General Topology

A Solution Manual for Willard (2004)

Jianfei Shen

School of Economics, The University of New South Wales

Sydney, Australia October 15, 2011

Preface

Sydney, October 15, 2011 Jianfei Shen

 \mathbf{V}

Acknowledgements

Contents

Pre	face		V
1	Set	Theory and Metric Spaces	1
	1.1	Set Theory	1
	1.2	Metric Spaces	3
2	Topological Spaces		
	2.1	Fundamental Concepts	9
	2.2	Neighborhoods	13
	2.3	Bases and Subbases	16
3	Nev	v Spaces from Old	19
	3.1	Subspaces	19
	3.2	Continuous Functions	19
	3.3	Product Spaces, Weak Topologies	24
	3.4	Quotient Spaces	28
4	Convergence		31
	4.1	Inadequacy of Sequences	31
	4.2	Nets	32
	4.3	Filters	34
5	Separation and Countability		37
	5.1	The Separation Axioms	37
	5.2	Regularity and Complete Regularity	39
	5.3	Normal Spaces	40
	5.4	Countability Properties	41
6	Compactness		43
	6.1	Compact Spaces	43
References			

Acronyms

- \mathbb{R} the set of real numbers
- Ⅱ [0, 1]
- \mathbb{P} $\mathbb{R} \smallsetminus \mathbb{Q}$

SET THEORY AND METRIC SPACES

1.1 Set Theory

1A. Russell's Paradox

► EXERCISE 1. The phenomenon to be presented here was first exhibited by Russell in 1901, and consequently is known as Russell's Paradox.

Suppose we allow as sets things A for which $A \in A$. Let \mathcal{P} be the set of all sets. Then \mathcal{P} can be divided into two nonempty subsets, $\mathcal{P}_1 = \{A \in \mathcal{P} : A \notin A\}$ and $\mathcal{P}_2 = \{A \in \mathcal{P} : A \in A\}$. Show that this results in the contradiction: $\mathcal{P}_1 \in \mathcal{P}_1 \iff \mathcal{P}_1 \notin \mathcal{P}_1$. Does our (naive) restriction on sets given in 1.1 eliminate the contradiction?

PROOF. If $\mathcal{P}_1 \in \mathcal{P}_1$, then $\mathcal{P}_1 \in \mathcal{P}_2$, i.e., $\mathcal{P}_1 \notin \mathcal{P}_1$. But if $\mathcal{P}_1 \notin \mathcal{P}_1$, then $\mathcal{P}_1 \in \mathcal{P}_1$. A contradiction.

1B. De Morgan's laws and the distributive laws

- ► EXERCISE 2. a. $A \smallsetminus (\bigcap_{\lambda \in \Lambda} B_{\lambda}) = \bigcup_{\lambda \in \Lambda} (A \smallsetminus B_{\lambda}).$
- b. $B \cup (\bigcap_{\lambda \in \Lambda} B_{\lambda}) = \bigcap_{\lambda \in \Lambda} (B \cup B_{\lambda}).$
- c. If A_{nm} is a subset of A for n = 1, 2, ... and m = 1, 2, ..., is it necessarily true that

$$\bigcup_{n=1}^{\infty} \left[\bigcap_{m=1}^{\infty} A_{nm} \right] = \bigcap_{m=1}^{\infty} \left[\bigcup_{n=1}^{\infty} A_{nm} \right]?$$

PROOF. (a) If $x \in A \setminus (\bigcap_{\lambda \in A} B_{\lambda})$, then $x \in A$ and $x \notin \bigcap_{\lambda \in A} B_{\lambda}$; thus, $x \in A$ and $x \notin B_{\lambda}$ for some λ , so $x \in (A \setminus B_{\lambda})$ for some λ ; hence $x \in \bigcup_{\lambda \in A} (A \setminus B_{\lambda})$. On the other hand, if $x \in \bigcup_{\lambda \in A} (A \setminus B_{\lambda})$, then $x \in A \setminus B_{\lambda}$ for some $\lambda \in A$, i.e., $x \in A$ and $x \notin B_{\lambda}$ for some $\lambda \in A$. Thus, $x \in A$ and $x \notin \bigcap_{\lambda \in A} B_{\lambda}$; that is, $x \in A \setminus (\bigcap_{\lambda \in A} B_{\lambda})$. **(b)** If $x \in B \cup (\bigcap_{\lambda \in A} B_{\lambda})$, then $x \in B_{\lambda}$ for all λ , then $x \in (B \cup B_{\lambda})$ for all λ , i.e., $x \in \bigcap_{\lambda \in A} (B \cup B_{\lambda})$. On the other hand, if $x \in \bigcap_{\lambda \in A} (B \cup B_{\lambda})$, then $x \in (B \cup B_{\lambda})$ for all λ , i.e., $x \in B$ or $x \in B_{\lambda}$ for all λ ; that is, $x \in B \cup (\bigcap_{\lambda \in A} B_{\lambda})$.

(c) They are one and the same set.

1C. Ordered pairs

• EXERCISE 3. Show that, if (x_1, x_2) is defined to be $\{\{x_1\}, \{x_1, x_2\}\}$, then $(x_1, x_2) = (y_1, y_2)$ iff $x_1 = y_1$ and $x_2 = y_2$.

PROOF. If $x_1 = y_1$ and $x_2 = y_2$, then, clearly, $(x_1, x_2) = \{\{x_1\}, \{x_1, x_2\}\} = \{\{y_1\}, \{y_1, y_2\}\} = (y_1, y_2)$. Now assume that $\{\{x_1\}, \{x_1, x_2\}\} = \{\{y_1\}, \{y_1, y_2\}\}$. If $x_1 \neq x_2$, then $\{x_1\} = \{y_1\}$ and $\{x_1, x_2\} = \{y_1, y_2\}$. So, first, $x_1 = y_1$ and then $\{x_1, x_2\} = \{y_1, y_2\}$ implies that $x_2 = y_2$. If $x_1 = x_2$, then $\{\{x_1\}, \{x_1, x_1\}\} = \{\{x_1\}\}$. So $\{y_1\} = \{y_1, y_2\} = \{x_1\}$, and we get $y_1 = y_2 = x_1$, so $x_1 = y_1$ and $x_2 = y_2$ holds in this case, too.

1D. Cartesian products

► EXERCISE 4. Provide an inductive definition of "the ordered *n*-tuple $(x_1, ..., x_n)$ of elements $x_1, ..., x_n$ of a set" so that $(x_1, ..., x_n)$ and $(y_1, ..., y_n)$ are equal iff their coordinates are equal in order, i.e., iff $x_1 = y_1, ..., x_n = y_n$.

PROOF. Define $(x_1, \ldots, x_n) = \{(1, x_1), \ldots, (n, x_n)\}$ as a finite sequence.

- ▶ EXERCISE 5. Given sets X_1, \ldots, X_n define the Cartesian product $X_1 \times \cdots \times X_n$
- a. by using the definition of ordered *n*-tuple you gave in Exercise 4,
- b. inductively from the definition of the Cartesian product of two sets,

and show that the two approaches are the same.

PROOF. (a) $X_1 \times \cdots \times X_n = \{ f \in (\bigcup_{i=1}^n X_i)^n : f(i) \in X_i \}.$

(b) From the definition of the Cartesian product of two sets, $X_1 \times \cdots \times X_n = \{(x_1, \dots, x_n) : x_i \in X_i\}$, where $(x_1, \dots, x_n) = ((x_1, \dots, x_{n-1}), x_n)$.

These two definitions are equal essentially since there is a bijection between them. $\hfill \Box$

► EXERCISE 6. Given sets $X_1, ..., X_n$ let $X = X_1 \times \cdots \times X_n$ and let X^* be the set of all functions f from $\{1, ..., n\}$ into $\bigcup_{k=1}^n X_k$ having the property that $f(k) \in X_k$ for each k = 1, ..., n. Show that X^* is the "same" set as X.

PROOF. Each function f can be written as $\{(1, x_1), \dots, (n, x_n)\}$. So define $F \colon X^* \to X$ as $F(f) = (x_1, \dots, x_n)$.

► EXERCISE 7. Use what you learned in Exercise 6 to define the Cartesian product $X_1 \times X_2 \times \cdots$ of denumerably many sets as a collection of certain functions with domain \mathbb{N} .

PROOF. $X_1 \times X_2 \times \cdots$ consists of functions $f : \mathbb{N} \to \bigcup_{n=1}^{\infty} X_n$ such that $f(n) \in X_n$ for all $n \in \mathbb{N}$.

1.2 METRIC SPACES

2A. Metrics on \mathbb{R}^n

▶ EXERCISE 8. Verify that each of the following is a metric on \mathbb{R}^n :

a.
$$\rho(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

- b. $\rho_1(x, y) = \sum_{i=1}^n |x_i y_i|.$
- c. $\rho_2(\mathbf{x}, \mathbf{y}) = \max\{|x_1 y_1|, \dots, |x_n y_n|\}.$

PROOF. Clearly, it suffices to verify the triangle inequalities for all of the three functions. Pick arbitrary $x, y, z \in \mathbb{R}^n$.

(a) By Minkowski's Inequality, we have

$$\rho(\mathbf{x}, \mathbf{z}) = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} = \sqrt{\sum_{i=1}^{n} [(x_i - y_i) + (y_i - z_i)]^2}$$

$$\leq \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

$$= \rho(\mathbf{x}, \mathbf{y}) + \rho(\mathbf{y}, \mathbf{z}).$$

(b) We have

$$\rho_1(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^n |x_i - z_i| = \sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|) = \rho_1(\mathbf{x}, \mathbf{y}) + \rho_1(\mathbf{y}, \mathbf{z}).$$

(c) We have

$$\rho_{2}(\mathbf{x}, \mathbf{z}) = \max\{|x_{1} - z_{1}|, \dots, |x_{n} - z_{n}|\}$$

$$\leq \max\{|x_{1} - y_{1}| + |y_{1} - z_{1}|, \dots, |x_{n} - y_{n}| + |y_{n} - z_{n}|\}$$

$$\leq \max\{|x_{1} - y_{1}|, \dots, |x_{n} - y_{n}|\} + \max\{|y_{1} - z_{1}|, \dots, |y_{n} - z_{n}|\}$$

$$= \rho_{2}(\mathbf{x}, \mathbf{y}) + \rho_{2}(\mathbf{y}, \mathbf{z}).$$

2B. Metrics on $\mathcal{C}(\mathbb{I})$

► EXERCISE 9. Let $\mathcal{C}(\mathbb{I})$ denote the set of all continuous real-valued functions on the unit interval \mathbb{I} and let x_0 be a fixed point of \mathbb{I} .

a. $\rho(f,g) = \sup_{x \in \mathbb{I}} |f(x) - g(x)|$ is a metric on $\mathcal{C}(\mathbb{I})$. b. $\sigma(f,g) = \int_0^1 |f(x) - g(x)| \, dx$ is a metric on $\mathcal{C}(\mathbb{I})$. c. $\eta(f,g) = |f(x_0) - g(x_0)|$ is a pseudometric on $\mathcal{C}(\mathbb{I})$.

PROOF. Let $f, g, h \in \mathcal{C}(\mathbb{I})$. It is clear that ρ , σ , and η are positive, symmetric; it is also clear that ρ and σ satisfy M-b.

(a) We have

$$\rho(f,h) = \sup_{x \in \mathbb{I}} |f(x) - h(x)| \leq \sup_{x \in \mathbb{I}} (|f(x) - g(x)| + |g(x) - h(x)|)$$
$$\leq \sup_{x \in \mathbb{I}} |f(x) - g(x)| + \sup_{x \in \mathbb{I}} |g(x) - h(x)|$$
$$= \rho(f,g) + \rho(g,h).$$

(b) We have

$$\sigma(f,h) = \int_0^1 |f(x) - h(x)| \le \int_0^1 |f(x) - g(x)| + \int_0^1 |g(x) - h(x)|$$

= $\sigma(f,g) + \sigma(g,h).$

(c) For arbitrary $f, g \in \mathcal{C}(\mathbb{I})$ with $f(x_0) = g(x_0)$ we have $\eta(f, g) = 0$, so $\eta(f, g) = 0$ does not imply that f = g. Further, $\eta(f, h) = |f(x_0) - h(x_0)| \le |f(x_0) - g(x_0)| + |g(x_0) - h(x_0)| = \eta(f, g) + \eta(g, h)$.

2C. Pseudometrics

EXERCISE 10. Let (M, ρ) be a pseudometric space. Define a relation \sim on M by $x \sim y$ iff $\rho(x, y) = 0$. Then \sim is an equivalence relation.

PROOF. (i) $x \sim x$ since $\rho(x, x) = 0$ for all $x \in M$. (ii) $x \sim y$ iff $\rho(x, y) = 0$ iff $\rho(y, x) = 0$ iff $y \sim x$. (iii) Suppose $x \sim y$ and $y \sim z$. Then $\rho(x, z) \leq \rho(x, y) + \rho(y, z) = 0$; that is, $\rho(x, z) = 0$. So $x \sim z$.

► EXERCISE 11. If M^* is he set of equivalence classes in M under the equivalence relation \sim and if ρ^* is defined on M^* by $\rho^*([x], [y]) = \rho(x, y)$, then ρ^* is a well-defined metric on M^* .

PROOF. ρ^* is well-defined since it does not dependent on the representative of [x]: let $x' \in [x]$ and $y' \in [y]$. Then

$$\rho(x', y') \leq \rho(x', x) + \rho(x, y) + \rho(y, y') = \rho(x, y).$$

Symmetrically, $\rho(x, y) \leq \rho(x', y')$. To verify ρ^* is a metric on M^* , it suffices to show that ρ^* satisfies the triangle inequality. Let $[x], [y], [z] \in M^*$. Then

$$\rho^*([x], [z]) = \rho(x, z) \le \rho(x, y) + \rho(y, z) = \rho^*([x], [y]) + \rho^*([y], [z]).$$

► EXERCISE 12. If $h: M \to M^*$ is the mapping h(x) = [x], then a set A in M is closed (open) iff h(A) is closed (open) in M^* .

PROOF. Let *A* be open in *M* and $h(x) = [x] \in h(A)$ for some $x \in A$. Since *A* is open, there exist an ε -disk $U_{\rho}(x, \varepsilon)$ contained in *A*. For each $y \in U_{\rho}(x, \varepsilon)$, we have $h(y) = [y] \in h(A)$, and $\rho^*([x], [y]) = \rho(x, y) \leq \varepsilon$. Hence, for each $[x] \in h(A)$, there exists an ε -disk $U_{\rho^*}([x], \varepsilon) = h(U_{\rho}(x, \varepsilon))$ contained in h(A); that is, h(A) is open in M^* . Since *h* is surjective, it is now easy to see that h(A) is closed in M^* whenever *A* is closed in *M*.

► EXERCISE 13. If *f* is any real-valued function on a set *M*, then the distance function $\rho_f(x, y) = |f(x) - f(y)|$ is a pseudometric on *M*.

PROOF. Easy.

► EXERCISE 14. If (M, ρ) is any pseudometric space, then a function $f : M \to \mathbb{R}$ is continuous iff each set open in (M, ρ_f) is open in (M, ρ) .

PROOF. Suppose that f is continuous and G is open in (M, ρ_f) . For each $x \in G$, there is an $\varepsilon > 0$ such that if $|f(y) - f(x)| < \varepsilon$ then $y \in G$. The continuity of f at x implies that there exists $\delta > 0$ such that if $\rho(y, x) < \delta$ then $|f(y) - f(x)| < \varepsilon$, and so $y \in U$. We thus proved that for each $x \in U$ there exists a δ -disk $U_{\rho}(x, \rho)$ contained in G; that is, G is open in (M, ρ) .

Conversely, suppose that each set is open in (M, ρ) whenever it is open in (M, ρ_f) . For each $x \in (M, \rho_f)$, there is an ε -disk $U_{\rho_f}(x, \varepsilon)$ contained in M since M is open under ρ_f ; then $U_{\rho_f}(x, \varepsilon)$ is open in (M, ρ) since $U_{\rho_f}(x, \varepsilon)$ is open in (M, ρ_f) . Hence, there is an δ -disk $U_{\rho}(x, \delta)$ such that $U_{\rho}(x, \delta) \subset U_{\rho_f}(x, \varepsilon)$; that is, if $\rho(y, x) < \delta$, then $|f(y) - f(x)| < \varepsilon$. So f is continuous on M.

2D. Disks Are Open

EXERCISE 15. For any subset A of a metric space M and any $\varepsilon > 0$, the set $U(A, \varepsilon)$ is open.

PROOF. Let $A \subset M$ and $\varepsilon > 0$. Take an arbitrary point $x \in U(A, \varepsilon)$; take an arbitrary point $y \in A$ such that $\rho(x, y) < \varepsilon$. Observe that every ε -disk $U(y, \varepsilon)$ is contained in $U(A, \varepsilon)$. Since $x \in U(y, \varepsilon)$ and $U(y, \varepsilon)$ is open, there exists an δ -disk $U(x, \delta)$ contained in $U(y, \varepsilon)$. Therefore, $U(A, \varepsilon)$ is open.

2E. Bounded Metrics

► EXERCISE 16. If ρ is any metric on M, the distance function $\rho^*(x, y) = \min\{\rho(x, y,), 1\}$ is a metric also and is bounded.

PROOF. To see ρ^* is a metric, it suffices to show the triangle inequality. Let $x, y, z \in M$. Then

$$\rho^{*}(x, z) = \min\{\rho(x, z), 1\} \leq \min\{\rho(x, y) + \rho(y, z), 1\}$$

$$\leq \min\{\rho(x, y), 1\} + \min\{\rho(y, z), 1\}$$

$$= \rho^{*}(x, y) + \rho^{*}(y, z).$$

It is clear that ρ^* is bounded above by 1.

► EXERCISE 17. A function f is continuous on (M, ρ) iff it is continuous on (M, ρ^*) .

PROOF. It suffices to show that ρ and ρ^* are equivalent. If *G* is open in (M, ρ) , then for each $x \in G$ there is an ε -disk $U_{\rho}(x, \varepsilon) \subset G$. Since $U_{\rho^*}(x, \varepsilon) \subset U_{\rho}(x, \varepsilon)$, we know *G* is open in (M, ρ^*) . Similarly, we can show that *G* is open in (M, ρ^*) whenever it is open in (M, ρ) .

2F. The Hausdorff Metric

Let ρ be a bounded metric on M; that is, for some constant A, $\rho(x, y) \leq A$ for all x and y in M.

EXERCISE 18. Show that the elevation of ρ to the power set $\mathcal{P}(M)$ as defined in 2.4 is not necessarily a pseudometric on $\mathcal{P}(M)$.

PROOF. Let $M := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \leq 1\}$, and let ρ be the usual metric. Then ρ is a bounded metric on M. We show that the function $\rho^* : (E, F) \mapsto \inf_{x \in E, y \in F} \rho(x, y)$, for all $E, F \in \mathcal{P}(M)$, is not a pseudometric on $\mathcal{P}(M)$ by showing that the triangle inequality fails. Let $E, F, G \in \mathcal{P}(M)$, where $E = U_{\rho}((-1/4, 0), 1/4)$, $G = U_{\rho}((1/4, 0), 1/4)$, and F meets both E and G. Then $\rho^*(E, G) > 0$, but $\rho^*(E, F) = \rho^*(F, G) = 0$.

► EXERCISE 19. Let $\mathcal{F}(M)$ be all nonempty closed subsets of M and for $A, B \in \mathcal{F}(M)$ define

$$d_A(B) = \sup\{\rho(A, x) : x \in B\}$$
$$d(A, B) = \max\{d_A(B), d_B(A)\}.$$

Then *d* is a metric on $\mathcal{F}(M)$ with the property that $d(\{x\}, \{y\}) = \rho(x, y)$. It is called the Hausdorff metric on $\mathcal{F}(M)$.

PROOF. Clearly, *d* is nonnegative and symmetric. If d(A, B) = 0, then $d_A(B) = d_B(A) = 0$, i.e., $\sup_{y \in B} \rho(A, y) = \sup_{x \in A} \rho(B, x) = 0$. But then $\rho(A, y) = 0$ for all $y \in B$ and $\rho(B, x) = 0$ for all $x \in A$. Since *A* is closed, we have $y \in A$ for all $y \in B$; that is, $B \subset A$. Similarly, $A \subset B$. Hence, A = B.

We next show the triangle inequality of *d*. Let $A, B, C \in \mathcal{F}(M)$. For an arbitrary point $a \in A$, take a point $b \in C$ such that $\rho(a, b) = \rho(B, a)$ (since *B* is closed, such a point exists). Then

$$\rho(a,b) \leq \sup_{x \in A} \rho(B,x) = d_B(A) \leq d(A,B).$$

For this $b \in B$, we take a point $c \in C$ such that $\rho(b, c) \leq d(B, C)$. Therefore,

$$\rho(a,c) \le \rho(a,b) + \rho(b,c) \le d(A,B) + d(B,C).$$

We thus proved that for every $a \in A$, there exists $c \in C$ (depends on *a*), such that $\rho(a, c) \leq d(A, B) + d(B, C)$. In particular, we have

$$\rho(a,C) = \inf_{z \in C} \rho(a,z) \leq d(A,B) + d(B,C).$$

Since the above inequality holds for all $a \in A$, we obtain

$$d_C(A) = \sup_{x \in A} \rho(a, C) \le d(A, B) + d(B, C).$$
(1.1)

Similarly, for each $c \in C$ there exists $b \in B$ with $\rho(c, b) \leq d(B, C)$; for this b, there exists $a \in A$ with $\rho(a, b) \leq d(A, B)$. Hence $\rho(a, c) \leq d(A, B) + d(B, C)$ for all $c \in C$. The same argument shows that

$$d_A(C) \le d(A, B) + d(B, C). \tag{1.2}$$

Combining (1.1) and (1.2) we get the desired result.

Finally, notice that $d_{\{x\}}(\{y\}) = d_{\{y\}}(\{x\}) = \rho(x, y)$; hence, $d(\{x\}, \{y\}) = \rho(x, y)$.

► EXERCISE 20. Prove that closed sets *A* and *B* are "close" in the Hausdorff metric iff they are "uniformly close"; that is, $d(A, B) < \varepsilon$ iff $A \subset U_{\rho}(B, \varepsilon)$ and $B \subset U_{\rho}(A, \varepsilon)$.

PROOF. If $d(A, B) < \varepsilon$, then $\sup_{y \in B} \rho(A, y) = \rho_A(B) < \varepsilon$; that is, $\rho(A, y) < \varepsilon$ for all $y \in B$, so $B \subset U_\rho(A, \varepsilon)$. Similarly, $A \subset U_\rho(B, \varepsilon)$.

Conversely, if $A \subset U_{\rho}(B, \varepsilon)$, then $\rho(B, x) < \varepsilon$ for all $x \in A$. Since A is closed, we have $d_B(A) < \varepsilon$; similarly, $B \subset U_{\rho}(A, \varepsilon)$ implies that $d_A(B) < \varepsilon$. Hence, $d(A, B) < \varepsilon$.

2G. Isometry

Metric spaces (M, ρ) and (N, σ) are *isometric* iff there is a one-one function f from M onto N such that $\rho(x, y) = \sigma(f(x), f(y))$ for all x and y in M; f is called an *isometry*.

EXERCISE 21. If f is an isometry from M to N, then both f and f^{-1} are continuous functions.

PROOF. By definition, *f* is (uniformly) continuous on *M*: for every $\varepsilon > 0$, let $\delta = \varepsilon$; then $\rho(x, y) < \delta$ implies that $\sigma(f(x), f(y)) = \rho(x, y) < \varepsilon$.

On the other hand, for every $\varepsilon > 0$ and $y \in N$, pick the unique $f^{-1}(y) \in M$ (since f is bijective). For each $z \in N$ with $\sigma(y, z) < \varepsilon$, we must have $\rho(f^{-1}(y), f^{-1}(z)) = \sigma(f(f^{-1}(y)), f(f^{-1}(z))) = \sigma(y, z) < \varepsilon$; that is, f^{-1} is continuous.

► EXERCISE 22. \mathbb{R} is not isometric to \mathbb{R}^2 (each with its usual metric).

PROOF. Consider $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Notice that there are only two points around $f^{-1}(0, 0)$ with distance 1.

▶ EXERCISE 23. I is isometric to any other closed interval in \mathbb{R} of the same length.

PROOF. Consider the function $f : \mathbb{I} \to [a, a + 1]$ defined by f(x) = a + x for all $x \in \mathbb{I}$.

2

TOPOLOGICAL SPACES

2.1 FUNDAMENTAL CONCEPTS

3A. Examples of Topologies

► EXERCISE 24. If \mathcal{F} is the collection of all closed, bounded subset of \mathbb{R} (in its usual topology), together with \mathbb{R} itself, then \mathcal{F} is the family of closed sets for a topology on \mathbb{R} strictly weaker than the usual topology.

PROOF. It is easy to see that \mathcal{F} is a topology. Further, for instance, $(-\infty, 0]$ is a closed set of \mathbb{R} , but it is not in \mathcal{F} .

► EXERCISE 25. If $A \subset X$, show that the family of all subsets of X which contain A, together with the empty set \emptyset , is a topology on X. Describe the closure and interior operations. What topology results when $A = \emptyset$? when A = X?

PROOF. Let

$$\mathcal{E} = \{ E \subset X : A \subset E \} \cup \{ \emptyset \}.$$

Now suppose that $E_{\lambda} \in \mathcal{E}$ for each $\lambda \in \Lambda$. Then $A \subset \bigcup_{\lambda} E_{\lambda} \subset X$ and so $\bigcup E_{\lambda} \in \mathcal{E}$. The other postulates are easy to check.

For any set $B \subset X$, if $A \subset B$, then $B \in \mathcal{E}$ and so $B^{\circ} = B$; if not, then $B^{\circ} = \emptyset$. If $A = \emptyset$, then \mathcal{E} is the discrete topology; if A = X, then $\mathcal{E} = \{\emptyset, X\}$. \Box

3D. Regularly Open and Regularly Closed Sets

An open subset G in a topological space is *regular open* iff G is the interior of its closure. A closed subset is *regularly closed* iff it is the closure of its interior.

► EXERCISE 26. *The complement of a regularly open set is regularly closed and vice versa.*

PROOF. Suppose *G* is regular open; that is, $G = (\overline{G})^{\circ}$. Then

$$X \smallsetminus G = X \smallsetminus (\overline{G})^{\circ} = \overline{X \smallsetminus \overline{G}} = \overline{(X \smallsetminus G)^{\circ}}.$$

Hence, $X \\ G$ is regularly closed. If *F* is regular closed, i.e., $F = \overline{F^{\circ}}$, then

$$X \smallsetminus F = X \smallsetminus \overline{F^{\circ}} = (X \smallsetminus F^{\circ})^{\circ} = (\overline{X \smallsetminus F})^{\circ};$$

that is, $X \sim F$ is regularly open.

 \blacktriangleright EXERCISE 27. There are open sets in \mathbb{R} which are not regularly open.

PROOF. Consider \mathbb{Q} . We have $(\overline{\mathbb{Q}})^{\circ} = \mathbb{R}^{\circ} = \mathbb{R} \neq \mathbb{Q}$. So \mathbb{Q} is not regularly open.

► EXERCISE 28. If A is any subset of a topological space, then int(cl(A)) is regularly open.

PROOF. Let *A* be a subset of a topological space *X*. We then have

$$\operatorname{int}(\operatorname{cl}(A)) \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))) \Longrightarrow \operatorname{int}(\operatorname{cl}(A)) = \operatorname{int}(\operatorname{int}(\operatorname{cl}(A))) \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))),$$

and

$$int(cl(A)) \subset cl(A) \Longrightarrow cl(int(cl(A))) \subset cl(cl(A)) = cl(A)$$
$$\implies int(cl(int(cl(A)))) \subset int(cl(A)).$$

Therefore, int(cl(A)) = int(cl(int(cl(A)))); that is, int(cl(A)) is regularly open.

► EXERCISE 29. The intersection, but not necessarily the union, of two regularly open sets is regularly open.

PROOF. Let *A* and *B* be two regularly open sets in a topological space *X*. Then

$$(\overline{A \cap B})^{\circ} \subset (A \cap B)^{\circ} = (A)^{\circ} \cap (B)^{\circ} = A \cap B,$$

and

$$(\overline{A} \cap \overline{B})^{\circ} = (\overline{A})^{\circ} \cap (\overline{B})^{\circ} = A \cap B \subset \overline{A \cap B}$$
$$\implies A \cap B = (\overline{A} \cap \overline{B})^{\circ} = \left[(\overline{A} \cap \overline{B})^{\circ} \right]^{\circ} \subset (\overline{A \cap B})^{\circ}.$$

Hence, $A \cap B = (\overline{A \cap B})^{\circ}$.

To see that the union of two regularly open sets is not necessarily regularly open, consider A = (0, 1) and B = (1, 2) in \mathbb{R} with its usual topology. Then

$$(\overline{A \cup B})^{\circ} = [0, 2]^{\circ} = (0, 2) \neq A \cup B.$$

3E. Metrizable Spaces

Let *X* be a metrizable space whose topology is generated by a metric ρ .

EXERCISE 30. The metric 2ρ defined by $2\rho(x, y) = 2 \cdot \rho(x, y)$ generates the same topology on *X*.

PROOF. Let \mathcal{O}_{ρ} be the collection of open sets in (X, ρ) , and let $\mathcal{O}_{2\rho}$ be the collection of open sets in $(X, 2\rho)$. If $O \in \mathcal{O}_{\rho}$, then for every $x \in O$, there exists an open ball $\mathbb{B}_{\rho}(x, \varepsilon) \subseteq O$; but then $\mathbb{B}_{2\rho}(x, \varepsilon/2) \subset O$. Hence, $O \in \mathcal{O}_{2\rho}$. Similarly, we can show that $\mathcal{O}_{2\rho} \subset \mathcal{O}_{\rho}$. In fact, ρ and 2ρ are equivalent metrics.

► EXERCISE 31. The closure of a set $E \subset X$ is given by $\overline{E} = \{y \in X : \rho(E, y) = 0\}$.

PROOF. Denote $\tilde{E} := \{y \in X : \rho(E, y) = 0\}$. We first show that \tilde{E} is closed (see Definition 2.5, p. 17). Take an arbitrary $x \in X$ such that for every $n \in \mathbb{N}$, there exists $y_n \in \tilde{E}$ with $\rho(x, y_n) < 1/2n$. For each $y_n \in \tilde{E}$, take $z_n \in E$ with $\rho(y_n, z_n) < 1/2n$. Then

$$\rho(x, z_n) \leq \rho(x, y_n) + \rho(y_n, z_n) < 1/n, \text{ for all } n \in \mathbb{N}.$$

Thus, $\rho(x, E) = 0$, i.e., $x \in \tilde{E}$. Therefore, \tilde{E} is closed. It is clear that $E \subseteq \tilde{E}$, and so $\bar{E} \subset \tilde{E}$.

We next show that $\tilde{E} \subseteq \bar{E}$. Take an arbitrary $x \in \tilde{E}$ and a closed set K containing E. If $x \in X \setminus K$, then $\rho(x, K) > 0$ (see Exercise 35). But then $\rho(x, E) > 0$ since $E \subset K$ and so

$$\inf_{y \in E} \rho(x, y) \ge \inf_{z \in K} \rho(x, z).$$

Hence, $\tilde{E} \subset \bar{E}$.

► EXERCISE 32. The closed disk $U(x, \overline{\varepsilon}) = \{y : \rho(x, y) \le \varepsilon\}$ is closed in *X*, but may not be the closure of the open disk $U(x, \varepsilon)$.

PROOF. Fix $x \in X$. We show that the function $\rho(x, \cdot) \colon X \to \mathbb{R}$ is (uniformly) continuous. For any $y, z \in X$, the triangle inequality yields

$$|\rho(x, y) - \rho(x, z)| \le \rho(y, z).$$

Hence, for every $\varepsilon > 0$, take $\delta = \varepsilon$, and $\rho(x, \cdot)$ satisfies the ε - δ criterion. Therefore, $U(x, \overline{\varepsilon})$ is closed since $U(x, \overline{\varepsilon}) = \rho^{-1}(x, [0, \varepsilon])$ and $[0, \varepsilon]$ is closed in \mathbb{R} .

To see it is not necessary that $U(x, \overline{\varepsilon}) = \overline{U(x, \varepsilon)}$, consider $\varepsilon = 1$ and the usual metric on

$$\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \cup \{(x, 0) \in \mathbb{R}^2 : 0 \le x \le 1\};\$$

see Figure 2.1. Observe that $(0,0) \notin U(x,1)$, but $(0,0) \in U(x,\overline{1})$. It follows from Exercise 31 that $(0,0) \notin \overline{U(x,1)}$.

FIGURE 2.1. $U(x,\overline{1}) \neq \overline{U(x,1)}$.

3H. G_{δ} and F_{σ} Sets

▶ EXERCISE 33. The complement of a G_{δ} is an F_{σ} , and vice versa.

PROOF. If *A* is a G_{δ} set, then there exists a sequence of open sets $\{U_n\}$ such that $A = \bigcap_{n=1}^{\infty} U_n$. Then $A^c = \bigcup_{n=1}^{\infty} U_n^c$ is F_{σ} . Vice versa.

► EXERCISE 34. An F_{σ} can be written as the union of an increasing sequence $F_1 \subset F_2 \subset \cdots$ of closed sets.

PROOF. Let $B = \bigcup_{n=1}^{\infty} E_n$, where E_n is closed for all $n \in \mathbb{N}$. Define $F_1 = E_1$ and $F_n = \bigcup_{i=1}^n E_i$ for $n \ge 2$. Then each F_n is closed, $F_1 \subset F_2 \subset \cdots$, and $\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} = B$.

▶ EXERCISE 35. A closed set in a metric space is a G_{δ} .

PROOF. For an arbitrary set $A \subset X$ and a point $x \in X$, define

$$\rho(x, A) = \inf_{y \in A} \{ \rho(x, y) \}.$$

We first show that $\rho(\cdot, A) \colon X \to \mathbb{R}$ is (uniformly) continuous by showing

$$|\rho(x, A) - \rho(y, A)| \le \rho(x, y), \quad \text{for all } x, y \in X.$$
(2.1)

For an arbitrary $z \in A$, we have

$$\rho(x, A) \leq \rho(x, z) \leq \rho(x, y) + \rho(y, z).$$

Take the infimum over $z \in A$ and we get

$$\rho(x, A) \le \rho(x, y) + \rho(y, A). \tag{2.2}$$

Symmetrically, we have

$$\rho(y, A) \le \rho(x, y) + \rho(x, A). \tag{2.3}$$

Hence, (2.1) follows from (2.2) and (2.3). We next show that if *A* is closed, then $\rho(x, A) = 0$ iff $x \in A$. The "if" part is trivial, so we do the "only if" part. If $\rho(x, A) = 0$, then for every $n \in \mathbb{N}$, there exists $y_n \in A$ such that $\rho(x, y_n) < 1/n$; that is, $y_n \to x$. Since $\{y_n\} \subset A$ and *A* is closed, we must have $x \in A$.

Therefore,

$$A = \bigcap_{n=1}^{\infty} \{ x \in X : \rho(x, A) < 1/n \}.$$

The continuity of $\rho(\cdot, A)$ implies that $\{x \in X : \rho(x, A) < 1/n\}$ is open for all n. Thus, A is a G_{δ} set.

► EXERCISE 36. The rationals are an F_{σ} in \mathbb{R} .

PROOF. \mathbb{Q} is countable, and every singleton set in \mathbb{R} is closed; hence, \mathbb{Q} is an F_{σ} .

3I. Borel Sets

2.2 Neighborhoods

4A. The Sorgenfrey Line

EXERCISE 37. Verify that the set [x, z), for z > x, do form a nhood base at x for a topology on the real line.

PROOF. We need only check that for each $x \in \mathbb{R}$, the family $\mathcal{B}_x := \{[x, z) : z > x\}$ satisfies V-a, V-b, and V-c in Theorem 4.5. V-a is trivial. If $[x, z_1) \in \mathcal{B}_x$ and $[x, z_2) \in \mathcal{B}_x$, then $[x, z_1) \cap [x, z_2) = [x, z_1 \wedge z_2) \in \mathcal{B}_x$ and is in $[x, z_1) \cap [x, z_2)$. For V-c, let $[x, z) \in \mathcal{B}_x$. Let $z' \in (x, z]$. Then $[x, z'] \in \mathcal{B}_x$, and if $y \in [x, z']$, the right-open interval $[y, z'] \in \mathcal{B}_y$ and $[y, z'] \subset [x, z)$.

Then, define open sets using V-d: $G \subset \mathbb{R}$ is open if and only if G contains a set [x, z) of each of its points x.

► EXERCISE 38. Which intervals on the real line are open sets in the Sorgenfrey topology?

SOLUTION.

- Sets of the form $(-\infty, x)$, [x, z), or $[x, \infty)$ are both open and closed.
- Sets of the form (x, z) or $(x, +\infty)$ are open in \mathbb{R} , since

$$(x,z) = \bigcup \{ [y,z) : x < y < z \}.$$

► EXERCISE 39. Describe the closure of each of the following subset of the Sorgenfrey line: the rationals \mathbb{Q} , the set $\{1/n : n = 1, 2, ...,\}$, the set $\{-1/n : n = 1, 2, ...\}$, the integers \mathbb{Z} .

SOLUTION. Recall that, by Theorem 4.7, for each $E \subset \mathbb{R}$, we have

 $\overline{E} = \{x \in \mathbb{R} : \text{ each basic nhood of } x \text{ meets } E\}.$

Then $\overline{\mathbb{Q}} = \mathbb{R}$ since for any $x \in \mathbb{R}$, we have $[x, z) \cap \mathbb{Q} \neq \emptyset$ for z > x. Similarly, $\overline{\{1/n : n = 1, 2, \ldots\}} = \{1/n : n = 1, 2, \ldots\}$, and $\overline{\mathbb{Z}} = \mathbb{Z}$.

4B. The Moore Plane

• EXERCISE 40. Verify that this gives a topology on Γ .

PROOF. Verify (V-a)—(V-c). It is easy.

4E. Topologies from nhoods

EXERCISE 41. Show that if each point x in a set X has assigned a collection U_x of subsets of X satisfying N-a through N-d of 4.2, then the collection

$$\tau = \{G \subset X : \text{for each } x \text{ in } G, x \in U \subset G \text{ for some } U \in \mathcal{U}_x\}$$

is a topology for X, in which the nhood system at each x is just U_x .

PROOF. We need to check G1—G3 in Definition 3.1. Since G1 and G3 are evident, we focus on G2. Let $E_1, E_2 \in \tau$. Take any $x \in E_1 \cap E_2$. Then there exist some $U_1, U_2 \in \mathcal{U}_x$ such that $x \in U_1 \subset E_1$ and $x \in U_2 \subset E_2$. By N-b, we know that $U_1 \cap U_2 \in \mathcal{U}_x$. Hence,

$$x \in U_1 \cap U_2 \subset E_1 \cap E_2,$$

and so $E_1 \cap E_2 \in \tau$. The induction principle then means that τ is closed under finite intersections.

4F. Spaces of Functions

► EXERCISE 42. For each $f \in \mathbb{R}^{\mathbb{I}}$, each finite subset F of \mathbb{I} and each positive δ , let

$$U(f, F, \delta) = \left\{ g \in \mathbb{R}^{\mathbb{I}} : |g(x) - f(x)| < \delta, \text{ for each } x \in F \right\}.$$

Show that the sets $U(f, F, \delta)$ form a nhood base at f, making $\mathbb{R}^{\mathbb{I}}$ a topological space.

PROOF. Denote

$$\mathcal{B}_f = \left\{ U(f, F, \delta) : F \subset \mathbb{I}, |F| < \infty, \delta > 0 \right\}.$$

(*V*-a) For each $U(f, F, \delta) \in \mathcal{B}_f$, we have $|f(x) - f(x)| = 0 < \delta$ for all $x \in F$; hence, $f \in U(f, F, \delta)$.

(*V*-b) Let $U(f, F_1, \delta_1), U(f, F_2, \delta_2) \in \mathcal{B}_f$. Define $U(f, F_3, \delta_3)$ by letting

$$F_3 = F_1 \cup F_2$$
, and $\delta_3 = \min\{\delta_1, \delta_2\}$.

Clearly, $U(f, F_3, \delta_3) \in \mathcal{B}_f$. If $g \in U(f, F_3, \delta_3)$, then

$$|g(x) - f(x)| < \min\{\delta_1, \delta_2\}, \text{ for all } x \in F_1 \cup F_2.$$

Hence, $|g(x) - f(x)| < \delta_1$ for all $x \in F_1$ and $|g(x) - f(x)| < \delta_2$ for all $x \in F_2$; that is, $g \in U(f, F_1, \delta_1) \cap U(f, F_2, \delta_2)$. Hence, there exists $U(f, F_3, \delta_3) \in \mathcal{B}_f$ such that $U(f, F_3, \delta_3) \subset U(f, F_1, \delta_1) \cap U(f, F_2, \delta_2)$.

(*V*-c) Pick $U(f, F, \delta) \in \mathcal{B}_f$. We must show that there exists some $U(f, F_0, \delta_0) \in \mathcal{B}_f$ such that if $g \in U(f, F_0, \delta_0)$, then there is some $U(g, F', \delta') \in \mathcal{B}_g$ with $U(g, F', \delta') \subset U(f, F, \delta)$.

Let $F_0 = F$, and $\delta_0 = \delta/2$. Then $U(f, F, \delta/2) \in \mathcal{B}_f$. For every $g \in U(f, F, \delta/2)$, we have

$$|g(x) - f(x)| < \delta/2$$
, for all $x \in F$.

Let $U(g, F', \delta') = U(g, F, \delta/2)$. If $h \in U(g, F, \delta/2)$, then

$$|h(x) - f(x)| < \delta/2$$
, for all $x \in F$.

Triangle inequality implies that

$$|h(x) - f(x)| \le |h(x) - g(x)| + |g(x) - f(x)| < \delta/2 + \delta/2 = \delta$$
, for all $x \in F$;

that is, $h \in U(f, F, \delta)$. Hence, $U(g, F, \delta/2) \subset U(f, F, \delta)$.

Now, $G \subset \mathbb{R}^{\mathbb{I}}$ is open iff *G* is contains a $U(f, F, \delta)$ of each $f \in G$. This defines a topology on $\mathbb{R}^{\mathbb{I}}$.

► EXERCISE 43. For each $f \in \mathbb{R}^{\mathbb{I}}$, the closure of the one-point set $\{f\}$ is just $\{f\}$.

PROOF. For every $g \in \mathbb{R}^{\mathbb{I}} \setminus \{f\}$, pick $x \in \mathbb{I}$ with $g(x) \neq f(x)$. Define $U(g, F, \delta)$ with $F = \{x\}$ and $\delta < |g(x) - f(x)|$. Then $f \notin U(g, \{x\}, \delta)$; that is, $U(g, \{x\}, \delta) \in \mathbb{R}^{\mathbb{I}} \setminus \{f\}$. Hence, $\mathbb{R}^{\mathbb{I}} \setminus \{f\}$ is open, and so $\{f\}$ is closed. This proves that $\overline{\{f\}} = \{f\}$.

► EXERCISE 44. For $f \in \mathbb{R}^{\mathbb{I}}$ and $\varepsilon > 0$, let

$$V(f,\varepsilon) = \left\{ g \in \mathbb{R}^{\mathbb{I}} : |g(x) - f(x)| < \varepsilon, \text{ for each } x \in \mathbb{I} \right\}.$$

Verify that the sets $V(f, \varepsilon)$ *form a nhood base at* f*, making* $\mathbb{R}^{\mathbb{I}}$ *a topological space.*

PROOF. Denote $\mathcal{V}_f = \{V(f, \varepsilon) : \varepsilon > 0\}$. We verify the following properties.

(*V*-a) If $V(f,\varepsilon) \in \mathcal{V}_f$, then $|f(x) - f(x)| = 0 < \varepsilon$; that is, $f \in V(f,\varepsilon)$.

(*V*-**b**) Let $V(f, \varepsilon_1), V(f, \varepsilon_2) \in \mathcal{V}_f$. Let $\varepsilon_3 = \min\{\varepsilon_1, \varepsilon_2\}$. If $g \in V(f, \varepsilon_3)$, then

 $|g(x) - f(x)| < \varepsilon_3 = \min\{\varepsilon_1, \varepsilon_2\}, \text{ for all } x \in \mathbb{I}.$

Hence, $V(f, \varepsilon_3) \subset V(f, \varepsilon_1) \cap V(f, \varepsilon_2)$.

(*V*-c) For an arbitrary $V(f,\varepsilon) \in \mathcal{V}_f$, pick $V(f,\varepsilon/2) \in \mathcal{V}_f$. For each $g \in V(f,\varepsilon/2)$, pick $V(g,\varepsilon/2) \in \mathcal{V}_g$. If $h \in V(g,\varepsilon/2)$, then $|h(x) - g(x)| < \varepsilon/2$ for all $x \in \mathbb{I}$. Hence

$$|h(x) - f(x)| \le |h(x) - g(x)| + |g(x) - f(x)| < \varepsilon;$$

that is, $V(g, \varepsilon/2) \subset V(f, \varepsilon)$.

► EXERCISE 45. *Compare the topologies defined in 1 and 3.*

PROOF. It is evident that for every $U(f, F, \delta) \in \mathcal{B}_f$, there exists $V(f, \delta) \in \mathcal{V}_f$ such that $V(f, \delta) \subset U(f, F, \delta)$. Hence, the topology in 1 is weaker than in 3 by Hausdorff criterion.

2.3 BASES AND SUBBASES

5D. No Axioms for Subbase

EXERCISE 46. Any family of subsets of a set X is a subbase for some topology on X and the topology which results is the smallest topology containing the given collection of sets.

PROOF. Let \mathscr{S} be a family of subsets of X. Let $\tau(\mathscr{S})$ be the intersection of all topologies containing \mathscr{S} . Such topologies exist, since 2^X is one such. Also $\tau(\mathscr{S})$ is a topology. It evidently satisfies the requirements "unique" and "smallest."

The topology $\tau(S)$ can be described as follows: It consists of \emptyset , *X*, all finite intersections of the *S*-sets, and all arbitrary unions of these finite intersections. To verify this, note that since $S \subset \tau(S)$, then $\tau(S)$ must contain all the sets listed. Conversely, because \bigcup distributes over \bigcap , the sets listed actually do from a topology containing *S*, and which therefore contains $\tau(S)$.

5E. Bases for the Closed Sets

EXERCISE 47. \mathcal{F} is a base for the closed sets in X iff the family of complements of members of \mathcal{F} is a base for the open sets.

PROOF. Let *G* be an open set in *X*. Then $G = X \setminus E$ for some closed subset *E*. Since $E = \bigcap_{F \in \mathscr{G} \subset \mathscr{F}} F$, we obtain

$$G = X \smallsetminus \left(\bigcap_{F \in \mathscr{G} \subset \mathscr{F}} F\right) = \bigcup_{F \in \mathscr{G} \subset \mathscr{F}} F^c.$$

Thus, $\{F^c : F \in \mathcal{F}\}$ forms a base for the open sets. The converse direction is similar. \Box

▶ EXERCISE 48. \mathcal{F} is a base for the closed sets for some topology on X iff (a) whenever F_1 and F_2 belong to \mathcal{F} , $F_1 \cup F_2$ is an intersection of elements of \mathcal{F} , and (b) $\bigcap_{F \in \mathcal{F}} F = \emptyset$.

PROOF. If \mathcal{F} is a base for the closed sets for some topology on X, then (a) and (b) are clear. Suppose, on the other hand, X is a set and \mathcal{F} a collection of subsets of X with (a) and (b). Let \mathcal{T} be all intersections of subcollections from \mathcal{F} . Then any intersection of members of \mathcal{T} certainly belongs to \mathcal{T} , so \mathcal{T} satisfies (F-a). Moreover, if $\mathcal{F}_1 \subset \mathcal{F}$ and $\mathcal{F}_2 \subset \mathcal{F}$, so that $\bigcap_{E \in \mathcal{F}_1} E$ and $\bigcap_{F \in \mathcal{F}_2} F$ are elements of \mathcal{T} , then

$$\left(\bigcap_{E\in\mathscr{F}_1} E\right)\cup\left(\bigcap_{F\in\mathscr{F}_2} F\right)=\bigcap_{E\in\mathscr{F}_1}\bigcap_{F\in\mathscr{F}_2}(E\cup F).$$

But by property (a), the union of two elements of \mathcal{F} is an intersection of elements of \mathcal{F} , so $(\bigcap_{E \in \mathcal{F}_1} E) \cup (\bigcap_{F \in \mathcal{F}_2} F)$ is an intersection of elements of \mathcal{F} , and hence belongs to \mathcal{T} . Thus \mathcal{T} satisfies (F-b). Finally, $\emptyset \in \mathcal{T}$ by (b) and $X \in \mathcal{T}$ since X is the intersection of the empty subcollection from \mathcal{F} . Hence \mathcal{T} satisfies (F-c). This completes the proof that \mathcal{T} is the collection of closed sets of X.

3 NEW SPACES FROM OLD

3.1 SUBSPACES

3.2 CONTINUOUS FUNCTIONS

7A. Characterization of Spaces Using Functions

EXERCISE 49. The characteristic function of A is continuous iff A is both open and closed in X.

PROOF. Let $\mathbb{I}_A \colon X \to \mathbb{R}$ be the characteristic function of *A*, which is defined by

$$\mathbb{1}_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

First suppose that \mathbb{I}_A is continuous. Then, say, $\mathbb{I}_A^{-1}((1/2, 2)) = A$ is open, and $\mathbb{I}_A^{-1}((-1, 1/2)) = X \smallsetminus A$ is open. Hence, *A* is both open and closed in *X*.

Conversely, suppose that *A* is both open and closed in *X*. For any open set $U \subset \mathbb{R}$, we have

$$\mathbb{I}_{A}^{-1}(U) = \begin{cases} A & \text{if } 1 \in U \text{ and } 0 \notin U \\ X \smallsetminus A & \text{if } 1 \notin U \text{ and } 0 \in U \\ \emptyset & \text{if } 1 \notin U \text{ and } 0 \notin U \\ X & \text{if } 1 \in U \text{ and } 0 \in U. \end{cases}$$

Then $\mathbb{1}_A$ is continuous.

EXERCISE 50. *X* has the discrete topology iff whenever *Y* is a topological space and $f: X \rightarrow Y$, then *f* is continuous.

PROOF. Let *Y* be a topological space and $f: X \to Y$. It is easy to see that *f* is continuous if *X* has the discrete topology, so we focus on the sufficiency

direction. For any $A \subset X$, let $Y = \mathbb{R}$ and $f = \mathbb{I}_A$. Then by Exercise 49 *A* is open.

7C. Functions Agreeing on A Dense Subset

► EXERCISE 51. If f and g are continuous functions from X to \mathbb{R} , the set of points x for which f(x) = g(x) is a closed subset of X. Thus two continuous maps on X to \mathbb{R} which agree on a dense subset must agree on all of X.

PROOF. Denote $A = \{x \in X : f(x) \neq g(x)\}$. Take a point $y \in A$ such that f(y) > g(y) (if it is not true then let g(y) > f(y)). Take an $\varepsilon > 0$ such that $f(y) - \varepsilon \ge g(y) + \varepsilon$. Since f and g are continuous, there exist nhoods U_1 and U_2 of y such that $f[U_1] \subset (-\varepsilon + f(y), \varepsilon + f(y))$ and $g[U_2] \subset (-\varepsilon + g(y), \varepsilon + g(y))$. Let $U = U_1 \cap U_2$. Then U is a nhood of x and for every $z \in U$ we have

$$f(z) - g(z) > [f(x) - \varepsilon] - [g(x) + \varepsilon] \ge 0.$$

Hence, $U \subset A$; that is, U is open, and so $\{x \in X : f(x) = g(x)\} = X \setminus U$ is closed.

Now suppose that $D := \{x \in X : f(x) = g(x)\}$ is dense. Take an arbitrary $x \in X$. Since f and g are continuous, for each $n \in \mathbb{N}$, there exist nhoods V_f and V_g such that |f(y) - f(x)| < 1/n for all $y \in V_f$ and |g(y) - g(x)| < 1/n for all $y \in V_g$. Let $V_n = V_f \cap V_g$. Then there exists $x_n \in V_n \cap D$ with $|f(x_n) - f(x)| < 1/2n$ and $|g(x_n) - g(x)| < 1/2n$. Since $f(x_n) = g(x_n)$, we have

$$|f(x) - g(x)| \le |f(x) - f(x_n)| + |f(x_n) - g(x)| = |f(x) - f(x_n)| + |g(x_n) - g(x)| < 1/n.$$

Therefore, f(x) = g(x).

7E. Range Immaterial

EXERCISE 52. If $Y \subset Z$ and $f: X \to Y$, then f is continuous as a map from X to Y iff f is continuous as a map from X to Z.

PROOF. Let $f: X \to Z$ be continuous. Let *U* be open in *Y*. Then $U = Y \cap V$ for some *V* which is open in *Z*. Therefore,

$$f^{-1}(U) = f^{-1}(Y \cap V) = f^{-1}(Y) \cap f^{-1}(V) = X \cap f^{-1}(V) = f^{-1}(V)$$

is open in *X*, and so f is continuous as a map from *X* to *Y*.

Conversely, let $f: X \to Y$ be continuous and V be open in Z. Then $f^{-1}(V) = f^{-1}(Y \cap V)$. Since $Y \cap V$ is open in Y and f is continuous from X to Y, the set $f^{-1}(Y \cap V)$ is open in X and so f is continuous as a map from X to Z.

7G. Homeomorphisms within the Line

• EXERCISE 53. Show that all open intervals in \mathbb{R} are homeomorphic.

PROOF. We have

- $(a,b) \sim (0,1)$ by $f_1(x) = (x-a)/(b-a)$.
- $(a, \infty) \sim (1, \infty)$ by $f_2(x) = x a + 1$.
- $(1, \infty) \sim (0, 1)$ by $f_3(x) = 1/x$.
- $(-\infty, -a) \sim (a, \infty)$ by $f_4(x) = -x$.
- $(-\infty, \infty) \sim (-\pi/2, \pi/2)$ by $f_5(x) = \arctan x$.

Therefore, by compositing, every open interval is homeomorphic to (0, 1). \Box

► EXERCISE 54. *All bounded closed intervals in* R *are homeomorphic.*

PROOF.
$$[a, b] \sim [0, 1]$$
 by $f(x) = (x - a)/(b - a)$.

► EXERCISE 55. The property that every real-valued continuous function on *X* assumes its maximum is a topological property. Thus, I := [0, 1] is not homeomorphic to \mathbb{R} .

PROOF. Every continuous function assumes its maximum on [0, 1]; however, x^2 has no maximum on \mathbb{R} . Therefore, $\mathbb{I} \not\sim \mathbb{R}$.

7K. Semicontinuous Functions

► EXERCISE 56. If f_{α} is a lower semicontinuous real-valued function on X for each $\alpha \in A$, and if $\sup_{\alpha} f_{\alpha}(x)$ exists at each $x \in X$, then the function $f(x) = \sup_{\alpha} f_{\alpha}(x)$ is lower semicontinuous on X.

PROOF. For an arbitrary $a \in \mathbb{R}$, we have $f(x) \leq a$ iff $f_{\alpha}(x) \leq a$ for all $\alpha \in A$. Hence,

$$\{x \in X : f(x) \leq \alpha\} = \bigcap_{\alpha \in A} \{x \in X : f_{\alpha}(x) \leq a\},\$$

and so $f^{-1}(-\infty, a]$ is closed; that is, f is lower semicontinuous.

EXERCISE 57. Every continuous function from X to \mathbb{R} is lower semicontinuous. Thus the supremum of a family of continuous functions, if it exists, is lower semicontinuous. Show by an example that "lower semicontinuous" cannot be replaced by "continuous" in the previous sentence.

PROOF. Suppose that $f: X \to \mathbb{R}$ is continuous. Since $(-\infty, x]$ is closed in \mathbb{R} , the set $f^{-1}(-\infty, x]$ is closed in *X*; that is, *f* is lower semicontinuous.

To construct an example, let $f : [0, \infty) \to \mathbb{R}$ be defined as follows:

$$f_n(x) = \begin{cases} nx & \text{if } 0 \le x \le 1/n \\ 1 & \text{if } x > 1/n. \end{cases}$$

Then

$$f(x) = \sup_{n} f_{n}(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x > 0, \end{cases}$$

and f is not continuous.

EXERCISE 58. The characteristic function of a set A in X is lower semicontinuous iff A is open, upper semicontinuous iff A is closed.

PROOF. Observe that

$$\mathbb{I}_A^{-1}(-\infty, a] = \begin{cases} \emptyset & \text{if } a < 0\\ X \smallsetminus A & \text{if } 0 \leqslant a < 1\\ X & \text{if } a \geqslant 1. \end{cases}$$

1

Therefore, $\mathbb{1}_A$ is LSC iff *A* is open. Similarly for the USC case.

► EXERCISE 59. If X is metrizable and f is a lower semicontinuous function from X to I, then f is the supremum of an increasing sequence of continuous functions on X to I.

PROOF. Let d be the metric on X. First assume f is nonnegative. Define

$$f_n(x) = \inf_{z \in X} \{ f(z) + nd(x, z) \}.$$

If $x, y \in X$, then $f(z) + nd(x, z) \leq f(z) + nd(y, z) + nd(x, y)$. Take the inf over z (first on the left side, then on the right side) to obtain $f_n(x) \leq f_n(y) + nd(x, y)$. By symmetry,

$$|f_n(x) - f_n(y)| \le n d(x, y);$$

hence, f_n is uniformly continuous on *X*. Furthermore, since $f \ge 0$, we have $0 \le f_n(x) \le f(x) + nd(x, x) = f(x)$. By definition, f_n increases with *n*; we must show that $\lim_n f_n$ is actually *f*.

Given $\varepsilon > 0$, by definition of $f_n(x)$ there is a point $z_n \in X$ such that

$$f_n(x) + \varepsilon > f(z_n) + nd(x, z_n) \ge nd(x, z_n)$$
(3.1)

since $f \ge 0$. But $f_n(x) + \varepsilon \le f(x) + \varepsilon$; hence $d(x, z_n) \to 0$. Since f is LSC, we have $\liminf_n f(z_n) \ge f(x)$ (Ash, 2009, Theorem 8.4.2); hence

$$f(z_n) > f(x) - \varepsilon$$
 ev. (3.2)

By (3.1) and (3.2),

$$f_n(x) > f(z_n) - \varepsilon + nd(x, z_n) \ge f(z_n) - \varepsilon > f(x) - 2\varepsilon$$

for all sufficiently large *n*. Thus, $f_n(x) \rightarrow f(x)$.

If $|f| \le M < \infty$, then f + M is LSC, finite-valued, and nonnegative. If $0 \le g_n \uparrow (f + M)$, then $f_n = (g_n - M) \uparrow f$ and $|f_n| \ge M$.

7M. C(X) and $C^*(X)$

► EXERCISE 60. If f and g belong to C(X), then so do f + g, $f \cdot g$ and $a \cdot f$, for $a \in \mathbb{R}$. If, in addition, f and g are bounded, then so are f + g, $f \cdot g$ and $a \cdot f$.

PROOF. We first do f + g. Since $f, g \in C(X)$, for each $x \in X$ and each $\varepsilon > 0$, there exist nhoods U_1 and U_2 of x such that $f[U_1] \subset (-\varepsilon/2 + f(x), \varepsilon/2 + f(x))$ and $g[U_2] \subset (-\varepsilon/2 + g(x), \varepsilon/2 + g(x))$. Let $U = U_1 \cap U_2$. Then U is a nhood of x, and for every $y \in U$, we have

$$|[f(y) + g(y)] - [f(x) + g(x)]| \le |f(y) - f(x)| + |g(y) - g(x)| < \varepsilon;$$

that is, f + g is continuous.

We then do $a \cdot f$. We suppose that a > 0 (all other cases are similar). For each $x \in X$ and $\varepsilon > 0$, there exists a nhood U of x such that $f[U] \subset (-\varepsilon/a + f(x), \varepsilon/a + f(x))$. Then $(a \cdot f)[U] \in (-\varepsilon + a \cdot f(x), \varepsilon + a \cdot f(x))$. So $a \cdot f \in C(X)$.

Finally, to do $f \cdot g$, we first show that $f^2 \in C(X)$ whenever $f \in C(X)$. For each $x \in X$ and $\varepsilon > 0$, there is a nhood U of x such that $f[U] \subset (-\sqrt{\varepsilon} + f(x), \sqrt{\varepsilon} + f(x))$. Then $f^2[U] \subset (-\varepsilon + f^2(x), \varepsilon + f^2(x))$, i.e., $f^2 \in C(X)$. Since

$$f(x) \cdot g(x) = \frac{1}{4} \left[\left(f(x) + g(x) \right)^2 - \left(f(x) - g(x) \right)^2 \right],$$

we know that $f \cdot g \in C(X)$ from the previous arguments.

• EXERCISE 61. C(X) and $C^*(X)$ are algebras over the real numbers.

PROOF. It follows from the previous exercise that C(X) is a vector space on \mathbb{R} . So everything is easy now.

► EXERCISE 62. $C^*(X)$ is a normed linear space with the operations of addition and scalar multiplication given above and the norm $||f|| = \sup_{x \in X} |f(x)|$.

PROOF. It is easy to see that $C^*(X)$ is a linear space. So it suffices to show that $\|\cdot\|$ is a norm on $C^*(X)$. We focus on the triangle inequality. Let $f, g \in C^*(X)$. Then for every $x \in X$, we have $|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f|| + ||g||$; hence, $||f + g|| \le ||f|| + ||g||$.

3.3 PRODUCT SPACES, WEAK TOPOLOGIES

8A. Projection Maps

► EXERCISE 63. The β th projection map π_{β} is continuous and open. The projection $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ is not closed.

PROOF. Let U_{β} be open in X_{β} . Then $\pi_{\beta}^{-1}(U_{\beta})$ is a subbasis open set of the Tychonoff topology on $X_{\alpha} X_{\alpha}$, and so is open. Hence, π_{β} is continuous.

Take an arbitrary basis open set *U* in the Tychonoff topology. Denote $I := \{1, ..., n\}$. Then

$$U = \bigotimes_{\alpha} U_{\alpha},$$

where U_{α} is open in X_{α} for every $\alpha \in A$, and $U_{\alpha_j} = X_{\alpha_j}$ for all $j \notin I$. Hence,

$$\pi_{\beta}(U) = \begin{cases} U_{\beta} & \text{if } \beta = \alpha_i \text{ for some } i \in I \\ X_{\beta} & \text{otherwise.} \end{cases}$$

That is, $\pi_{\beta}(U)$ is open in X_{β} in both case. Since any open set is a union of basis open sets, and since functions preserve unions, the image of any open set under π_{β} is open.

FIGURE 3.1. $\pi_1(F) = (0, \infty)$

Finally, let F = epi(1/x). Then F is closed in \mathbb{R}^2 , but $\pi_1(F) = (0, \infty)$ is open in \mathbb{R} ; that is, π_1 is not closed. See Figure 3.1.

▶ EXERCISE 64. Show that the projection of $\mathbb{I} \times \mathbb{R}$ onto \mathbb{R} is a closed map.

PROOF. Let $\pi : \mathbb{I} \times \mathbb{R} \to \mathbb{R}$ be the projection. Suppose $A \subset \mathbb{I} \times \mathbb{R}$ is closed, and suppose $y_0 \in \mathbb{R} \setminus \pi[A]$. For every $x \in \mathbb{I}$, since $(x, y_0) \notin A$ and A is closed, we find a basis open subset $U(x) \times V(x)$ of $\mathbb{I} \times \mathbb{R}$ that contains (x, y_0) , and $[U(x) \times V(x)] \cap A = \emptyset$. The collection $\{U(x) : x \in \mathbb{I}\}$ covers \mathbb{I} , so finitely many of them cover \mathbb{I} by compactness, say $U(x_1), \ldots, U(x_n)$ do. Now define V = $\bigcap_{i=1}^{n} V(x_i)$, and note that *V* is an open nhood of y_0 , and $V \cap \pi[A] = \emptyset$. So $\pi[A]$ is closed; that is, π is closed. See Lee (2011, Lemma 4.35, p. 95) for the Tube Lemma.

Generally, if $\pi : X \times Y \to X$ is a projection may where *Y* is compact, then π is a closed map.

8B. Separating Points from Closed Sets

► EXERCISE 65. If f_{α} is a map (continuous function) of X to X_{α} for each $\alpha \in A$, then $\{f_{\alpha} : \alpha \in A\}$ separates points from closed sets in X iff $\{f_{\alpha}^{-1}[V] : \alpha \in A, V \text{ open in } X_{\alpha}\}$ is a base for the topology on X.

PROOF. Suppose that $\{f_{\alpha}^{-1}[V] : \alpha \in A, V \text{ open in } X_{\alpha}\}$ consists of a base for the topology on *X*. Let *B* be closed in *X* and $x \notin B$. Then $x \in X \setminus B$ and $X \setminus B$ is open in *X*. Hence there exists $f_{\alpha}^{-1}[V]$ such that $x \in f_{\alpha}^{-1}[V] \subset X \setminus B$; that is, $f_{\alpha}(x) \in V$. Since $V \cap f_{\alpha}[B] = \emptyset$, i.e., $f_{\alpha}[B] \subset X_{\alpha} \setminus V$, and $X_{\alpha} \setminus V$ is closed, we get $\overline{f_{\alpha}[B]} \subset X_{\alpha} \setminus V$. Thus, $f_{\alpha}(x) \notin \overline{f_{\alpha}[B]}$.

Next assume that $\{f_{\alpha} : \alpha \in A\}$ separates points from closed sets in *X*. Take an arbitrary open subset $U \subset X$ and $x \in U$. Then $B := X \setminus U$ is closed in *X*, and hence there exists $\alpha \in A$ such that $f_{\alpha}(x) \notin \overline{f_{\alpha}[B]}$. Then $f_{\alpha}(x) \in X_{\alpha} \setminus \overline{f_{\alpha}[B]}$ and, since $X_{\alpha} \setminus \overline{f_{\alpha}[B]}$ is open in X_{α} , there exists an open set *V* of X_{α} such that $f_{\alpha}(x) \in V \subset X_{\alpha} \setminus \overline{f_{\alpha}[B]}$. Therefore,

$$x \in f_{\alpha}^{-1}[V] \subset f_{\alpha}^{-1}\left[X_{\alpha} \setminus \overline{f_{\alpha}[B]}\right] = X \setminus f_{\alpha}^{-1}\left[\overline{f_{\alpha}[B]}\right]$$
$$\subset X \setminus f_{\alpha}^{-1}[f_{\alpha}[B]]$$
$$\subset X \setminus B$$
$$= U.$$

Hence, $\{f_{\alpha}^{-1}[V] : \alpha \in A, V \text{ open in } X_{\alpha}\}$ is a base for the topology on *X*.

8D. Closure and Interior in Products

Let *X* and *Y* be topological spaces containing subsets *A* and *B*, respectively. In the product space $X \times Y$:

► EXERCISE 66. $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$.

PROOF. Since $A^{\circ} \subset A$ is open in A and $B^{\circ} \subset B$ is open in B, the set $A^{\circ} \times B^{\circ} \subset A \times B$ is open in $A \times B$; hence, $A^{\circ} \times B^{\circ} \subset (A \times B)^{\circ}$.

For the converse inclusion, let $\mathbf{x} = (a, b) \in (A \times B)^{\circ}$. Then there is an basis open set $U_1 \times U_2$ such that $\mathbf{x} \in U_1 \times U_2 \subset A \times B$, where U_1 is open in A and U_2 is open in B. Hence, $a \in U_1 \subset A$ and $b \in U_2 \subset B$; that is, $a \in A^{\circ}$ and $b \in B^{\circ}$. \Box

 $\blacktriangleright \text{ EXERCISE 67. } \overline{A \times B} = \overline{A} \times \overline{B}.$

PROOF. See Exercise 68.

► EXERCISE 68. *Part 2 can be extended to infinite products, while part 1 can be extended only to finite products.*

PROOF. Assume that $y = (y_{\alpha}) \in \overline{X} A_{\alpha}$; we show that $y_{\alpha} \in \overline{A}_{\alpha}$ for each α ; that is, $y \in \overline{X} A_{\alpha}$. Let $y_{\alpha} \in U_{\alpha}$, where U_{α} is open in Y_{α} ; since $y \in \pi_{\alpha}^{-1}(U_{\alpha})$, we must have

$$\emptyset \neq \pi_{\alpha}^{-1}(U_{\alpha}) \cap \bigotimes A_{\alpha} = (U_{\alpha} \cap A_{\alpha}) \times \left(\bigotimes_{\beta \neq \alpha} A_{\beta}\right),$$

and so $U_{\alpha} \cap A_{\alpha} \neq \emptyset$. This proves $y_{\alpha} \in \overline{A_{\alpha}}$. The converse inclusion is established by reversing these steps: If $y \in X \overline{A_{\alpha}}$, then for any open nhood

$$B := U_{\alpha_1} \times \cdots \times U_{\alpha_n} \times \left(\bigotimes \{ Y_\beta \colon \beta \neq \alpha_1, \ldots, \alpha_n \} \right),$$

each $U_{\alpha_i} \cap A_{\alpha_i} \neq \emptyset$ so that $B \cap X A_{\alpha} \neq \emptyset$.

► EXERCISE 69. $\operatorname{Fr}(A \times B) = [\overline{A} \times \operatorname{Fr}(B)] \cup [\operatorname{Fr}(A) \times \overline{B}].$

PROOF. We have

$$\begin{aligned} \operatorname{Fr}(A \times B) &= \overline{A \times B} \cap (X \times Y) \smallsetminus (A \times B) \\ &= (\overline{A} \times \overline{B}) \cap \left[(X \times Y) \smallsetminus (A^{\circ} \times B^{\circ}) \right] \\ &= (\overline{A} \times \overline{B}) \cap \left[(X \times (Y \smallsetminus B^{\circ})) \cup ((X \smallsetminus A^{\circ}) \times Y) \right] \\ &= [\overline{A} \times \operatorname{Fr}(B)] \cup [\operatorname{Fr}(A) \times \overline{B}]. \end{aligned}$$

► EXERCISE 70. If X_{α} is a nonempty topological space and $A_{\alpha} \subset X_{\alpha}$, for each $\alpha \in A$, then $X \land A_{\alpha}$ is dense in $X \land X_{\alpha}$ iff A_{α} is dense in X_{α} , for each α .

PROOF. It follows from Exercise 68 that

$$\overline{\mathbf{X} A_{\alpha}} = \mathbf{X} \, \overline{A}_{\alpha};$$

that is, $X \land A_{\alpha}$ is dense in $X \land X_{\alpha}$ iff A_{α} is dense in X_{α} , for each α .

8E. Miscellaneous Facts about Product Spaces

Let X_{α} be a nonempty topological space for each $\alpha \in A$, and let $X = X_{\alpha}$.

► EXERCISE 71. If V is a nonempty open set in X, then $\pi_{\alpha}(V) = X_{\alpha}$ for all but finitely many $\alpha \in A$.

PROOF. Let \mathcal{T}_{α} be the topology on X_{α} for each $\alpha \in A$. Let *V* be an arbitrary open set in *X*. Then $V = \bigcup_{k \in K} B_k$, where for each $k \in K$ we have $B_k = \bigotimes_{\alpha \in A} E_{\alpha k}$,

26

and for each $\alpha \in A$ we have $E_{\alpha k} \in \mathcal{T}_{\alpha}$ while

$$A_k := \{ \alpha \in A : E_{\alpha k} \neq X_\alpha \}$$

is finite. Then $\bigcap_{k \in K} A_k$ is finite. If $\alpha_0 \notin \bigcap_{k \in K} A_k$, then there exists $k_0 \in K$ such that $E_{\alpha_0 k_0} = X_{\alpha_0}$. Then

$$\pi_{\alpha_0}^{-1}(B_{k_0}) = \pi_{\alpha_0}^{-1}\left(\bigotimes_{\alpha \in A} E_{\alpha k_0}\right) = X_{\alpha_0},$$

and so $X_{\alpha_0} = \pi_{\alpha_0}^{-1}(B_{k_0}) \subset \pi_{\alpha_0}^{-1}(V)$ implies that $\pi_{\alpha_0}^{-1}(V) = X_{\alpha_0}$.

► EXERCISE 72. If b_{α} is a fixed point in X_{α} , for each $\alpha \in A$, then $X'_{\alpha_0} = \{x \in X : x_{\alpha} = b_{\alpha} \text{ whenever } \alpha \neq \alpha_0\}$ is homeomorphic to X_{α_0} .

PROOF. Write an element in X'_{α_0} as $(x_{\alpha_0}, \boldsymbol{b}_{-\alpha_0})$. Then consider the mapping $(x_{\alpha_0}, \boldsymbol{b}_{-\alpha_0}) \mapsto x_{\alpha_0}$.

8G. The Box Topology

Let X_{α} be a topological space for each $\alpha \in A$.

► EXERCISE 73. In $X X_{\alpha}$, the sets of the form $X U_{\alpha}$, where U_{α} is open in X_{α} for each $\alpha \in A$, form a base for a topology.

PROOF. Let $\mathcal{B} := \{ X U_{\alpha} : \alpha \in A, U_{\alpha} \text{ open in } X_{\alpha} \}$. Then it is clear that $X X_{\alpha} \in \mathcal{B}$ since X_{α} is open for each $\alpha \in A$. Now take any $B_1, B_2 \in \mathcal{B}$, with $B_1 = X U_{\alpha}^1$ and $B_2 = X U_{\alpha}^2$. Let

$$p = (p_1, p_2, \ldots) \in B_1 \cap B_2 = \bigotimes \left(U_{\alpha}^1 \cap U_{\alpha}^2 \right).$$

Then $p_{\alpha} \in U_{\alpha}^{1} \cap U_{\alpha}^{2}$, and so there exists an open set $B_{\alpha} \subset X_{\alpha}$ such that $p_{\alpha} \in B_{\alpha} \subset U_{\alpha}^{1} \cap U_{\alpha}^{2}$. Hence, $\bigotimes B_{\alpha} \in \mathcal{B}$ and $p \in B \subset B_{1} \cap B_{2}$.

8H. Weak Topologies on Subspaces

Let *X* have the weak topology induced by a collection of maps $f_{\alpha} \colon X \to X_{\alpha}$, for $\alpha \in A$.

► EXERCISE 74. If each X_{α} has the weak topology given by a collection of maps $g_{\alpha\lambda}: X_{\alpha} \to Y_{\alpha\lambda}$, for $\lambda \in \Lambda_{\alpha}$, then X has the weak topology given by the maps $g_{\alpha\lambda} \circ f_{\alpha}: X \to Y_{\alpha\lambda}$ for $\alpha \in A$ and $\lambda \in \Lambda_{\alpha}$.

PROOF. A subbase for the weak topology on X_{α} induced by $\{g_{\alpha\lambda} : \lambda \in \Lambda_{\alpha}\}$ is

$$\left\{g_{\alpha\lambda}^{-1}(U_{\alpha\lambda}):\lambda\in\Lambda_{\alpha},U_{\alpha\lambda}\text{ open in }Y_{\alpha\lambda}\right\}.$$

 \Box

Then a subbasic open set in *X* for the weak topology on *X* induced by $\{f_{\alpha} : \alpha \in A\}$ is

$$\left\{f_{\alpha}^{-1}[g_{\alpha\lambda}^{-1}(U_{\alpha\lambda})]: \alpha \in A, \lambda \in \Lambda_{\alpha}, U_{\alpha\lambda} \text{ open in } Y_{\alpha\lambda}\right\}.$$

Since $f_{\alpha}^{-1}(g_{\alpha\lambda}^{-1}(U_{\alpha\lambda})) = (g_{\alpha\lambda} \circ f_{\alpha})^{-1}(U_{\alpha\lambda})$, we get the result.

► EXERCISE 75. Any $B \subset X$ has the weak topology induced by the maps $f_{\alpha} \upharpoonright B$.

PROOF. As a subspace of X, the subbase on B is

$$\left\{B \cap f_{\alpha}^{-1}(U_{\alpha}) : \alpha \in A, U_{\alpha} \text{ open in } X_{\alpha}\right\}$$

On the other hand, $(f_{\alpha} \upharpoonright B)^{-1}(U_{\alpha}) = B \cap f_{\alpha}^{-1}(U_{\alpha})$ for every $\alpha \in A$ and U_{α} open in X_{α} . Hence, the above set is also the subbase for the weak topology induced by $\{f_{\alpha} \upharpoonright B : \alpha \in A\}$.

3.4 QUOTIENT SPACES

9B. Quotients versus Decompositions

► EXERCISE 76. The process given in 9.5 for forming the topology on a decomposition space does define a topology.

PROOF. Let (X, \mathcal{T}) be a topological space; let \mathcal{D} be a decomposition of X. Define

$$\mathcal{F} \subset \mathcal{D}$$
 is open in $\mathcal{D} \iff \bigcup \{F : F \in \mathcal{F}\}$ is open in *X*. (3.3)

Let \mathfrak{T} be the collection of open sets defined by (3.3). We show that $(\mathfrak{D}, \mathfrak{T})$ is a topological space.

• Take an arbitrary collection $\{\mathcal{F}_i\}_{i \in I} \subset \mathfrak{T}$; then $\bigcup \{F : F \in \mathcal{F}_i\}$ is open in *X* for each $i \in I$. Hence, $\bigcup_{i \in I} \mathcal{F}_i \in \mathfrak{T}$ since

$$\bigcup_{F \in \bigcup_{i \in I} \mathcal{F}_i} F = \bigcup_{i \in I} \left(\bigcup_{F \in \mathcal{F}_i} F \right)$$

is open in *X*.

• Let $\mathcal{F}_1, \mathcal{F}_2 \in \mathfrak{T}$; then $\bigcup_{E \in \mathcal{F}_1} E$ and $\bigcup_{F \in \mathcal{F}_2} F$ are open in *X*. Therefore, $\mathcal{F}_1 \cap \mathcal{F}_2 \in \mathfrak{T}$ since

$$\bigcup_{F \in \mathscr{F}_1 \cap \mathscr{F}_2} F = \left(\bigcup_{E \in \mathscr{F}_1} E\right) \cap \left(\bigcup_{F \in \mathscr{F}_2} F\right)$$

is open in *X*.

• $\emptyset \in \mathfrak{T}$ since $\bigcup \emptyset = \emptyset$ is open in *X*; finally, $\mathfrak{D} \in \mathfrak{T}$ since $\bigcup \mathfrak{D} = X$.

► EXERCISE 77. The topology on a decomposition space \mathcal{D} of X is the quotient topology induced by the natural map $P: X \to \mathcal{D}$. (See 9.6.)

PROOF. Let \mathfrak{T} be the decomposition topology of \mathcal{D} , and let \mathfrak{T}_P be the quotient topology induced by P. Take an open set $\mathcal{F} \in \mathfrak{T}$; then $\bigcup_{F \in \mathcal{F}} F$ is open in X. Hence,

$$P^{-1}(\mathcal{F}) = P^{-1}\left(\bigcup_{F\in\mathcal{F}}F\right) = \bigcup_{F\in\mathcal{F}}P^{-1}(F) = \bigcup_{F\in\mathcal{F}}F$$

is open in *X*, and so $\mathcal{F} \in \mathfrak{T}_P$. We thus proved that $\mathfrak{T} \subset \mathfrak{T}_P$.

Next take an arbitrary $\mathcal{F} \in \mathfrak{T}_P$. By definition, we have $P^{-1}(\mathcal{F}) = \bigcup_{F \in \mathcal{F}} F$ is open in *X*. But then $\mathcal{F} \in \mathfrak{T}$.

We finally prove Theorem 9.7 (McCleary, 2006, Theorem 4.18): Suppose $f: X \to Y$ is a quotient map. Suppose \sim is the equivalence relation defined on X by $x \sim x'$ if f(x) = f(x'). Then the quotient space X / \sim is homeomorphic to Y.

By the definition of the equivalence relation, we have the diagram:

Define $h: X/ \to Y$ by letting h([x]) = f(x). It is well-defined. Notice that $h \circ P = f$ since for each $x \in X$ we obtain

$$(h \circ P)(x) = h(P(x)) = h([x]) = f(x).$$

Both *f* and *P* are quotient maps so *h* is continuous by Theorem 9.4. We show that *h* is injective, subjective and h^{-1} is continuous, which implies that *h* is a homeomorphism. If h([x]) = h([x']), then f(x) = f(x') and so $x \sim x'$; that is, [x] = [x'], and *h* is injective. If $y \in Y$, then y = f(x) since *f* is surjective and h([x]) = f(x) = y so *h* is surjective. To see that h^{-1} is continuous, observe that since *f* is a quotient map and *P* is a quotient map, this shows $P = h^{-1} \circ f$ and Theorem 9.4 implies that h^{-1} is continuous.

4 CONVERGENCE

4.1 INADEQUACY OF SEQUENCES

10B. Sequential Convergence and Continuity

► EXERCISE 78. Find spaces *X* and *Y* and a function $F: X \to Y$ which is not continuous, but which has the property that $F(x_n) \to F(x)$ in *Y* whenever $x_n \to x$ in *X*.

PROOF. Let $X = \mathbb{R}^{\mathbb{R}}$ and $Y = \mathbb{R}$. Define $F \colon \mathbb{R}^{\mathbb{R}} \to \mathbb{R}$ by letting $F(f) = \sup_{x \in \mathbb{R}} |f(x)|$. Then *F* is not continuous: Let

$$E = \left\{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = 0 \text{ or } 1 \text{ and } f(x) = 0 \text{ only finitely often} \right\}$$

and let $g \in \mathbb{R}^{\mathbb{R}}$ be the function which is 0 everywhere. Then $g \in \overline{E}$. However, $0 \in F[\overline{E}]$ since F(g) = 0, and $\overline{F[E]} = \{1\}$.

10C. Topology of First-Countable Spaces

Let *X* and *Y* be first-countable spaces.

► EXERCISE 79. $U \subset X$ is open iff whenever $x_n \to x \in U$, then (x_n) is eventually in U.

PROOF. If *U* is open and $x_n \to x \in U$, then *x* has a nhood *V* such that $x \in V \subset U$. By definition of convergence, there is some positive integer n_0 such that $n \ge n_0$ implies $x_n \in V \subset U$; hence, (x_n) is eventually in *U*.

Conversely, suppose that whenever $x_n \to x \in U$, then (x_n) is eventually in U. If U is not open, then there exists $x \in U$ such that for every nhood of V of x we have $V \cap (X \setminus U) \neq \emptyset$. Since X is first-countable, we can pick a countable nhood base $\{V_n : n \in \mathbb{N}\}$ at x. Replacing $V_n = \bigcap_{i=1}^n V_i$ where necessary, we may assume that $V_1 \supset V_2 \supset \cdots$. Now $V_n \cap (X \setminus U) \neq \emptyset$ for each n, so we can pick $x_n \in V_n \cap (X \setminus U)$. The result is a sequence (x_n) contained in $X \setminus U$

which converges to $x \in U$; that is, $x_n \to x$ but (x_n) is not eventually in U. A contradiction.

► EXERCISE 80. $F \subset X$ is closed iff whenever (x_n) is contained in F and $x_n \to x$, then $x \in F$.

PROOF. Let *F* be closed; let (x_n) be contained in *F* and $x_n \to x$. Then $x \in \overline{F} = F$.

Conversely, assume that whenever (x_n) is contained in F and $x_n \to x$, then $x \in F$. It follows from Theorem 10.4 that $x \in \overline{F}$ with the hypothesis; therefore, $\overline{F} \subset F$, i.e., $\overline{F} = F$ and so F is closed.

► EXERCISE 81. $f: X \to Y$ is continuous iff whenever $x_n \to x$ in X, then $f(x_n) \to f(x)$ in Y.

PROOF. Suppose f is continuous and $x_n \to x$. Since f is continuous at x, for every nhood V of f(x) in Y, there exists a nhood U of x in X such that $f(U) \subset V$. Since $x_n \to x$, there exists n_0 such that $n \ge n_0$ implies that $x_n \in U$. Hence, for every nhood V of f(x), there exists n_0 such that $n \ge n_0$ implies that $f(x_n) \in V$; that is, $f(x_n) \to f(x)$.

Conversely, let the criterion hold. Suppose that f is not continuous. Then there exists $x \in X$ and a nhood V of f(x), such that for every nhood base $U_n, n \in \mathbb{N}$, of x, there is $x_n \in U_n$ with $f(x_n) \notin V$. By letting $U_1 \supset U_2 \supset \cdots$, we have $x_n \to x$ and so $f(x_n) \to f(x)$; that is, eventually, $f(x_n)$ is in V. A contradiction.

4.2 Nets

11A. Examples of Net Converence

► EXERCISE 82. In $\mathbb{R}^{\mathbb{R}}$, let

$$E = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = 0 \text{ or } 1, \text{ and } f(x) = 0 \text{ only finitely often} \},\$$

and g be the function in $\mathbb{R}^{\mathbb{R}}$ which is identically 0. Then, in the product topology on $\mathbb{R}^{\mathbb{R}}$, $g \in \overline{E}$. Find a net (f_{λ}) in E which converges to g.

PROOF. Let $\mathcal{U}_g = \{U(g, F, \varepsilon) : \varepsilon > 0, F \subset \mathbb{R} \text{ a finite set}\}$ be the nhood base of g. Order \mathcal{U}_g as follows:

$$U(g, F_1, \varepsilon_1) \leq U(g, F_2, \varepsilon_2) \iff U(g, F_2, \varepsilon_2) \subset U(g, F, \varepsilon_2)$$
$$\iff F_1 \subset F_2 \text{ and } \varepsilon_2 \leq \varepsilon_1.$$

Then \mathcal{U}_g is a directed set. So we have a net $(f_{F,\varepsilon})$ converging to g.

11B. Subnets and Cluster Points

► EXERCISE 83. Every subnet of an ultranet is an ultranet.

PROOF. Take an arbitrary subset $E \subset X$. Let (x_{λ}) be an ultranet in X, and suppose that (x_{λ}) is residually in E, i.e., there exists some $\lambda_0 \in A$ such that $\lambda \ge \lambda_0$ implies that $x_{\lambda} \in E$. If $(x_{\lambda_{\mu}})$ is a subnet of (x_{λ}) , then there exists some μ_0 such that $\lambda_{\mu_0} \ge \lambda_0$. Then for every $\mu \ge \mu_0$, we have $\lambda_{\mu} \ge \lambda_0$, and so $\mu \ge \mu_0$ implies that $x_{\lambda_{\mu}} \in E$; that is, $(x_{\lambda_{\mu}})$ is residually in E.

► EXERCISE 84. Every net has a subnet which is an ultranet.

PROOF. See Adamson (1996, Exercise 127, p. 40).

EXERCISE 85. If an ultranet has x as a cluster point, then it converges to x.

PROOF. Let (x_{λ}) be an ultranet, and x be a cluster point of (x_{λ}) . Let U be a nhood of x. Then (x_{λ}) lies in U eventually since for any λ_0 there exists $\lambda \ge \lambda_0$ such that $x_{\lambda} \in U$.

11D. Nets Describe Topologies

- ► EXERCISE 86. Nets have the following four properties:
- a. *if* $x_{\lambda} = x$ *for each* $\lambda \in \Lambda$ *, then* $x_{\lambda} \to x$ *,*
- b. *if* $x_{\lambda} \rightarrow x$, *then every subnet of* (x_{λ}) *converges to* x,
- c. if every subnet of (x_{λ}) has a subnet converging to x, then (x_{λ}) converges to x,
- d. (Diagonal principal) if $x_{\lambda} \to x$ and, for each $\lambda \in \Lambda$, a net $(x_{\mu}^{\lambda})_{u \in M_{\lambda}}$ converges to x_{λ} , then there is a diagonal net converging to x; i.e., the net $(x_{\mu}^{\lambda})_{\lambda \in \Lambda, \mu \in M_{\lambda}}$, ordered lexicographically by Λ , then by M_{λ} , has a subnet which converges to x.

PROOF. (a) If the net (x_{λ}) is trivial, then for each nhood *U* of *x*, we have $x_{\lambda} \in U$ for all $\lambda \in \Lambda$. Hence, $x_{\lambda} \to x$.

(b) Let $(x_{\varphi(\mu)})_{\mu \in M}$ be a subnet of (x_{λ}) . Take any nhood U of x. Then there exists $\lambda_0 \in \Lambda$ such that $\lambda \ge \lambda_0$ implies that $x_{\lambda} \in U$ since $x_{\lambda} \to x$. Since φ is cofinal in Λ , there exists $\mu_0 \in M$ such that $\varphi(\mu_0) \ge \lambda_0$; since φ is increasing, $\mu \ge \mu_0$ implies that $\varphi(\mu) \ge \varphi(\mu_0) \ge \lambda_0$. Hence, there exists $\mu_0 \in M$ such that $\mu \ge \mu_0$ implies that $x_{\varphi(\mu)} \in U$; that is, $x_{\varphi(\mu)} \to x$.

(c) Suppose by way of contradiction that (x_{λ}) does not converge to x. Then there exists a nhood U of x such that for any $\lambda \in \Lambda$, there exists some $\varphi(\lambda) \ge \lambda$ with $x_{\varphi(\lambda)} \notin U$. Then $(x_{\varphi(\lambda)})$ is a subnet of (x_{λ}) , but which has no converging subnets.

(d) Order $\{(\lambda, \mu) : \lambda \in \Lambda, \mu \in M_{\lambda}\}$ as follows:

$$(\lambda_1, \mu_1) \leq (\lambda_2, \mu_2) \iff \lambda_1 \leq \lambda_2$$
, or $\lambda_1 = \lambda_2$ and $\mu_1 \leq \mu_2$.

Let \mathcal{U} be the nhood system of x which is ordered by $U_1 \leq U_2$ iff $U_2 \subset U_1$ for all $U_1, U_2 \in \mathcal{U}$. Define

$$\Gamma = \left\{ (\lambda, U) : \lambda \in \Lambda, U \in \mathcal{U} \text{ such that } x^{\lambda} \in U \right\}.$$

Order Γ as follows: $(\lambda_1, U_1) \leq (\lambda_2, U_2)$ iff $\lambda_1 \leq \lambda_2$ and $U_2 \subset U_1$. For each $(\lambda, U) \in \Gamma$ pick $\mu_{\lambda} \in M_{\lambda}$ so that $x_{\mu}^{\lambda} \in U$ for all $\mu \geq \mu_{\lambda}$ (such a μ_{λ} exists since $x_{\mu}^{\lambda} \to x^{\lambda}$ and $x^{\lambda} \in U$). Define $\varphi: (\lambda, U) \mapsto x_{\mu_{\lambda}}^{\lambda}$ for all $(\lambda, U) \in \Gamma$. It now easy to see that this subnet converges to x.

4.3 FILTERS

12A. Examples of Filter Convergence

► EXERCISE 87. Show that if a filter in a metric space converges, it must converge to a unique point.

PROOF. Suppose a filter \mathscr{F} in a metric space (X, d) converges to $x, y \in X$. If $x \neq y$, then there exists r > 0 such that $\mathbb{B}(x, r) \cap \mathbb{B}(y, r) = \emptyset$. But since $\mathscr{F} \to x$ and $\mathscr{F} \to y$, we must have $\mathbb{B}(x, r) \in \mathscr{F}$ and $\mathbb{B}(y, r) \in \mathscr{F}$. This contradicts the fact that the intersection of every two elements in a filter is nonempty. Thus, x = y.

12C. Ultrafilters: Uniqueness

▶ EXERCISE 88. If a filter \mathcal{F} is contained in a unique ultrafilter \mathcal{F}' , then $\mathcal{F} = \mathcal{F}'$.

PROOF. We first show: Every filter \mathcal{F} on a non-empty set X is the intersection of the family of ultrafilters which include \mathcal{F} .

Let *E* be a set which does not belong to \mathcal{F} . Then for each set $F \in \mathcal{F}$ we cannot have $F \subset E$ and hence we must have $F \cap E^c \neq \emptyset$. So $\mathcal{F} \cup \{E^c\}$ generates a filter on *X*, which is included in some ultrafilter \mathcal{F}_E . Since $E^c \in \mathcal{F}_E$ we must have $E \notin \mathcal{F}_E$. Thus *E* does not belong to the intersection of the set of all ultrafilters which include \mathcal{F} . Hence this intersection is just the filter \mathcal{F} itself.

Now, if \mathcal{F} is contained in a unique ultrafilter \mathcal{F}' , we must have $\mathcal{F} = \mathcal{F}'$. \Box

12D. Nets and Filters: The Translation Process

EXERCISE 89. A net (x_{λ}) has x as a cluster point iff the filter generated by (x_{λ}) has x as a cluster point.

PROOF. Suppose *x* is a cluster point of the net (x_{λ}) . Then for every nhood *U* of *x*, we have $x_{\lambda} \in U$ i. o. But then *U* meets every $B_{\lambda_0} := \{x_{\lambda} : \lambda \ge \lambda_0\}$, the filter base of the filter \mathcal{F} generated by (x_{λ}) ; that is, *x* is a cluster point of \mathcal{F} . The converse implication is obvious.

EXERCISE 90. A filter \mathcal{F} has x as a cluster point iff the net based on \mathcal{F} has x as a cluster point.

PROOF. Suppose *x* is a cluster point of \mathcal{F} . If *U* is a nhood of *x*, then *U* meets every $F \in \mathcal{F}$. Then for an arbitrary $(p, F) \in \Lambda_{\mathcal{F}}$, pick $q \in F \cap U$ so that $(q, F) \in \Lambda_{\mathcal{F}}, (q, F) \ge (p, F)$, and $P(p, F) = p \in U$; that is, *x* is a cluster point of the net based on \mathcal{F} .

Conversely, suppose the net based on \mathcal{F} has x as a cluster point. Let U be a nhood of x. Then for every $(p_0, F_0) \in \Lambda_{\mathcal{F}}$, there exists $(p, F) \ge (p_0, F_0)$ such that $p \in U$. Then $F_0 \cap U \neq \emptyset$, and so x is a cluster point of \mathcal{F} . \Box

► EXERCISE 91. If $(x_{\lambda\mu})$ is a subnet of (x_{λ}) , then the filter generated by $(x_{\lambda\mu})$ is finer than the filter generated by (x_{λ}) .

PROOF. Suppose $(x_{\lambda\mu})$ is a subnet of (x_{λ}) . Let $\mathcal{F}_{\lambda\mu}$ is the filter generated by $(x_{\lambda\mu})$, and \mathcal{F}_{λ} be the filter generated by (x_{λ}) . Then the base generating $\mathcal{F}_{\lambda\mu}$ is the sets $B_{\lambda\mu_0} = \{x_{\lambda\mu} : \mu \ge \mu_0\}$, and the base generating \mathcal{F}_{λ} is the sets $B_{\lambda_0} = \{x_{\lambda} : \lambda \ge \lambda_0\}$. For each such a B_{λ_0} , there exists μ_0 such that $\lambda_{\mu_0} \ge \lambda_0$; that is, $B_{\lambda\mu_0} \subset B_{\lambda_0}$. Therefore, $\mathcal{F}_{\lambda} \subset \mathcal{F}_{\lambda\mu}$.

► EXERCISE 92. The net based on an ultrafilter is an ultranet and the filter generated by an ultranet is an ultrafilter.

PROOF. Suppose \mathcal{F} is an ultrafilter. Let $E \subset X$ and we assume that $E \in \mathcal{F}$. Pick $p \in E$. If $(q, F) \ge (p, E)$, then $q \in E$; that is, $P(p, F) \in E$ ev. Hence, the net based on \mathcal{F} is an ultranet.

Conversely, suppose (x_{λ}) is an ultranet. Let $E \subset X$ and we assume that there exists λ_0 such that $x_{\lambda} \in E$ for all $\lambda \ge \lambda_0$. Then $B_{\lambda_0} = \{x_{\lambda} : \lambda \ge \lambda_0\} \subset E$ and so $E \in \mathcal{F}$, where \mathcal{F} is the filter generated by (x_{λ}) . Hence, \mathcal{F} is an ultrafilter. \Box

► EXERCISE 93. The net based on a free ultrafilter is a nontrivial ultranet. *Hence, assuming the axiom of choice, there are nontrivial ultranets.*

PROOF. Let \mathcal{F} be a free ultrafilter, and (x_{λ}) be the net based on \mathcal{F} . It follows from the previous exercise that (x_{λ}) is an ultranet. If (x_{λ}) is trivial, i.e., $x_{\lambda} = x$ for some $x \in X$ and all $\lambda \in \Lambda_{\mathcal{F}}$, then for all $F \in \mathcal{F}$, we must have $F = \{x\}$. But then $\bigcap \mathcal{F} = \{x\} \neq \emptyset$; that is, \mathcal{F} is fixed. A contradiction.

Now, for instance, the Frechet filter \mathcal{F} on \mathbb{R} is contained in some free ultrafilter \mathcal{G} by Example (b) when the Axiom of Choice is assumed. Hence, the net based on \mathcal{G} is a nontrivial ultranet.

5 SEPARATION AND COUNTABILITY

5.1 The Separation Axioms

13B. T_0 - and T_1 -Spaces

▶ EXERCISE 94. Any subspace of a T_0 - or T_1 -space is, respectively, T_0 or T_1 .

PROOF. Let *X* be a T_0 -space, and $A \subset X$. Let *x* and *y* be distinct points in *A*. Then, say, there exists an open nhood *U* of *x* such that $y \notin U$. Then $U \cap A$ is relatively open in *A*, contains *x*, and $y \notin A \cap U$. The T_1 case can be proved similarly.

► EXERCISE 95. Any nonempty product space is T_0 or T_1 iff each factor space is, respectively, T_0 or T_1 .

PROOF. If X_{α} is a T_0 -space, for each $\alpha \in A$, and $x \neq y$ in X_{α} , then for some coordinate α we have $x_{\alpha} \neq y_{\alpha}$, so there exists an open set U_{α} containing, say, x_{α} but not y_{α} . Now $\pi_{\alpha}^{-1}(U_{\alpha})$ is an open set in X_{α} containing x but not y. Thus, X_{α} is T_0 .

Conversely, if X_{α} is a nonempty T_0 -space, pick a fixed point $b_{\alpha} \in X_{\alpha}$, for each $\alpha \in A$. Then the subspace $B_{\alpha} := \{x \in X X_{\alpha} : x_{\beta} = b_{\beta} \text{ unless } \beta = \alpha\}$ is T_0 , by Exercise 94, and is homeomorphic to X_{α} under the restriction to B_{α} of the projection map. Thus X_{α} is T_0 , for each $\alpha \in A$. The T_1 case is similar. \Box

13C. The *T*⁰-Identification

For any topological space *X*, define ~ by $x \sim y$ iff $\overline{\{x\}} = \overline{\{y\}}$.

▶ EXERCISE 96. ~ *is an equivalence relation on* X.

PROOF. Straightforward.

► EXERCISE 97. The resulting quotient space $X/ \sim = \widetilde{X}$ is T_0 .

PROOF. We first show that *X* is T_0 iff whenever $x \neq y$ then $\overline{\{x\}} \neq \overline{\{y\}}$. If *X* is T_0 and $x \neq y$, then there exists an open nhood *U* of *x* such that $y \notin U$; then $y \notin \overline{\{x\}}$. Since $y \in \overline{\{y\}}$, we have $\overline{\{x\}} \neq \overline{\{y\}}$. Conversely, suppose that $x \neq y$ implies that $\overline{\{x\}} \neq \overline{\{y\}}$. Take any $x \neq y$ in *X* and we show that there exists an open nhood of one of the two points such that the other point is not in *U*. If not, then $y \in \overline{\{x\}}$; since $\overline{\{x\}}$ is closed, we have $\overline{\{y\}} \subset \overline{\{x\}}$; similarly, $\overline{\{x\}} \subset \overline{\{y\}}$. A contradiction.

Now take any $\overline{\{x\}} \neq \overline{\{y\}}$ in X / \sim . Then $\overline{\{x\}} = \overline{\overline{\{x\}}} \neq \overline{\overline{\{y\}}} = \overline{\{y\}}$. Hence, X / \sim is T_0 .

13D. The Zariski Topology

For a polynomial *P* in *n* real variables, let $Z(P) = \{(x_1, ..., x_n) \in \mathbb{R}^n : P(x_1, ..., x_n) = 0\}$. Let \mathcal{P} be the collection of all such polynomials.

► EXERCISE 98. $\{Z(P) : P \in \mathcal{P}\}$ is a base for the closed sets of a topology (the Zariski topology) on \mathbb{R}^n .

PROOF. Denote $\mathcal{Z} := \{Z(P) : P \in \mathcal{P}\}$. If $Z(P_1)$ and $Z(P_2)$ belong to \mathcal{Z} , then $Z(P_1) \cup Z(P_2) = Z(P_1 \cdot P_2) \in \mathcal{Z}$ since $P_1 \cdot P_2 \in \mathcal{P}$. Further, $\bigcap_{P \in \mathcal{P}} Z(P) = \emptyset$ since there are $P \in \mathcal{P}$ with $Z(P) = \emptyset$ (for instance, $P = 1 + X_1^2 + \dots + X_n^2$). It follows from Exercise 48 that \mathcal{Z} is a base for the closed sets of the Zariski topology on \mathbb{R}^n .

▶ EXERCISE 99. The Zariski topology on \mathbb{R}^n is T_1 but not T_2 .

PROOF. To verify that the Zariski topology is T_1 , we show that every singleton set in \mathbb{R}^n is closed (by Theorem 13.4). For each $(x_1, \ldots, x_n) \in \mathbb{R}^n$, define a polynomial $P \in \mathcal{P}$ as follows:

$$P = (X_1 - x_1)^2 + \dots (X_n - x_n)^2.$$

Then $Z(P) = \{(x_1, ..., x_n)\}$; that is, $\{(x_1, ..., x_n)\}$ is closed.

To see the Zariski topology is not T_2 , consider the \mathbb{R} case. In \mathbb{R} , the Zariski topology coincides with the cofinite topology (see Exercise 100). It is well know that the cofinite topology is not Hausdorff (Example 13.5(a)).

EXERCISE 100. On \mathbb{R} , the Zariski topology coincides with the cofinite topology; in \mathbb{R}^n , n > 1, they are different.

PROOF. On \mathbb{R} , every Z(P) is finite. So on \mathbb{R} every closed set in the Zariski topology is finite since every closed set is an intersection of some subfamily of Z. However, if n > 1, then Z(P) can be infinite: for example, consider the polynomial X_1X_2 (let $X_1 = 0$, then all $X_2 \in \mathbb{R}$ is a solution). 13H. Open Images of Hausdorff Spaces

► EXERCISE 101. Given any set X, there is a Hausdorff space Y which is the union of a collection $\{Y_x : x \in X\}$ of disjoint subsets, each dense in Y.

Proof.

5.2 REGULARITY AND COMPLETE REGULARITY

- THEOREM 5.1 (Dugundji 1966). a. Let $P: X \to Y$ be a closed map. Given any subset $S \subset Y$ and any open U containing $P^{-1}(S)$, there exists an open $V \supset S$ such that $P^{-1}(V) \subset U$.
- b. Let $P: X \to Y$ be an open map. Given any subset $S \subset Y$, and any closed A containing $P^{-1}S$, there exists a closed $B \supset S$ such that $P^{-1}(B) \subset A$.

PROOF. It is enough to prove (a). Let $V = Y \setminus P(X \setminus U)$. Then

$$P^{-1}(S) \subset U \Longrightarrow X \smallsetminus U \subset X \smallsetminus P^{-1}(S) = P^{-1}(Y \smallsetminus S)$$
$$\Longrightarrow P(X \smallsetminus U) \subset P[P^{-1}(Y \smallsetminus S)]$$
$$\Longrightarrow Y \backsim P[P^{-1}(Y \smallsetminus S)] \subset V.$$

Since $P[P^{-1}(Y \setminus S)] \subset Y \setminus S$, we obtain

$$S = Y \smallsetminus (Y \smallsetminus S) \subset Y \smallsetminus P[P^{-1}(Y \smallsetminus S)] \subset V;$$

that is, $S \subset V$. Because *P* is closed, *V* is open in *Y*. Observing that

$$P^{-1}(V) = X \smallsetminus P^{-1}[P(X \smallsetminus U)] \subset X \smallsetminus (X \smallsetminus U) = U$$

completes the proof.

THEOREM 5.2 (Theorem 14.6). If X is T_3 and f is a continuous, open and closed map of X onto Y, then Y is T_2 .

PROOF. By Theorem 13.11, it is sufficient to show that the set

$$A := \{ (x_1, x_2) \in X \times X : f(x_1) = f(x_2) \}$$

is closed in $X \times X$. If $(x_1, x_2) \notin A$, then $x_1 \notin f^{-1}[f(x_2)]$. Since a T_3 -space is T_1 , the singleton set $\{x_2\}$ is closed in X; since f is closed, $\{f(x_2)\}$ is closed in Y; since f is continuous, $f^{-1}[f(x_2)]$ is closed in X. Because X is T_3 , there are disjoint open sets U and V with

$$x_1 \in U$$
, and $f^{-1}[f(x_2)] \subset V$.

Since *f* is closed, it follows from Theorem 5.1 that there exists open set $W \subset Y$ such that $\{f(x_2)\} \subset W$, and $f^{-1}(W) \subset V$; that is,

$$f^{-1}[f(x_2)] \subset f^{-1}(W) \subset V.$$

Then $U \times f^{-1}(W)$ is a nhood of (x_1, x_2) . We finally show that $[U \times f^{-1}(W)] \cap A = \emptyset$. If there exists $(y_1, y_2) \in A$ such that $(y_1, y_2) \in U \times f^{-1}(W)$, then $y_1 \in f^{-1}[f(y_2)] \subset f^{-1}(W)$; that is, $y_1 \in U \times f^{-1}(W)$. However, $U \cap V = \emptyset$ and $f^{-1}(W) \subset V$ imply that $U \cap f^{-1}(W) = \emptyset$. A contradiction.

DEFINITION 5.3. If *X* is a space and $A \subset X$, then X/A denotes the quotient space obtained via the equivalence relation whose equivalence classes are *A* and the single point sets $\{x\}, x \in X \setminus A$.

THEOREM 5.4. If X is T_3 and Y is obtained from X by identifying a single closed set A in X with a point, then Y is T_2 .

PROOF. Let *A* be a closed subset of a T_3 -space *X*. Then $X \\ A$ is an open subset in both *X* and *X*/*A* and its two subspace topologies agree. Thus, points in $X \\ A \\ \subset X/A$ are different from [*A*] and have disjoint nhoods as *X* is Hausdorff. Finally, for $x \\ \in X \\ A$, there exist disjoint open nhoods V(x) and W(A). Their images, f(V) and f(W), are disjoint open nhoods of *x* and [*A*] in *X*/*A*, because $V = f^{-1}[f(V)]$ and $W = f^{-1}[f(W)]$ are disjoint open sets in *X*.

5.3 NORMAL SPACES

15B. Completely Normal Spaces

► EXERCISE 102. *X* is completely normal iff whenever *A* and *B* are subsets of *X* with $A \cap \overline{B} = \overline{A} \cap B = \emptyset$, then there are disjoint open sets $U \supset A$ and $V \supset B$.

PROOF. Suppose that whenever *A* and *B* are subsets of *X* with $A \cap \overline{B} = \overline{A} \cap B = \emptyset$, then there are disjoint open sets $U \supset A$ and $V \supset B$. Let $Y \subset X$, and $C, D \subset Y$ be disjoint closed subsets of *Y*. Hence,

$$\emptyset = \operatorname{cl}_Y(C) \cap \operatorname{cl}_Y(D) = [\overline{C} \cap Y] \cap [\overline{D} \cap Y] = \overline{C} \cap [\overline{D} \cap Y].$$

Since $D \subset \operatorname{cl}_Y(D)$, we have $\overline{C} \cap D = \emptyset$. Similarly, $C \cap \overline{D} = \emptyset$. Hence there are disjoint open sets U' and V' in X such that $C \subset U'$ and $D \subset V'$. Let $U = U' \cap Y$ and $V = V' \cap Y$. Then U and V are open in Y, $C \subset U$, and $D \subset V$; that is, Y is normal, and so X is completely normal.

Now suppose that *X* is completely normal and consider the subspace $Y := X \setminus (\overline{A} \cap \overline{B})$. We first show that $A, B \subset Y$. If $A \not\subset Y$, then there exists $x \in A$ with $x \notin Y$; that is, $x \in \overline{A} \cap \overline{B}$. But then $x \in A \cap \overline{B}$. A contradiction. Similarly for *B*. In the normal space *Y*, we have

$$\operatorname{cl}_Y(A) \cap \operatorname{cl}_Y(B) = [\overline{A} \cap Y] \cap [\overline{B} \cap Y] = (\overline{A} \cap \overline{B}) \cap [X \smallsetminus (\overline{A} \cap \overline{B})] = \emptyset.$$

Therefore, there exist disjoint open sets $U \supset \operatorname{cl}_Y(A)$ and $V \supset \operatorname{cl}_Y(B)$. Since $A \subset \operatorname{cl}_Y(A)$ and $B \subset \operatorname{cl}_Y(B)$, we get the desired result.

► EXERCISE 103. Why can't the method used to show every subspace of a regular space is regular be carried over to give a proof that every subspace of a normal space is normal?

PROOF. In the first proof, if $A \subset Y \subset X$ is closed in *Y* and $x \in Y \setminus A$, then there must exists closed set *B* in *X* such that $x \notin B$. This property is not applied if $\{x\}$ is replaced a general closed set *B* in *Y*.

► EXERCISE 104. *Every metric space is completely normal.*

PROOF. Every subspace of a metric space is a metric space; every metric space is normal Royden and Fitzpatrick (2010, Proposition 11.7).

5.4 COUNTABILITY PROPERTIES

- 16A. First Countable Spaces
- ► EXERCISE 105. *Every subspace of a first-countable space is first countable.*

PROOF. Let $A \subset X$. If $x \in A$, then *V* is a nhood of *x* in *A* iff $V = U \cap A$, where *U* is a nhood of $x \in X$ (Theorem 6.3(d)).

► EXERCISE 106. A product $X X_{\alpha}$ of first-countable spaces is first countable iff each X_{α} is first countable, and all but countably many of the X_{α} are trivial spaces.

PROOF. If X_{α} is first-countable, then each X_{α} is first countable since it is homeomorphic to a subspace of X_{α} . If the number of the family of untrivial sets $\{X_{\alpha}\}$ is uncountable, then for $x \in X_{\alpha}$ the number of nhood bases is uncountable.

► EXERCISE 107. The continuous image of a first-countable space need not be first countable; but the continuous open image of a first-countable space is first countable.

PROOF. Let *X* be a discrete topological space. Then any function defined on *X* is continuous.

Now suppose that *X* is first countable, and *f* is a continuous open map of *X* onto *Y*. Pick an arbitrary $y \in Y$. Let $x \in f^{-1}(y)$, and \mathcal{U}_x be a countable nhood base of *x*. If *W* is a nhood of *y*, then there is a nhood *V* of *x* such that

 $f(V) \subset W$ since f is continuous. So there exists $U \in \mathcal{U}_x$ with $f(U) \subset W$. This proves that $\{f(U) : U \in \mathcal{U}_x\}$ is a nhood base of y. Since $\{f(U) : U \in \mathcal{U}_x\}$ is \Box

6 Compactness

6.1 COMPACT SPACES

17B. Compact Subsets

EXERCISE 108. A subset E of X is compact iff every cover of E by open subsets of X has a finite subcover.

REMARK (Lee 2011, p. 94). To say that a *subset* of a topological space is compact is to say that it is a compact space when endowed with the subspace topology. In this situation, it is often useful to extend our terminology in the following way. If *X* is a topological space and $A \subset X$, a collection of subsets of *X* whose union contains *A* is also called a *cover of A*; if the subsets are open in *X* we sometimes call it an *open cover of A*. We try to make clear in each specific situation which kind of open cover of *A* is meant: a collection of open subsets of *X* whose union is *A*, or a collection of open subsets of *X* whose union contains *A*.

PROOF. The "only if" part is trivial. So we focus on the "if" part. Let \mathcal{U} be an open cover of E, i.e., $U = \bigcup \{U : U \in \mathcal{U}\}$. For every $U \in \mathcal{U}$, there exists an open set V_U in X such that $U = V_U \cap E$. Then $\{V_U : U \in \mathcal{U}\}$ is an open cover of E, i.e., $U \subset \bigcup \{V_U : U \in \mathcal{U}\}$. Then there exists a finite subcover, say V_{U_1}, \ldots, V_{U_n} of $\{V_U : U \in \mathcal{U}\}$, such that $E \subset \bigcup_{i=1}^n V_{U_i}$. Hence, $E = \bigcup_{i=1}^n (V_{U_i} \cap E)$; that is, E is compact.

EXERCISE 109. The union of a finite collection of compact subsets of X is compact.

PROOF. Let *A* and *B* be compact, and *U* be a family of open subsets of *X* which covers $A \cup B$. Then *U* covers *A* and there is a finite subcover, say, U_1^A, \ldots, U_m^A of *A*; similarly, there is a finite subcover, say, U_1^B, \ldots, U_n^B of *B*. But then $\{U_1^A, \ldots, U_m^A, U_1^B, \ldots, U_n^B\}$ is an open subcover of $A \cup B$, so $A \cup B$ is compact.

References

- [1] ADAMSON, IAIN T. (1996) *A General Topology Workbook*, Boston: Birkhäuser. [33]
- [2] ASH, ROBERT B. (2009) *Real Variables with Basic Metric Space Topology*, New York: Dover Publications, Inc. [22]
- [3] DUGUNDJI, JAMES (1966) Topology, Boston: Allyn and Bacon, Inc. [39]
- [4] LEE, JOHN M. (2011) Introduction to Topological Manifolds, 202 of Graduate Texts in Mathematics, New York: Springer-Verlag, 2nd edition. [25, 43]
- [5] MCCLEARY, JOHN (2006) A First Course in Topology: Continuity and Dimension, 31 of Student Mathematical Library, Providence, Rhode Island: American Mathematical Society. [29]
- [6] ROYDEN, HALSEY AND PATRICK FITZPATRICK (2010) *Real Analysis*, New Jersey: Prentice Hall, 4th edition. [41]
- [7] WILLARD, STEPHEN (2004) *General Topology*, New York: Dover Publications, Inc. [i]