E is closed. It is clear that £ C E, and
so E C E.

We next show that £ € E. Take an arbitrary x € E and a closed set K
containing E. If x € X~ K, then p(x, K) > 0 (see Exercise 35). But then p(x, E) >
0 since E C K and so

inf ,y) = inf ,Z).
Jnf p(x,y) Zer(x z)
Hence, E C E. O

» EXERCISE 32. The closed disk U(x,g) = {y : p(x,y) < &} is closed in X, but
may not be the closure of the open disk U(x, ¢).

PROOF. Fix x € X. We show that the function p(x,:): X — R is (uniformly)
continuous. For any y, z € X, the triangle inequality yields

lo(x,y) — p(x,2)] < p(y,2).

Hence, for every ¢ > 0, take § = &, and p(x, ) satisfies the &-§ criterion. There-
fore, U(x,?) is closed since U(x,g) = p~!(x, [0, ¢]) and [0, ¢] is closed in R.

To see it is not necessary that U(x, s) = U(x, ¢), consider ¢ = 1 and the usual
metric on

{(x,y)e[Rz:x2+y2=1}U{(x,0)e[|22:0$x§1};

see Figure 2.1. Observe that (0,0) ¢ U(x, 1), but (0,0) € U(x, 1). It follows from
Exercise 31 that (0,0) ¢ U(x, 1). O
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FIGURE 2.1. U(x,1) # U(x, 1).

3H. Gg and F,; Sets

» EXERCISE 33. The complement of a Gg is an F,, and vice versa.

PROOF. If A is a Gs set, then there exists a sequence of open sets {U,} such
that A = (,2, Ux. Then A¢ = (J;2, Uf is F,. Vice versa. O

» EXERCISE 34. An F,; can be written as the union of an increasing sequence
Fi C F> C --- of closed sets.

PROOF. Let B = (J,2 | E,, where E, is closed for all n € N. Define F; = E;
and F, = U;’zl E; for n = 2. Then each F, is closed, F; ¢ F, C ---, and
Unzi Fr = U2y = B. u

» EXERCISE 35. A closed set in a metric space is a Gg.
PROOF. For an arbitrary set A € X and a point x € X, define
p(x, A) = yirelfl{p(x,y)}-
We first show that p(:, A): X — R is (uniformly) continuous by showing
lo(x, A) — p(y, A)| < p(x,y), forall x,y e X. (2.1)
For an arbitrary z € 4, we have
p(x, 4) < p(x,2) < p(x,y) + p(y,2).
Take the infimum over z € 4 and we get

p(x,4) < p(x,y) + p(y, A). (2.2)
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Symmetrically, we have

p(y,4) < p(x,y) + p(x, A). (2.3)

Hence, (2.1) follows from (2.2) and (2.3). We next show that if 4 is closed, then

p(x,A) = 0 iff x € A. The “if” part is trivial, so we do the “only if” part. If

po(x, A) = 0, then for every n € N, there exists y, € 4 such that p(x, y,) < 1/n;

that is, y, — x. Since {y,} C A and 4 is closed, we must have x € A.
Therefore,

A=({xeX :p(x,A)<1/n}.

n=1
The continuity of p(-, A) implies that {x € X : p(x, A) < 1/n} is open for all n.
Thus, A is a G4 set. O

» EXERCISE 36. The rationals are an F; in R.

PROOEF. Q is countable, and every singleton set in R is closed; hence, Q is an
Fs. d

3I. Borel Sets

2.2 NEIGHBORHOODS

4A. The Sorgenfrey Line

» EXERCISE 37. Verify that the set [x, z), for z > x, do form a nhood base at x
for a topology on the real line.

PROOF. We need only check that for each x € R, the family 8, := {[x,z) : z > x}
satisfies V-a, V-b, and V-c in Theorem 4.5. V-a is trivial. If [x,z;) € B, and
[x,22) € By, then [x,z1) N [x,z2) = [x,z1 Az2) € By and is in [x,z;) N [x, 22).
For V-c, let [x,z) € Bx. Let 2/ € (x,z]. Then [x,z) € By, and if y € [x,Z’), the
right-open interval [y,z’) € 8, and [y.z’) C [x,2).

Then, define open sets using V-d: G C R is open if and only if G contains a
set [x, z) of each of its points x. O

» EXERCISE 38. Which intervals on the real line are open sets in the Sorgenfrey
topology?

SOLUTION.
e Sets of the form (—o0, x), [x, z), or [x, c0) are both open and closed.

e Sets of the form (x, z) or (x, +0o0) are open in R, since

(x,z):U{[y,z):x<y<z}. O
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» EXERCISE 39. Describe the closure of each of the following subset of the Sor-

genfrey line: the rationals Q, the set{1/n: n = 1,2,...,}, theset{—1/n:n =1,2,...

the integers Z.

SOLUTION. Recall that, by Theorem 4.7, for each £ C R, we have

E = {x € R: each basic nhood of x meets E}.

Then Q = R since for any x € R, we have [x,z) N Q # @ for z > x. Similarly,
{(I/n:n=12,..}={1/n:n=12,..}and Z = Z. 0

4B. The Moore Plane

» EXERCISE 40. Verify that this gives a topology on I.

PROOE. Verify (V-a)—(V-c). It is easy. O

4E. Topologies from nhoods

» EXERCISE 41. Show that if each point x in a set X has assigned a collection
U, of subsets of X satisfying N-a through N-d of 4.2, then the collection

t={GCX:foreachx inG,x € U CG for someU € U,}
is a topology for X, in which the nhood system at each x is just U,.

PROOF. We need to check G1—G3 in Definition 3.1. Since G1 and G3 are evi-
dent, we focus on G2. Let £y, E, € t. Take any x € E; N E,. Then there exist
some U;,U, € Uy such that x € U; C E; and x € U, C E,. By N-b, we know
that U; N U, € U,. Hence,

xeU NUy, C E1NE,,

and so E1 N E, € 7. The induction principle then means that 7 is closed under
finite intersections. |

4F. Spaces of Functions

» EXERCISE 42. For each f € R, each finite subset F of 1 and each positive §,
let
U(f, F.8) = {g e Rl : |g(x) — f(x)| <6, for each x € F}.

Show that the sets U(f, F.8) form a nhood base at f, making R! a topological
space.

PROOE. Denote
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By ={U(f.F.8) : F CL,|F| < 00,8 > 0}.
(V-a) For each U(f, F,§) € By, we have |f(x) — f(x)| = 0 < § for all x € F;
hence, f € U(/f, F,§).
(V-b) Let U(f, F1,61). U(f, F»,62) € Br. Define U(f, F3, §3) by letting

F; = FiUF,, and 53 = min{81,82}.
Clearly, U(f, F3.63) € Br.1f g € U(f. F3,63), then
lg(x) — f(x)] < min{d;,8,}, forallx € F; U F;,.

Hence, |g(x) — f(x)| < &, forall x € F; and |g(x) — f(x)| < &, for all x € F,; that
is, g € U(f, F1,81) N U(f, F», §2). Hence, there exists U(f, F3,83) € B8y such that
U(f, F3,83) C U(f, F1,81) NU(f, F2, 82).

(V-¢) Pick U(f, F,$) € Br. We must show that there exists some U(f, Fo, o) €
Bs such that if g € U(f. Fo.80), then there is some U(g, F',§') € B, with
U(g, F',§) C U(J. F,9).
Let Fy = F, and 6o = §/2. Then U(f, F,§/2) € By. For every g € U(f, F.§/2),
we have
lg(x) — f(x)] <6/2, forall x € F.

LetU(g, F’,8') = U(g, F,§/2).1f h € U(g, F,38/2), then
|h(x) — f(x)| <§8/2, forall x € F.
Triangle inequality implies that
[h(x) — f(x)| < Jh(x) —g(x)| + |g(x) — f(x)] <8/2+6/2=46, forall x e F;

thatis, h € U(f, F,8). Hence, U(g, F,5/2) C U(f, F,9).
Now, G C Rl is open iff G is contains a U(f, F, §) of each f e G. This defines
a topology on RI. O

» EXERCISE 43. For each f e RL, the closure of the one-point set { f} is just { f}.

PROOF. For every g € RI < {f}, pick x € T with g(x) # f(x). Define U(g. F, §)
with F = {x} and § < |g(x) — f(x)|. Then f ¢ U(g,{x},§); thatis, U(g, {x},d) €
RY < {f}. Hence, R < { f} is open, and so { f} is closed. This proves that { f}
{f}

» EXERCISE 44. For f € Rl and e > 0, let

o |l

V(f.e) = {g e R : |g(x) — f(x)| <&, foreachx e 11}.

Verify that the sets V(f.e) form a nhood base at f, making R! a topological
space.
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PROOF. Denote Vy = {V(f,¢) : ¢ > 0}. We verify the following properties.
V-a) If V(f.e) € Vg, then | f(x) — f(x)| =0 < ¢ thatis, f € V(f.¢).
(V-b) Let V(f.e1), V(f.e2) € Vr. Let 3 = min{ey, &2}. If g € V(f, &3), then

lg(x) — f(x)] < &3 = min{e;,e,}, forall x € 1.

Hence, V(f,e3) C V(f.e1) N V(f, &2)-

(V-c) For an arbitrary V(f,e) € Vy, pick V(f,e/2) € V. For each g € V(f,¢/2),
pick V(g,e/2) € Vo. If h € V(g,¢/2), then |h(x) — g(x)| < /2 for all x € II. Hence

|h(x) = f(O)] < |h(x) —g(x)] + |[g(x) — f(X)] <&
that is, V(g,e/2) C V(f, e). |
» EXERCISE 45. Compare the topologies defined in 1 and 3.

PrROOF. It is evident that for every U(f, F,5) € By, there exists V(f,8) € V¢
such that V(f,8) € U(f, F,§). Hence, the topology in 1 is weaker than in 3 by
Hausdorff criterion. o

2.3 BASES AND SUBBASES

5D. No Axioms for Subbase

» EXERCISE 46. Any family of subsets of a set X is a subbase for some topology
on X and the topology which results is the smallest topology containing the
given collection of sets.

PROOF. Let § be a family of subsets of X. Let t(§) be the intersection of all
topologies containing S. Such topologies exist, since 2% is one such. Also 7($)
is a topology. It evidently satisfies the requirements “unique” and “smallest.”
The topology 7(S) can be described as follows: It consists of @, X, all finite
intersections of the $-sets, and all arbitrary unions of these finite intersections.
To verify this, note that since § C ©($), then 7(§) must contain all the sets
listed. Conversely, because [ J distributes over (), the sets listed actually do
from a topology containing §, and which therefore contains z(§). |

5E. Bases for the Closed Sets

» EXERCISE 47. ¥ is a base for the closed sets in X iff the family of complements
of members of ¥ is a base for the open sets.
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PROOF. Let G be an open setin X. Then G = X ~ E for some closed subset E.
Since E = (\pegcy F, We obtain

G=X~ ﬂF: UFC.

FegCc¥ FegCc¥

Thus, {F¢ : F € ¥} forms a base for the open sets. The converse direction is
similar. O

» EXERCISE 48. % is a base for the closed sets for some topology on X iff (a)
whenever Fi and F, belong to ¥, F; U F, is an intersection of elements of ¥,
and (b) \peg F = 2.

PROOF. If ¥ is a base for the closed sets for some topology on X, then (a)
and (b) are clear. Suppose, on the other hand, X is a set and ¥ a collection
of subsets of X with (a) and (b). Let 7 be all intersections of subcollections
from % . Then any intersection of members of 7 certainly belongs to 7, so T
satisfies (F-a). Moreover, if 1 C ¥ and ¥, C ¥, so that (g, E and (peg, F
are elements of 7, then

NE|IVINF]l= (EUF.

EG?”] FE}’Z EG{F] FG‘(FZ

But by property (a), the union of two elements of % is an intersection of el-
ements of ¥, s0 ((\geg, £) U ((NFres, F) is an intersection of elements of ¥,
and hence belongs to 7. Thus 7 satisfies (F-b). Finally, o € 7 by (b) and X € T
since X is the intersection of the empty subcollection from ¥. Hence 7 sat-
isfies (F-c). This completes the proof that 7 is the collection of closed sets of
X. O






NEW SPACES FROM OLD

3.1 SUBSPACES

3.2 CONTINUOUS FUNCTIONS

7A. Characterization of Spaces Using Functions

» EXERCISE 49. The characteristic function of A is continuous iff A is both open
and closed in X.

PROOF. Let 14: X — R be the characteristic function of A4, which is defined by

1 ifxed

ﬂ =
4 (%) 0 ifx¢A.

First suppose that 1,4 is continuous. Then, say, 1! ((1/2,2)) = A is open,

and 15! ((—1, 1/2)) = X ~ A is open. Hence, 4 is both open and closed in X.
Conversely, suppose that 4 is both open and closed in X. For any open set
U C R, we have

A ifleUand0¢ U
X~A if1¢Uand0eU
o)== " ’
ifl¢Uand0¢U
X ifleU and 0 € U.
Then 14 is continuous. O

» EXERCISE 50. X has the discrete topology iff whenever Y is a topological space
and f: X — Y, then f is continuous.

PROOF. Let Y be a topological space and f: X — Y. It is easy to see that f
is continuous if X has the discrete topology, so we focus on the sufficiency

19
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direction. For any 4 C X, let Y = R and f = 14. Then by Exercise 49 4 is
open. |

7C. Functions Agreeing on A Dense Subset

» EXERCISE 51. If f and g are continuous functions from X to R, the set of
points x for which f(x) = g(x) is a closed subset of X. Thus two continuous
maps on X to R which agree on a dense subset must agree on all of X.

PROOF. Denote 4 = {x € X : f(x) # g(x)}. Take a point y € A such that
f(y) > g(y) (f it is not true then let g(y) > f(y)). Take an ¢ > 0 such that
f(y)—e = g(y)+e. Since f and g are continuous, there exist nhoods U; and U,

of y such that f[Ui] C (=& + f(y).e + f(y)) and g[U>] C (=& + g(y).& + g(¥)).
Let U = U; N U,. Then U is a nhood of x and for every z € U we have

f(2)—g(2) > [f(x) —&] = [g(x) + ] = 0.

Hence, U C A4; that is, U is open, and so {x € X : f(x) = g(x)} = X ~U is
closed.

Now suppose that D := {x € X : f(x) = g(x)} is dense. Take an arbitrary
x € X.Since f and g are continuous, for each n € N, there exist nhoods Vy and
Ve such that | f(y) — f(x)| < 1/n for all y € Vy and |g(y) — g(x)| < 1/n for all
y € Vg.Let V,, = VyNV,. Then there exists x, € V,ND with | f(x,)— f(x)| < 1/2n
and |g(x,) — g(x)| < 1/2n. Since f(x,) = g(x,), we have

|f(x) =g < [f () = fxn)| + [f(xn) — g0 = [/ (x) = f(xn)| + 8 (xn) — g(x)]
< 1/n.

Therefore, f(x) = g(x). |

7E. Range Immaterial

» EXERCISE 52. If Y C Z and f: X — Y, then f is continuous as a map from
X toY iff f is continuous as a map from X to Z.

PROOF. Let f: X — Z be continuous. Let U be openin Y. Then U =Y NV for
some V which is open in Z. Therefore,

Oy =frtan)y=tn W =xn Tty =0

is open in X, and so f is continuous as a map from X to Y.

Conversely, let f: X — Y be continuous and V be open in Z. Then
f7YWV) = f/Y (Y nV).Since Y NV is open in Y and f is continuous from
X toY,theset f~1 (Y NV)isopenin X and so f is continuous as a map from
X to Z. O
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7G. Homeomorphisms within the Line

» EXERCISE 53. Show that all open intervals in R are homeomorphic.

PROOF. We have

e (a,b) ~(0.1) by fi(x) = (x —a)/(b —a).

e (a,00) ~ (l,00) by fo(x) =x—a+ 1.

e (1,00) ~(0,1) by f3(x) = 1/x.

o (—00,—a) ~ (a,00) by fa(x) = —x.

e (—00,00) ~ (—m/2,7/2) by f5(x) = arctan x.

Therefore, by compositing, every open interval is homeomorphic to (0,1). O
» EXERCISE 54. All bounded closed intervals in R are homeomorphic.

PROOF. [a,b] ~ [0,1] by f(x) = (x —a)/(b — a). O

» EXERCISE 55. The property that every real-valued continuous function on X
assumes its maximum is a topological property. Thus, 1 := [0, 1] is not homeo-
morphic to R.

PROOF. Every continuous function assumes its maximum on [0, 1]; however, x?2
has no maximum on R. Therefore, T £ R. O

7K. Semicontinuous Functions

» EXERCISE 56. If fy is a lower semicontinuous real-valued function on X for
each a € A, and if sup, f,(x) exists at each x € X, then the function f(x) =
sup, fo(x) is lower semicontinuous on X.

PROOF. For an arbitrary a € R, we have f(x) < a iff f,(x) < a for all @ € A.
Hence,
(xeX:f)<e}=[{xeX: fulx) <a}.

aeAd

and so f~1(—o0,q] is closed; that is, f is lower semicontinuous. |

» EXERCISE 57. Every continuous function from X to R is lower semicontinuous.
Thus the supremum of a family of continuous functions, if it exists, is lower
semicontinuous. Show by an example that “lower semicontinuous” cannot be
replaced by “continuous” in the previous sentence.

PROOF. Suppose that f: X — R is continuous. Since (—oo, x] is closed in R, the
set f~!(—oo, x] is closed in X; that is, f is lower semicontinuous.
To construct an example, let f: [0, c0) — R be defined as follows:
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£100) nx ifoO<x<1/n
X) =
" 1 ifx>1/n.
Then

e =sup fun =0 =0

XxX) =sup fu(x) =
n 1 if x>0,

and f is not continuous. |

» EXERCISE 58. The characteristic function of a set A in X is lower semicontin-
uous iff A is open, upper semicontinuous iff A is closed.

PROOF. Observe that

%) ifa<0
17 (~00,al = { X~ 4 ifo<a<l
X ifa>=1.
Therefore, 14 is LSC iff A4 is open. Similarly for the USC case. O

» EXERCISE 59. If X is metrizable and f is a lower semicontinuous function
from X to 1, then f is the supremum of an increasing sequence of continuous
functions on X to 1.

PROOF. Let d be the metric on X. First assume f is nonnegative. Define
fu(x) = inf {f(z) + nd(x,2)}.
zeX

If x,y € X, then f(z) +nd(x,z) < f(z) +nd(y,z) + nd(x, y). Take the inf over z
(first on the left side, then on the right side) to obtain f,(x) < f,(y) +nd(x, y).
By symmetry,

| fn(x) = fu(P)] < nd(x, y);

hence, f, is uniformly continuous on X. Furthermore, since f > 0, we have
0< fu(x) < f(x)+nd(x,x) = f(x). By definition, f, increases with n; we must
show that lim,, f, is actually f.

Given ¢ > 0, by definition of f,(x) there is a point z, € X such that

Jn(X) + &> f(zn) +nd(x.zp) = nd(x, z,) (3.1)

since f = 0. But f,(x) + ¢ < f(x) + ¢; hence d(x,z,) — 0. Since f is LSC, we
have liminf, f(z,) = f(x) (Ash, 2009, Theorem 8.4.2); hence

fn) > f(x)—¢ ev. (3.2)
By (3.1) and (3.2),

Ja(X) > f(zn) —e+nd(x.zp) = f(zn) —& > f(x) —2¢
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for all sufficiently large n. Thus, f,(x) — f(x).
If |f] <M < oo, then f + M is LSC, finite-valued, and nonnegative. If 0 <
gn 1 (f+ M), then f, = (g, — M) 1 f and | f4| = M. o

7M. C(X) and C*(X)

» EXERCISE 60. If f and g belong to C(X), thensodo f +g, f-g anda- f, for
a € R. If, in addition, f and g are bounded, thensoare f + g, f-ganda- f.

PROOF. We first do f + g. Since f,g € C(X), for each x € X and each ¢ > 0,
there exist nhoods U; and U, of x such that f[U;] C (—&/2 + f(x),&e/2 + f(x))
and g[Uz] C (—&/2+ g(x),e/2+ g(x)). Let U = U; N U,. Then U is a nhood of x,
and for every y € U, we have

D)+ e =[f(x) + g < [f() = F) + 1g(y) —g0)| <&

that is, f + g is continuous.

We then do a - f. We suppose that a > 0 (all other cases are similar). For
each x € X and ¢ > 0, there exists a nhood U of x such that f[U] C (—¢/a +
f(x),e/a+ f(x)). Then (a- fHlU]l € (—e+a- f(x),e+a- f(x)).Soa- f € C(X).

Finally, to do f - g, we first show that f? € C(X) whenever f € C(X). For
each x € X and ¢ > 0, there is a nhood U of x such that f[U] C (=& +
f(x), Ve + f(x)). Then f2[U] C (—e + f2(x).e + f2(x)), e, f? € C(X). Since

1
F)-8@) = 7 [(F0) +8(0)* = (F0) =g @)’
we know that f - g € C(X) from the previous arguments. |
» EXERCISE 61. C(X) and C*(X) are algebras over the real numbers.

PROOF. It follows from the previous exercise that C(X) is a vector space on R.
So everything is easy now. O

» EXERCISE 62. C*(X) is a normed linear space with the operations of addition
and scalar multiplication given above and the norm || f|| = sup,ex | f(x)|.

PROOF. It is easy to see that C*(X) is a linear space. So it suffices to show that
| -1l is @a norm on C*(X). We focus on the triangle inequality. Let f, g € C*(X).
Then for every x € X, we have | f(x) + g(x)| < [f()] + [g(x)| < Il + lglls
hence, || f + gl < L/l + lIg]l- O
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3.3 PRODUCT SPACES, WEAK TOPOLOGIES

8A. Projection Maps

» EXERCISE 63. The Bth projection map ng is continuous and open. The projec-
tion 1 : R? — R is not closed.

PROOF. Let Ug be open in Xg. Then ngl(Uﬁ) is a subbasis open set of the
Tychonoff topology on X, X., and so is open. Hence, 7y is continuous.
Take an arbitrary basis open set U in the Tychonoff topology. Denote [ :=
{1,...,n}. Then
U= X Uy,
o

where U, is open in X, for every « € 4, and Uy, = X, for all j ¢ I. Hence,

) Ug if p=ow; for somei €[
s =
¢ Xp otherwise.

That is, wg(U) is open in Xz in both case. Since any open set is a union of
basis open sets, and since functions preserve unions, the image of any open
set under ng is open.

FIGURE 3.1. 71 (F) = (0,00)

Finally, let F = epi(1/x). Then F is closed in R?, but 7, (F) = (0, c0) is open
in R; that is, m; is not closed. See Figure 3.1. O

» EXERCISE 64. Show that the projection of T x R onto R is a closed map.

PROOF. Let 7: I x R — R be the projection. Suppose A Cc I x R is closed, and
suppose yo € R ~ w[A]. For every x € I, since (x,yo) ¢ A and A is closed,
we find a basis open subset U(x) x V(x) of I x R that contains (x, y¢), and
[U(x) x V(x)] N A = @. The collection {U(x) : x € I} covers I, so finitely many
of them cover I by compactness, say U(x1),...,U(x,) do. Now define V =
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‘=, V(xi), and note that V is an open nhood of yo, and V N rx[A] = @. So w[A]
is closed; that is, = is closed. See Lee (2011, Lemma 4.35, p. 95) for the Tube
Lemma.

Generally, if 7: X x Y — X is a projection may where Y is compact, then =
is a closed map. 0

8B. Separating Points from Closed Sets

» EXERCISE 65. If fy is a map (continuous function) of X to X, for each a € A,
then {fy : @ € A} separates points from closed sets in X iff {f,'[V] : a €
A,V open in Xy} is a base for the topology on X .

PROOF. Suppose that {f,1[V]:« € A,V open in X,} consists of a base for the
topology on X. Let B be closed in X and x ¢ B. Thenx € X ~ B and X ~ B is
open in X. Hence there exists f, '[V] such that x € £, ![V] C X ~ B; that is,
fu(x) € V.Since V N fu[B] = @, i.e., fo[B] C Xo ~V, and X, ~ V is closed, we
get fo[B] C Xo ~ V. Thus, fo(x) ¢ fo[B].

Next assume that { f, : « € A} separates points from closed sets in X. Take
an arbitrary open subset U C X and x € U. Then B := X ~ U is closed in X,
and hence there exists o € 4 such that fy(x) ¢ fy[B]. Then fy(x) € Xo ~ fo[B]
and, since X, ~ m is open in X, there exists an open set V of X, such that

fu(x) € V C Xo ~ fo[B]. Therefore,

xe ' € i [ Yo~ RalBT) = X~ £ [ FulBI
C X~ ;' [falBI
CX~B
=U.

Hence, { f,"![V]: o € A,V open in X,} is a base for the topology on X. |

8D. Closure and Interior in Products

Let X and Y be topological spaces containing subsets A and B, respectively. In
the product space X x Y:

» EXERCISE 66. (4 x B)° = A° x B°.

PROOF. Since A° C A is open in A and B° C B is open in B, the set A° x B° C
A x B is openin A x B; hence, A° x B° C (A x B)°.

For the converse inclusion, let x = (a,b) € (4 x B)°. Then there is an basis
open set U; x U, such that x € U; x Uy, C A x B, where U, is open in 4 and U,
is open in B. Hence,a € Uy C Aand b € U, C B; thatis,a € A° and b € B°.
Then x € A° x B°. O
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» EXERCISE 67. A x B = A x B.
PROOE. See Exercise 68. O

» EXERCISE 68. Part 2 can be extended to infinite products, while part 1 can be
extended only to finite products.

PROOF. Assume that y = (yo) € X Aq; we show that y, € A, for each o; that
is, y € X Aq. Let y, € Uy, where U, is open in Y,; since y e n; ' (Uy), we must
have

®7éna_1(Ua)mXAa=(UamAa)X<X Aﬁ),
B#a

and so U, N 4, # @. This proves y, € A,. The converse inclusion is established
by reversing these steps: If y € X Ag, then for any open nhood

B = Uy, X+ x Uy, x (X {Yp: B #al,...,an}),
each Uy, N Ay, # @ sothat BN X Ay # @. O
» EXERCISE 69. Fr(4 x B) = [A x Fr(B)] U [Fr(4) x B].

PROOF. We have

Fr(AxB)=AxBN(X xY)~(AxB)
=(AxB)N[(X xY)~ (4° x B%)]
:(foE)ﬂ[(XX(Y\B°))U((X\A°)><Y)]
= [A x Fr(B)] U [Fr(A) x B]. 0

» EXERCISE 70. If X, is a nonempty topological space and A, C X, for each
a € A, then X A, is dense in X X, iff Ay is dense in X, for each a.

PrROOF. It follows from Exercise 68 that
X Ay = X A_a§

that is, )X A4, is dense in X X, iff A, is dense in X, for each «. O

8E. Miscellaneous Facts about Product Spaces

Let X, be a nonempty topological space for each « € 4, and let X = X X,.

» EXERCISE 71. If V is a nonempty open set in X, then n,(V) = X, for all but
finitely many a € A.

PROOF. Let 7, be the topology on X, for each @ € A. Let V be an arbitrary open
setin X. Then V = |J;cx Bk, where for each k € K we have By = X ,c4 Eak:
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and for each @ € A we have Ey; € 7, while
Ak ZZ{WGAZEak#X(x}
is finite. Then (", cgx Ak is finite. If «p ¢ (;cx 4k, then there exists ko € K such

that Eq x, = Xo,- Then

na_()l(Bk()) = 7T¢x_01 <X Eako) = Xoto,

acA
and so X,, = 7, (Bi,) C 7, (V) implies that . .' (V) = Xo. O

» EXERCISE 72. If b, is a fixed point in X, for each o € A, then X&O ={xeX:
Xq = by Whenever o # ag} is homeomorphic to X,,,.

PROOF. Write an element in X, as (xqo,b—q,). Then consider the mapping
(Xag» b—ag) > Xoq- O

8G. The Box Topology

Let X, be a topological space for each o € A.

» EXERCISE 73. In X X, the sets of the form X U,, where U, is open in X,
for each o € A, form a base for a topology.

PROOF. Let B := { X Uy: @ € A, U, open in Xq}. Then it is clear that X X, €
B since X, is open for each « € A. Now take any By, B, € B, with B; = X U]}
and B, = X U2. Let

p=(p1,p2,...)eBlﬂBZ: X(Uo}mUj),

Then p, € U}l N U2, and so there exists an open set B, C X, such that p, €
By, CUYN U2 Hence, X B, € Band p € B C B, N By. O

8H. Weak Topologies on Subspaces

Let X have the weak topology induced by a collection of maps f,: X — X,
for o € A.

» EXERCISE 74. If each X, has the weak topology given by a collection of maps
gar: Xy — Yo, for A € Ay, then X has the weak topology given by the maps
garo fa: X > Yy forae Aand A € A,.

PROOF. A subbase for the weak topology on X, induced by {g,3 : A € A} is

{g@l (Uaa) 1 A € Ay, Uy, openin YM} )
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Then a subbasic open set in X for the weak topology on X induced by
{fo i € A}is

{fa_l[g;j(UaA)] ca € A, A € Ay, Uy, open in Yal}.
Since f;7'(g,1(Uar)) = (ar © fu) ' (Uan), We get the result. 0
» EXERCISE 75. Any B C X has the weak topology induced by the maps f,| B.
PROOF. As a subspace of X, the subbase on B is
{B N £ (Uy) :a € A, U, open in Xa}.

On the other hand, (fy B)"'(Uy) = BN f,;'(Uy) for every a € A and U, open
in X,. Hence, the above set is also the subbase for the weak topology induced
by {fu| B :a € A}. O

3.4 QUOTIENT SPACES

9B. Quotients versus Decompositions

» EXERCISE 76. The process given in 9.5 for forming the topology on a decom-
position space does define a topology.

PROOF. Let (X, 7) be a topological space; let D be a decomposition of X. Define
FcCchDisopenin § — U{F:Fe?} is open in X. (3.3)

Let T be the collection of open sets defined by (3.3). We show that (D, T) is a
topological space.

e Take an arbitrary collection {¥%;},c; C T; then | {F : F € %;}isopenin X
for each i € I. Hence, | J;c; i € T since

U r=U{U*

FeUier Fi iel \Fe%;
is open in X.

o Let %1, %, € T; then UEE,JVl E and UF€372 F are open in X. Therefore, 1 N
F> € T since

J F={UE|In[ U F

FeFfing Ee¥, Fe¥>

is open in X.

o e ¥ since | J@ = @ is open in X; finally, D € T since J D = X. O
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» EXERCISE 77. The topology on a decomposition space O of X is the quotient
topology induced by the natural map P: X — D. (See 9.6.)

PROOF. Let T be the decomposition topology of D, and let Tp be the quotient
topology induced by P. Take an open set ¥ € T; then | Jp.4 F is open in X.
Hence,

Pl =P JF|l=UUP'OH=F
Fe¥F Fe¥ Fe¥
is open in X, and so ¥ € Tp. We thus proved that T C Tp.

Next take an arbitrary ¥ € Tp. By definition, we have P~1(F) = (. 7 Fis
open in X. But then ¥ € T.

We finally prove Theorem 9.7 (McCleary, 2006, Theorem 4.18): Suppose
f: X — Y is a quotient map. Suppose ~ is the equivalence relation defined
on X by x ~ x'if f(x) = f(x’). Then the quotient space X/ ~ is homeomorphic
toY.

By the definition of the equivalence relation, we have the diagram:

X / Y
éop\
P N
X/ ~ > Y
/ h

Define h: X/ ~— Y by letting h([x]) = f(x). It is well-defined. Notice that
ho P = f since for each x € X we obtain

(ho P)(x) = h(P(x)) = h([x]) = f(x).

Both f and P are quotient maps so % is continuous by Theorem 9.4. We show
that & is injective, subjective and #~! is continuous, which implies that 4 is a
homeomorphism. If 4([x]) = h([x']), then f(x) = f(x') and so x ~ x’; that is,
[x] = [x], and & is injective. If y € Y, then y = f(x) since f is surjective and
h([x]) = f(x) = y so his surjective. To see that ~~! is continuous, observe that
since f is a quotient map and P is a quotient map, this shows P = 7~ !o f and
Theorem 9.4 implies that 2~! is continuous. O






CONVERGENCE

4.1 INADEQUACY OF SEQUENCES

10B. Sequential Convergence and Continuity

» EXERCISE 78. Find spaces X and Y and a function F: X — Y which is not
continuous, but which has the property that F(x,) — F(x) in Y whenever x, —
xinX.

PROOF. Let X = RR® and ¥ = R. Define F: RR — R by letting F(f) =
Sup,er | f(x)|. Then F is not continuous: Let

E = {f eR®: f(x) =0o0r1and f(x) = 0 only finitely often} ,

and let g € RR be the function which is 0 everywhere. Then g € E. However,
0 € F[E] since F(g) =0, and F[E] = {1}. 0

10C. Topology of First-Countable Spaces

Let X and Y be first-countable spaces.

» EXERCISE 79. U C X is open iff whenever x,, — x € U, then (x,) is eventually
inU.

PROOF. If U is open and x,, — x € U, then x has anhood V such thatx € V C
U. By definition of convergence, there is some positive integer ny such that
n = no implies x, € V C U; hence, (x,) is eventually in U.

Conversely, suppose that whenever x, — x € U, then (x,) is eventually in
U.If U is not open, then there exists x € U such that for every nhood of V of
x we have VN (X ~U) # @. Since X is first-countable, we can pick a countable
nhood base {V, : n € N} at x. Replacing V,, = (., Vi where necessary, we
may assume that V; D V5 D ---. Now V, N (X ~U) # @ for each n, so we
can pick x, € V, N (X ~ U). The result is a sequence (x,) contained in X ~ U

31



32 CHAPTER 4  CONVERGENCE

which converges to x € U; that is, x, — x but (x,) is not eventually in U. A
contradiction. O

» EXERCISE 80. F C X is closed iff whenever (x,) is contained in F and x, — x,
thenx € F.

PROOF. Let F be closed; let (x,) be contained in F and x, — x. Then x € F =
F.

Conversely, assume that whenever (x,) is contained in F and x,, — x, then
x € F. It follows from Theorem 10.4 that x € F with the hypothesis; therefore,
F C F,i.e., F = F and so F is closed. O

» EXERCISE 81. f: X — Y is continuous iff whenever x, — x in X, then

f(xp) = f(x)inY.

PROOF. Suppose f is continuous and x, — x. Since f is continuous at x,
for every nhood V of f(x) in Y, there exists a nhood U of x in X such that
f(U) C V. Since x, — x, there exists no such that n = ny implies that x, € U.
Hence, for every nhood V of f(x), there exists ng such that n = ny implies that
f(xn) € Vi thatis, f(xn) — f(x).

Conversely, let the criterion hold. Suppose that f is not continuous. Then
there exists x € X and a nhood V of f(x), such that for every nhood base
U,, n € N, of x, there is x, € U, with f(x,) ¢ V. By letting Uy D Uy D ---,
we have x, — x and so f(x,) — f(x); that is, eventually, f(x,) isin V. A
contradiction. O

4.2 NETS

11A. Examples of Net Converence

» EXERCISE 82. In RR, let
E = {f eRR: f(x) =0o0r1, and f(x) = 0 only finitely often},

and g be the function in R® which is identically 0. Then, in the product topology
on RR, g € E. Find a net (f3) in E which converges to g.

PROOF. Let Uy = {U(g, F.,¢) : ¢ > 0, F C R a finite set} be the nhood base of g.
Order U, as follows:

U(g, F1,e1) < U(g, F2,82) < U(g, F2,8) CU(g, F,¢2)
<= F; C F; and s, < ¢1.

Then U, is a directed set. So we have a net (fr ) converging to g. |



SECTION 4.2  NETS 33

11B. Subnets and Cluster Points

» EXERCISE 83. Every subnet of an ultranet is an ultranet.

PROOF. Take an arbitrary subset £ C X. Let (x;) be an ultranet in X, and
suppose that (x,) is residually in E, i.e., there exists some Ay € A such that
A = Ao implies that x; € E.If (x;,) is a subnet of (x;), then there exists some
to such that A, = A¢. Then for every u > po, we have A, = Ao, and so u = o
implies that x;, € E; thatis, (x,,) is residually in E. |

» EXERCISE 84. Every net has a subnet which is an ultranet.
PROOEF. See Adamson (1996, Exercise 127, p. 40). O
» EXERCISE 85. If an ultranet has x as a cluster point, then it converges to x.

PROOF. Let (x;) be an ultranet, and x be a cluster point of (x,). Let U be a
nhood of x. Then (x,) lies in U eventually since for any A, there exists A = A,
such that x, € U. 0

11D. Nets Describe Topologies

» EXERCISE 86. Nets have the following four properties:
a. ifxy = x foreach A € A, then x; — x,
b. if x;, — x, then every subnet of (x,) converges to x,

c. if every subnet of (x,) has a subnet converging to x, then (x,) converges to

X,

d. (Diagonal principal) if x; — x and, for each A € A, a net (xﬁ)uE M, converges
to x,, then there is a diagonal net converging to x; i.e., the net (xﬁ)xeA,MeMl,
ordered lexicographically by A, then by M), has a subnet which converges to
X.

PROOF. (a) If the net (x,) is trivial, then for each nhood U of x, we have x; € U
for all A € A. Hence, x; — x.

(b) Let (xy(u))uem be a subnet of (x,). Take any nhood U of x. Then there
exists Ag € A such that A > A, implies that x; € U since x; — x. Since ¢ is
cofinal in A, there exists uo € M such that ¢(uo) = Ao; since ¢ is increasing,
u = o implies that ¢() = ¢@(e) = Ag. Hence, there exists uo € M such that
W = o implies that x,(,) € U; that is, x4, — x.

(c) Suppose by way of contradiction that (x;) does not converge to x. Then
there exists a nhood U of x such that for any A € A, there exists some ¢(1) = A
with x,) ¢ U. Then (x,(;)) is a subnet of (x;), but which has no converging
subnets.
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(d) Order {(A, ) : A € A, u € My} as follows:
A1 1) S Az, u2) &= A1 <Ay, 0r A = Az and pg < .

Let U be the nhood system of x which is ordered by U; < U, iff U, C U; for all
U, U, € U. Define

F:{(A,U):AGA,Ue‘l,(suchthatxkeU}.

Order I as follows: (A1,U;) < (A2, U,) iff A; < A, and U, C Uy. For each
(A, U) € I' pick u) € M, so that xﬁ e U for all u = puy (such a u, exists since
x} — x* and x* € U). Define ¢: (1. U) — x}, forall (1,U) € I'. It now easy to
see that this subnet converges to x. O

4.3 FILTERS

12A. Examples of Filter Convergence

» EXERCISE 87. Show that if a filter in a metric space converges, it must con-
verge to a unique point.

PROOF. Suppose a filter ¥ in a metric space (X,d) converges to x,y € X. If
x # y, then there exists r > 0 such that B(x,r) N B(y,r) = @. But since ¥ — x
and ¥ — y, we must have B(x,r) € ¥ and B(y,r) € ¥. This contradicts the
fact that the intersection of every two elements in a filter is nonempty. Thus,
x = y. o

12C. Ultrafilters: Uniqueness

» EXERCISE 88. If a filter ¥ is contained in a unique ultrafilter ¥/, then ¥ = ¥’.

PROOF. We first show: Every filter ¥ on a non-empty set X is the intersection of
the family of ultrafilters which include ¥ .

Let E be a set which does not belong to . Then for each set F € ¥ we
cannot have F C E and hence we must have FNE¢ # @. So ¥ U{E“} generates
a filter on X, which is included in some ultrafilter . Since E¢ € g we must
have E ¢ Fg. Thus E does not belong to the intersection of the set of all
ultrafilters which include % . Hence this intersection is just the filter ¥ itself.

Now, if ¥ is contained in a unique ultrafilter ¥/, we must have ¥ = ’. O
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12D. Nets and Filters: The Translation Process

» EXERCISE 89. A net (x,) has x as a cluster point iff the filter generated by
(x;) has x as a cluster point.

PROOF. Suppose x is a cluster point of the net (x,). Then for every nhood U of
x, we have x; € U i.0. But then U meets every B;, := {x; : A = Ao}, the filter
base of the filter ¥ generated by (x,); that is, x is a cluster point of #. The
converse implication is obvious. O

» EXERCISE 90. A filter ¥ has x as a cluster point iff the net based on ¥ has x
as a cluster point.

PROOF. Suppose x is a cluster point of #. If U is a nhood of x, then U meets
every F € ¥. Then for an arbitrary (p, F) € Ag, pick ¢ € F N U so that
(¢, F) € Az, (q. F) = (p, F), and P(p, F) = p € U; that is, x is a cluster point
of the net based on ¥ .

Conversely, suppose the net based on ¥ has x as a cluster point. Let U be
a nhood of x. Then for every (pog, Fy) € Ag, there exists (p, F) = (po, Fy) such
that p € U. Then F; N U # @, and so x is a cluster point of ¥. O

» EXERCISE 91. If (x;,,) is a subnet of (x;), then the filter generated by (x,,,) is
finer than the filter generated by (x,).

PROOF. Suppose (x;,) is a subnet of (x;). Let ¥, is the filter generated by
(xa,), and F, be the filter generated by (x,). Then the base generating 7,
is the sets B, = {xa, 1 = pob and the base generating ¥, is the sets
Bj, = {x5 : A = A¢}. For each such a B, there exists ;o such that A,, > Ao;
that is, By, C Bao- Therefore, 7, C 73, O

» EXERCISE 92. The net based on an ultrafilter is an ultranet and the filter
generated by an ultranet is an ultrafilter.

PROOF. Suppose ¥ is an ultrafilter. Let E C X and we assume that E € ¥ . Pick
p € E.If(qF)= (p, E)then g € E; thatis, P(p, F) € E ev. Hence, the net
based on ¥ is an ultranet.

Conversely, suppose (x,) is an ultranet. Let £ C X and we assume that there
exists Ao such that x; € E for all A > Ao. Then B, = {x; : A = A9} C E and so
E € ¥, where ¥ is the filter generated by (x,). Hence, ¥ is an ultrafilter. O

» EXERCISE 93. The net based on a free ultrafilter is a nontrivial ultranet.
Hence, assuming the axiom of choice, there are nontrivial ultranets.

PROOF. Let ¥ be a free ultrafilter, and (x;) be the net based on ¥. It follows
from the previous exercise that (x,) is an ultranet. If (x,) is trivial, i.e., x) = x
for some x € X and all A € A, then for all F € ¥, we must have F = {x}. But
then N ¥ = {x} # @; that is, ¥ is fixed. A contradiction.
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Now, for instance, the Frechet filter ¥ on R is contained in some free ultra-
filter ¥ by Example (b) when the Axiom of Choice is assumed. Hence, the net
based on ¢ is a nontrivial ultranet. O
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5.1 THE SEPARATION AXIOMS

13B. Ty- and Ty -Spaces

» EXERCISE 94. Any subspace of a Ty- or Ty-space is, vespectively, Ty or Tj.

PROOF. Let X be a Ty-space, and A C X. Let x and y be distinct points in A.
Then, say, there exists an open nhood U of x such that y ¢ U. Then U N 4
is relatively open in A, contains x, and y ¢ A N U. The T; case can be proved
similarly. O

» EXERCISE 95. Any nonempty product space is Ty or Ty iff each factor space
is, respectively, Ty or Tj.

PROOF. If X, is a Ty-space, for each « € 4, and x # y in X X, then for some
coordinate o we have x, # y,, so there exists an open set U, containing, say,
xq but not y,. Now 7, !(U,) is an open set in X X, containing x but not y.
Thus, X X, is Tp.

Conversely, if X X, is a nonempty Ty-space, pick a fixed point b, € X, for
each « € A. Then the subspace B, := {x € X Xy : xg = bg unless f = «} is T,
by Exercise 94, and is homeomorphic to X, under the restriction to B, of the
projection map. Thus X, is Ty, for each o € A. The T case is similar. O

13C. The Ty-Identification

For any topological space X, define ~ by x ~ y iff {x} = {y}.
» EXERCISE 96. ~ is an equivalence relation on X.
PROOF. Straightforward. |

» EXERCISE 97. The resulting quotient space X/ ~= X is T,.

37
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PROOF. We first show that X is Ty iff whenever x # y then {x} # {y}. If X is
Ty and x # y, then there exists an open nhood U of x such that y ¢ U; then
y ¢ {x}. Since y € {y}, we have {x} # {y}. Conversely, suppose that x # y
implies that {x} # {y}. Take any x # y in X and we show that there exists an
open nhood of one of the two points such that the other point is not in U. If
not, then y € {x}; since {x} is closed, we have {y} c {x}; similarly, {x} C {y}. A
contradiction. o

Now take any {x} # {y} in X/ ~. Then {x} = {x} # {y} = {y}. Hence, X/ ~ is
To.- 0O

13D. The Zariski Topology

For a polynomial P in n real variables, let Z(P) = {(x1,....xy) € R”
P(x1,...,x,) = 0}. Let £ be the collection of all such polynomials.

» EXERCISE 98. {Z(P) : P € P} is a base for the closed sets of a topology (the
Zariski topology) on R”.

PROOF. Denote Z := {Z(P) : P € P}. If Z(Py) and Z(P,) belong to Z, then
Z(P1) U Z(Py) = Z(Py - P;) € Z since P; - P, € . Further, (\pep Z(P) = @
since there are P € # with Z(P) = & (for instance, P = 1 + X7 + --- + X2).
It follows from Exercise 48 that Z is a base for the closed sets of the Zariski
topology on R”. |

» EXERCISE 99. The Zariski topology on R" is Ty but not T>.

PROOF. To verify that the Zariski topology is 77, we show that every single-
ton set in R” is closed (by Theorem 13.4). For each (x1,...,x,) € R", define a
polynomial P € & as follows:

P = (Xl _x1)2 +(Xn _xn)2~

Then Z(P) = {(x1,...,x,)}; thatis, {(x1,...,x,)} is closed.

To see the Zariski topology is not 7,, consider the R case. In R, the Zariski
topology coincides with the cofinite topology (see Exercise 100). It is well know
that the cofinite topology is not Hausdorff (Example 13.5(a)). O

» EXERCISE 100. On R, the Zariski topology coincides with the cofinite topology;
in R", n > 1, they are different.

PROOF. On R, every Z(P) is finite. So on R every closed set in the Zariski topol-
ogy is finite since every closed set is an intersection of some subfamily of Z.
However, if n > 1, then Z(P) can be infinite: for example, consider the polyno-
mial X; X, (let X; =0, then all X, € R is a solution). O
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13H. Open Images of Hausdorff Spaces

» EXERCISE 101. Given any set X, there is a Hausdorff space Y which is the
union of a collection {Y, : x € X} of disjoint subsets, each denseinY.

PROOF. a

5.2 REGULARITY AND COMPLETE REGULARITY

THEOREM 5.1 (Dugundji 1966). a. Let P: X — Y be a closed map. Given any
subset S C Y and any open U containing P~'(S), there exists an open V > S
such that P~'(V) c U.

b. Let P: X — Y be an open map. Given any subset S C Y, and any closed A
containing P~1S, there exists a closed B D S such that P~'(B) C A.

PROOF. It is enough to prove (a). Let V =Y ~ P(X ~ U). Then

PIS)cU=X~UcCX~P (&) =P LY~
— P(X~U)cC P[PTY(Y ~9)]
—= Y~P[P Y~ CV

Since P[P~1(Y ~ S)] C Y ~ S, we obtain
S=Y~¥~S)cY~PP LY~ CV;
that is, S C V. Because P is closed, V is open in Y. Observing that
PYV)=X~PlHPX~U)CX~(X~U)=U
completes the proof. O

THEOREM 5.2 (Theorem 14.6). If X is T5 and f is a continuous, open and closed
map of X onto Y, thenY is T,.

PROOEF. By Theorem 13.11, it is sufficient to show that the set

Ai={(x1,x2) € X x X 1 f(x1) = f(x2)}

is closed in X x X. If (x1,x) ¢ A4, then x; ¢ f~![f(x2)]. Since a T3-space is
T1, the singleton set {x,} is closed in X; since f is closed, { f(x;)} is closed in
Y; since f is continuous, f~![f(x,)] is closed in X. Because X is T3, there are
disjoint open sets U and V with

x1 €U, and f7Yf(xx)]C V.
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Since f is closed, it follows from Theorem 5.1 that there exists openset W C Y
such that { f(x,)} € W, and f~'(W) C V; that is,

[l c 7wy V.

Then U x f~1(W) is a nhood of (x;,x;). We finally show that [U x f~1(W)] N
A = @. If there exists (y1, y2) € 4 such that (y1, y») € U x f~1{(W), then y, €
FUf(2)] € f7Y(W); that is, y, € U x f~1(W). However, U NV = @ and
f~Y(W) c V imply that U N f~1(W) = @. A contradiction. O

DEFINITION 5.3. If X is a space and 4 C X, then X/A4 denotes the quotient
space obtained via the equivalence relation whose equivalence classes are A
and the single point sets {x}, x € X ~ A.

THEOREM 5.4. If X is T5 and Y is obtained from X by identifying a single closed
set A in X with a point, then Y is T>.

PROOF. Let A4 be a closed subset of a 73-space X. Then X ~ A4 is an open subset
in both X and X/A4 and its two subspace topologies agree. Thus, points in
X~ A C X/A are different from [4] and have disjoint nhoods as X is Hausdorff.
Finally, for x € X ~ A, there exist disjoint open nhoods V(x) and W(A). Their
images, f(V) and f(W), are disjoint open nhoods of x and [4] in X /A, because
V= f71f(V)land W = f~![f(W)] are disjoint open sets in X. O

5.3 NORMAL SPACES

15B. Completely Normal Spaces

» EXERCISE 102. X is completely normal iff whenever A and B are subsets of
X with AN B = AN B = @, then there are disjoint open setsU > A and V D B.

PROOF. Suppose that whenever A and B are subsets of X with ANB = ANB =
@, then there are disjointopensetsU D AandV D B.LletY Cc X,andC,D CY
be disjoint closed subsets of Y. Hence,

g=cdyC)ncdyD)=[CNY]IN[DNY]=CNn[DNY].

Since D C cly(D), we have C N D = @. Similarly, C N D = @. Hence there are
disjoint open sets U’ and V' in X suchthatC cU’and D c V'.LetU = U'NY
and V =V'NY.Then U and V are openin Y, C Cc U,and D C V; thatis, Y is
normal, and so X is completely normal.

Now suppose that X is completely normal and consider the subspace Y :=
X ~ (AN B). We first show that 4, B C Y.If A ¢ Y, then there exists x € 4 with
x ¢ Y; thatis, x € AN B. But then x € 4 N B. A contradiction. Similarly for B.
In the normal space Y, we have
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cy(A)Ncy(B)=[ANY]N[BNY]=(ANB)N[X~(ANB)]=a.

Therefore, there exist disjoint open sets U D cly(A4) and V O cly(B). Since
A C cly(A) and B C cly(B), we get the desired result. |

» EXERCISE 103. Why can’t the method used to show every subspace of a reg-
ular space is regular be carried over to give a proof that every subspace of a
normal space is normal?

PROOEF. In the first proof,if A C Y ¢ X isclosedin Y and x € Y ~ A4, then there
must exists closed set B in X such that x ¢ B. This property is not applied if
{x} is replaced a general closed set B in Y. O

» EXERCISE 104. Every metric space is completely normal.

PROOEF. Every subspace of a metric space is a metric space; every metric space
is normal Royden and Fitzpatrick (2010, Proposition 11.7). O

5.4 COUNTABILITY PROPERTIES

16A. First Countable Spaces

» EXERCISE 105. Every subspace of a first-countable space is first countable.

PROOF. Let A C X.If x € A4, then V is a nhood of x in A iff V = U N A, where
U is anhood of x € X (Theorem 6.3(d)). O

» EXERCISE 106. A product X X, of first-countable spaces is first countable
iff each X, is first countable, and all but countably many of the X, are trivial
spaces.

PROOF. If X X, is first-countable, then each X, is first countable since it is
homeomorphic to a subspace of X X,. If the number of the family of untrivial
sets {X} is uncountable, then for x € X X, the number of nhood bases is
uncountable. O

» EXERCISE 107. The continuous image of a first-countable space need not be
first countable; but the continuous open image of a first-countable space is first
countable.

PROOF. Let X be a discrete topological space. Then any function defined on X
is continuous.

Now suppose that X is first countable, and f is a continuous open map of
X onto Y. Pick an arbitrary y € Y. Let x € f~!(y), and U, be a countable
nhood base of x. If W is a nhood of y, then there is a nhood V of x such that
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f(V) C W since f is continuous. So there exists U € U, with f(U) C W. This
proves that { f(U) : U € U,} is a nhood base of y. Since { f(U) : U € U,}is 0O



COMPACTNESS

6.1 COMPACT SPACES

17B. Compact Subsets

» EXERCISE 108. A subset E of X is compact iff every cover of E by open subsets
of X has a finite subcover.

REMARK (Lee 2011, p. 94). To say that a subset of a topological space is com-
pact is to say that it is a compact space when endowed with the subspace
topology. In this situation, it is often useful to extend our terminology in the
following way. If X is a topological space and 4 C X, a collection of subsets of
X whose union contains A4 is also called a cover of A; if the subsets are open
in X we sometimes call it an open cover of A. We try to make clear in each
specific situation which kind of open cover of 4 is meant: a collection of open
subsets of 4 whose union is A4, or a collection of open subsets of X whose
union contains A.

PROOE. The “only if” part is trivial. So we focus on the “if” part. Let U be an
open cover of E,i.e., U = | J{U : U € U}.For every U € U, there exists an open
set Vy in X such that U = Vi N E. Then {Vy : U € U} is an open cover of E,

ie, U C U{Vu : U € U}. Then there exists a finite subcover, say Vy,,.... Vy,
of {Vy : U € U}, such that E C | J;_, Vy,. Hence, E = | J/_,(Vy, N E); that is, E
is compact. O

» EXERCISE 109. The union of a finite collection of compact subsets of X is
compact.

PROOF. Let A and B be compact, and U be a family of open subsets of X
which covers A U B. Then U covers A and there is a finite subcover, say,

UA,...,Ud of A; similarly, there is a finite subcover, say, UE,...,UB of B.
But then {U{, ..., U4, UB,... ,UEB} is an open subcover of AU B, so AU B is
compact. O
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