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1
SET THEORY AND METRIC SPACES

1.1 Set Theory

1A. Russell’s Paradox

I Exercise 1. The phenomenon to be presented here was first exhibited by

Russell in 1901, and consequently is known as Russell’s Paradox.

Suppose we allow as sets things A for which A 2 A. Let P be the set of all

sets. Then P can be divided into two nonempty subsets, P1 D
˚
A 2 P W A … A

	
and P2 D fA 2 P W A 2 Ag. Show that this results in the contradiction: P1 2

P1 () P1 … P1. Does our (naive) restriction on sets given in 1.1 eliminate the

contradiction?

Proof. If P1 2 P1, then P1 2 P2, i.e., P1 … P1. But if P1 … P1, then P1 2 P1. A

contradiction. ut

1B. De Morgan’s laws and the distributive laws

I Exercise 2. a. A X
�T

�2� B�
�
D
S
�2� .A X B�/.

b. B [
�T

�2� B�
�
D
T
�2�.B [ B�/.

c. If Anm is a subset of A for n D 1; 2; : : : and m D 1; 2; : : :, is it necessarily true

that
1[
nD1

24 1\
mD1

Anm

35 D 1\
mD1

24 1[
nD1

Anm

35‹
Proof. (a) If x 2 A X

�T
�2� B�

�
, then x 2 A and x …

T
�2� B�; thus, x 2 A

and x … B� for some �, so x 2 .A X B�/ for some �; hence x 2
S
�2� .A X B�/.

On the other hand, if x 2
S
�2� .A X B�/, then x 2 A X B� for some � 2 �,

i.e., x 2 A and x … B� for some � 2 �. Thus, x 2 A and x …
T
�2� B�; that is,

x 2 A X
�T

�2� B�
�
.

1



2 CHAPTER 1 SET THEORY AND METRIC SPACES

(b) If x 2 B [
�T

�2� B�
�
, then x 2 B� for all �, then x 2 .B [ B�/ for all �, i.e.,

x 2
T
�2�.B [ B�/. On the other hand, if x 2

T
�2�.B [ B�/, then x 2 .B [ B�/

for all �, i.e., x 2 B or x 2 B� for all �; that is, x 2 B [
�T

�2� B�
�
.

(c) They are one and the same set. ut

1C. Ordered pairs

I Exercise 3. Show that, if .x1; x2/ is defined to be
˚
fx1g; fx1; x2g

	
, then

.x1; x2/ D .y1; y2/ iff x1 D y1 and x2 D y2.

Proof. If x1 D y1 and x2 D y2, then, clearly, .x1; x2/ D
˚
fx1g; fx1; x2g

	
D˚

fy1g; fy1; y2g
	
D .y1; y2/. Now assume that

˚
fx1g; fx1; x2g

	
D
˚
fy1g; fy1; y2g

	
.

If x1 ¤ x2, then fx1g D fy1g and fx1; x2g D fy1; y2g. So, first, x1 D y1 and then

fx1; x2g D fy1; y2g implies that x2 D y2. If x1 D x2, then
˚
fx1g; fx1; x1g

	
D
˚
fx1g

	
.

So fy1g D fy1; y2g D fx1g, and we get y1 D y2 D x1, so x1 D y1 and x2 D y2

holds in this case, too. ut

1D. Cartesian products

I Exercise 4. Provide an inductive definition of “the ordered n-tuple .x1; : : : ; xn/

of elements x1; : : : ; xn of a set” so that .x1; : : : ; xn/ and .y1; : : : ; yn/ are equal iff

their coordinates are equal in order, i.e., iff x1 D y1; : : : ; xn D yn.

Proof. Define .x1; : : : ; xn/ D f.1; x1/; : : : ; .n; xn/g as a finite sequence. ut

I Exercise 5. Given sets X1; : : : ; Xn define the Cartesian product X1 � � � � �Xn

a. by using the definition of ordered n-tuple you gave in Exercise 4,

b. inductively from the definition of the Cartesian product of two sets,

and show that the two approaches are the same.

Proof. (a) X1 � � � � �Xn D ff 2 .
Sn
iD1Xi /

n W f .i/ 2 Xig.

(b) From the definition of the Cartesian product of two sets, X1 � � � � � Xn D

f.x1; : : : ; xn/ W xi 2 Xig, where .x1; : : : ; xn/ D ..x1; : : : ; xn�1/; xn/.

These two definitions are equal essentially since there is a bijection between

them. ut

I Exercise 6. Given sets X1; : : : ; Xn let X D X1�� � ��Xn and let X� be the set of

all functions f from f1; : : : ; ng into
Sn
kD1Xk having the property that f .k/ 2 Xk

for each k D 1; : : : ; n. Show that X� is the “same” set as X .

Proof. Each function f can be written as f.1; x1/; : : : ; .n; xn/g. So define F W X� !

X as F.f / D .x1; : : : ; xn/. ut
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I Exercise 7. Use what you learned in Exercise 6 to define the Cartesian prod-

uct X1 � X2 � � � � of denumerably many sets as a collection of certain functions

with domain N.

Proof. X1�X2�� � � consists of functions f W N!
S1
nD1Xn such that f .n/ 2 Xn

for all n 2 N. ut

1.2 Metric Spaces

2A. Metrics on Rn

I Exercise 8. Verify that each of the following is a metric on Rn:

a. �.x;y/ D

p
nX
iD1

.xi � yi /
2.

b. �1.x;y/ D
Pn
iD1 jxi � yi j.

c. �2.x;y/ D maxfjx1 � y1j; : : : ; jxn � ynjg.

Proof. Clearly, it suffices to verify the triangle inequalities for all of the three

functions. Pick arbitrary x;y; z 2 Rn.

(a) By Minkowski’s Inequality, we have

�.x; z/ D

p
nX
iD1

.xi � zi /
2
D

p
nX
iD1

Œ.xi � yi /C .yi � zi /�
2

6

p
nX
iD1

.xi � yi /
2
C

p
nX
iD1

.yi � zi /
2

D �.x;y/C �.y; z/:

(b) We have

�1.x; z/ D

nX
iD1

jxi � zi j D

nX
iD1

.jxi � yi j C jyi � zi j/ D �1.x;y/C �1.y; z/:

(c) We have

�2.x; z/ D maxfjx1 � z1j; : : : ; jxn � znjg

6 maxfjx1 � y1j C jy1 � z1j; : : : ; jxn � ynj C jyn � znjg

6 maxfjx1 � y1j; : : : ; jxn � ynjg Cmaxfjy1 � z1j; : : : ; jyn � znjg

D �2.x;y/C �2.y; z/: ut
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2B. Metrics on C.I/

I Exercise 9. Let C.I/ denote the set of all continuous real-valued functions on

the unit interval I and let x0 be a fixed point of I.

a. �.f; g/ D supx2I jf .x/ � g.x/j is a metric on C.I/.

b. �.f; g/ D
R 1
0
jf .x/ � g.x/jdx is a metric on C.I/.

c. �.f; g/ D jf .x0/ � g.x0/j is a pseudometric on C.I/.

Proof. Let f; g; h 2 C.I/. It is clear that �, � , and � are positive, symmetric; it

is also clear that � and � satisfy M-b.

(a) We have

�.f; h/ D sup
x2I
jf .x/ � h.x/j 6 sup

x2I
.jf .x/ � g.x/j C jg.x/ � h.x/j/

6 sup
x2I
jf .x/ � g.x/j C sup

x2I
jg.x/ � h.x/j

D �.f; g/C �.g; h/:

(b) We have

�.f; h/ D

Z 1

0

jf .x/ � h.x/j 6
Z 1

0

jf .x/ � g.x/j C

Z 1

0

jg.x/ � h.x/j

D �.f; g/C �.g; h/:

(c) For arbitrary f; g 2 C.I/ with f .x0/ D g.x0/ we have �.f; g/ D 0, so �.f; g/ D

0 does not imply that f D g. Further, �.f; h/ D jf .x0/�h.x0/j 6 jf .x0/�g.x0/jC
jg.x0/ � h.x0/j D �.f; g/C �.g; h/. ut

2C. Pseudometrics

I Exercise 10. Let .M; �/ be a pseudometric space. Define a relation � on M

by x � y iff �.x; y/ D 0. Then � is an equivalence relation.

Proof. (i) x � x since �.x; x/ D 0 for all x 2 M . (ii) x � y iff �.x; y/ D 0 iff

�.y; x/ D 0 iff y � x. (iii) Suppose x � y and y � z. Then �.x; z/ 6 �.x; y/ C
�.y; z/ D 0; that is, �.x; z/ D 0. So x � z. ut

I Exercise 11. If M � is he set of equivalence classes in M under the equiva-

lence relation � and if �� is defined on M � by ��.Œx�; Œy�/ D �.x; y/, then �� is a

well-defined metric on M �.

Proof. �� is well-defined since it does not dependent on the representative of

Œx�: let x0 2 Œx� and y0 2 Œy�. Then

�.x0; y0/ 6 �.x0; x/C �.x; y/C �.y; y0/ D �.x; y/:
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Symmetrically, �.x; y/ 6 �.x0; y0/. To verify �� is a metric on M �, it suffices to

show that �� satisfies the triangle inequality. Let Œx�; Œy�; Œz� 2M �. Then

��.Œx�; Œz�/ D �.x; z/ 6 �.x; y/C �.y; z/ D ��.Œx�; Œy�/C ��.Œy�; Œz�/: ut

I Exercise 12. If h W M ! M � is the mapping h.x/ D Œx�, then a set A in M is

closed (open) iff h.A/ is closed (open) in M �.

Proof. Let A be open in M and h.x/ D Œx� 2 h.A/ for some x 2 A. Since A is

open, there exist an "-disk U�.x; "/ contained in A. For each y 2 U�.x; "/, we

have h.y/ D Œy� 2 h.A/, and ��.Œx�; Œy�/ D �.x; y/ 6 ". Hence, for each Œx� 2 h.A/,

there exists an "-disk U��.Œx�; "/ D h.U�.x; "// contained in h.A/; that is, h.A/ is

open in M �. Since h is surjective, it is now easy to see that h.A/ is closed in

M � whenever A is closed in M . ut

I Exercise 13. If f is any real-valued function on a set M , then the distance

function �f .x; y/ D jf .x/ � f .y/j is a pseudometric on M .

Proof. Easy. ut

I Exercise 14. If .M; �/ is any pseudometric space, then a function f W M ! R

is continuous iff each set open in .M; �f / is open in .M; �/.

Proof. Suppose that f is continuous and G is open in .M; �f /. For each x 2 G,

there is an " > 0 such that if jf .y/�f .x/j < " then y 2 G. The continuity of f at

x implies that there exists ı > 0 such that if �.y; x/ < ı then jf .y/ � f .x/j < ",

and so y 2 U . We thus proved that for each x 2 U there exists a ı-disk U�.x; �/

contained in G; that is, G is open in .M; �/.

Conversely, suppose that each set is open in .M; �/ whenever it is open in

.M; �f /. For each x 2 .M; �f /, there is an "-disk U�f .x; "/ contained in M since

M is open under �f ; then U�f .x; "/ is open in .M; �/ since U�f .x; "/ is open in

.M; �f /. Hence, there is an ı-disk U�.x; ı/ such that U�.x; ı/ � U�f .x; "/; that is,

if �.y; x/ < ı, then jf .y/ � f .x/j < ". So f is continuous on M . ut

2D. Disks Are Open

I Exercise 15. For any subset A of a metric space M and any " > 0, the set

U.A; "/ is open.

Proof. Let A � M and " > 0. Take an arbitrary point x 2 U.A; "/; take an

arbitrary point y 2 A such that �.x; y/ < ". Observe that every "-disk U.y; "/ is

contained in U.A; "/. Since x 2 U.y; "/ and U.y; "/ is open, there exists an ı-disk

U.x; ı/ contained in U.y; "/. Therefore, U.A; "/ is open. ut
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2E. Bounded Metrics

I Exercise 16. If � is any metric on M , the distance function ��.x; y/ D

minf�.x; y; /; 1g is a metric also and is bounded.

Proof. To see �� is a metric, it suffices to show the triangle inequality. Let

x; y; z 2M . Then

��.x; z/ D minf�.x; z/; 1g 6 minf�.x; y/C �.y; z/; 1g

6 minf�.x; y/; 1g Cminf�.y; z/; 1g

D ��.x; y/C ��.y; z/:

It is clear that �� is bounded above by 1. ut

I Exercise 17. A function f is continuous on .M; �/ iff it is continuous on

.M; ��/.

Proof. It suffices to show that � and �� are equivalent. If G is open in .M; �/,

then for each x 2 G there is an "-disk U�.x; "/ � G. Since U��.x; "/ � U�.x; "/,

we know G is open in .M; ��/. Similarly, we can show that G is open in .M; ��/

whenever it is open in .M; �/. ut

2F. The Hausdorff Metric

Let � be a bounded metric on M ; that is, for some constant A, �.x; y/ 6 A for

all x and y in M .

I Exercise 18. Show that the elevation of � to the power set P .M/ as defined

in 2.4 is not necessarily a pseudometric on P .M/.

Proof. Let M ´ f.x1; x2/ 2 R2 W x21 C x
2
2 6 1g, and let � be the usual metric.

Then � is a bounded metric on M . We show that the function �� W .E; F / 7!

infx2E;y2F �.x; y/, for all E;F 2 P .M/, is not a pseudometric on P .M/ by

showing that the triangle inequality fails. Let E;F;G 2 P .M/, where E D

U�..�1=4; 0/; 1=4/, G D U�..1=4; 0/; 1=4/, and F meets both E and G. Then

��.E;G/ > 0, but ��.E; F / D ��.F;G/ D 0. ut

I Exercise 19. Let F .M/ be all nonempty closed subsets of M and for A;B 2

F .M/ define

dA.B/ D supf�.A; x/ W x 2 Bg

d.A;B/ D maxfdA.B/; dB.A/g:

Then d is a metric on F .M/ with the property that d.fxg; fyg/ D �.x; y/. It is

called the Hausdorff metric on F .M/.
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Proof. Clearly, d is nonnegative and symmetric. If d.A;B/ D 0, then dA.B/ D

dB.A/ D 0, i.e., supy2B �.A; y/ D supx2A �.B; x/ D 0. But then �.A; y/ D 0 for all

y 2 B and �.B; x/ D 0 for all x 2 A. Since A is closed, we have y 2 A for all

y 2 B ; that is, B � A. Similarly, A � B . Hence, A D B .

We next show the triangle inequality of d . Let A;B;C 2 F .M/. For an ar-

bitrary point a 2 A, take a point b 2 C such that �.a; b/ D �.B; a/ (since B is

closed, such a point exists). Then

�.a; b/ 6 sup
x2A

�.B; x/ D dB.A/ 6 d.A;B/:

For this b 2 B , we take a point c 2 C such that �.b; c/ 6 d.B;C /. Therefore,

�.a; c/ 6 �.a; b/C �.b; c/ 6 d.A;B/C d.B;C /:

We thus proved that for every a 2 A, there exists c 2 C (depends on a), such

that �.a; c/ 6 d.A;B/C d.B;C /. In particular, we have

�.a; C / D inf
z2C

�.a; z/ 6 d.A;B/C d.B;C /:

Since the above inequality holds for all a 2 A, we obtain

dC .A/ D sup
x2A

�.a; C / 6 d.A;B/C d.B;C /: (1.1)

Similarly, for each c 2 C there exists b 2 B with �.c; b/ 6 d.B;C /; for this b,

there exists a 2 A with �.a; b/ 6 d.A;B/. Hence �.a; c/ 6 d.A;B/C d.B;C / for

all c 2 C . The same argument shows that

dA.C / 6 d.A;B/C d.B;C /: (1.2)

Combining (1.1) and (1.2) we get the desired result.

Finally, notice that dfxg.fyg/ D dfyg.fxg/ D �.x; y/; hence, d.fxg; fyg/ D

�.x; y/. ut

I Exercise 20. Prove that closed sets A and B are “close” in the Hausdorff

metric iff they are “uniformly close”; that is, d.A;B/ < " iff A � U�.B; "/ and

B � U�.A; "/.

Proof. If d.A;B/ < ", then supy2B �.A; y/ D �A.B/ < "; that is, �.A; y/ < " for

all y 2 B , so B � U�.A; "/. Similarly, A � U�.B; "/.

Conversely, if A � U�.B; "/, then �.B; x/ < " for all x 2 A. Since A is closed,

we have dB.A/ < "; similarly, B � U�.A; "/ implies that dA.B/ < ". Hence,

d.A;B/ < ". ut



8 CHAPTER 1 SET THEORY AND METRIC SPACES

2G. Isometry

Metric spaces .M; �/ and .N; �/ are isometric iff there is a one-one function f

from M onto N such that �.x; y/ D �.f .x/; f .y// for all x and y in M ; f is

called an isometry.

I Exercise 21. If f is an isometry from M to N , then both f and f �1 are

continuous functions.

Proof. By definition, f is (uniformly) continuous on M : for every " > 0, let

ı D "; then �.x; y/ < ı implies that �.f .x/; f .y// D �.x; y/ < ".

On the other hand, for every " > 0 and y 2 N , pick the unique f �1.y/ 2

M (since f is bijective). For each z 2 N with �.y; z/ < ", we must have

�.f �1.y/; f �1.z// D �.f .f �1.y//; f .f �1.z/// D �.y; z/ < "; that is, f �1 is con-

tinuous. ut

I Exercise 22. R is not isometric to R2 (each with its usual metric).

Proof. Consider S1 D f.x; y/ 2 R2 W x2 C y2 D 1g. Notice that there are only

two points around f �1.0; 0/ with distance 1. ut

I Exercise 23. I is isometric to any other closed interval in R of the same

length.

Proof. Consider the function f W I ! Œa; aC 1� defined by f .x/ D aC x for all

x 2 I. ut



2
TOPOLOGICAL SPACES

2.1 Fundamental Concepts

3A. Examples of Topologies

I Exercise 24. If F is the collection of all closed, bounded subset of R (in its

usual topology), together with R itself, then F is the family of closed sets for a

topology on R strictly weaker than the usual topology.

Proof. It is easy to see that F is a topology. Further, for instance, .�1; 0� is a

closed set of R, but it is not in F . ut

I Exercise 25. If A � X , show that the family of all subsets of X which contain

A, together with the empty set ¿, is a topology on X . Describe the closure and

interior operations. What topology results when A D ¿? when A D X?

Proof. Let

E D fE � X W A � Eg [ f¿g :

Now suppose that E� 2 E for each � 2 �. Then A �
S
�E� � X and soS

E� 2 E . The other postulates are easy to check.

For any set B � X , if A � B , then B 2 E and so BB D B ; if not, then BB D ¿.

If A D ¿, then E is the discrete topology; if A D X , then E D f¿; Xg. ut

3D. Regularly Open and Regularly Closed Sets

An open subset G in a topological space is regular open iff G is the interior of

its closure. A closed subset is regularly closed iff it is the closure of its interior.

I Exercise 26. The complement of a regularly open set is regularly closed and

vice versa.

Proof. Suppose G is regular open; that is, G D . xG/ı. Then

9
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X XG D X X . xG/ı D X X xG D .X XG/ı:

Hence, X XG is regularly closed. If F is regular closed, i.e., F D F ı, then

X X F D X X F ı D .X X F ı/ı D .X X F /ıI

that is, X X F is regularly open. ut

I Exercise 27. There are open sets in R which are not regularly open.

Proof. Consider Q. We have . xQ/ı D Rı D R ¤ Q. So Q is not regularly open.

ut

I Exercise 28. If A is any subset of a topological space, then int.cl.A// is reg-

ularly open.

Proof. Let A be a subset of a topological space X . We then have

int.cl.A// � cl.int.cl.A/// H) int.cl.A// D int.int.cl.A/// � int.cl.int.cl.A////;

and

int.cl.A// � cl.A/ H) cl.int.cl.A/// � cl.cl.A// D cl.A/

H) int.cl.int.cl.A//// � int.cl.A//:

Therefore, int.cl.A// D int.cl.int.cl.A////; that is, int.cl.A// is regularly open.

ut

I Exercise 29. The intersection, but not necessarily the union, of two regularly

open sets is regularly open.

Proof. Let A and B be two regularly open sets in a topological space X . Then

.A \ B/ı � . xA \ xB/ı D . xA/ı \ . xB/ı D A \ B;

and

. xA \ xB/ı D . xA/ı \ . xB/ı D A \ B � A \ B

H) A \ B D . xA \ xB/ı D
h
. xA \ xB/ı

iı
� .A \ B/ı:

Hence, A \ B D .A \ B/ı.

To see that the union of two regularly open sets is not necessarily regularly

open, consider A D .0; 1/ and B D .1; 2/ in R with its usual topology. Then

.A [ B/ı D Œ0; 2�ı D .0; 2/ ¤ A [ B: ut
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3E. Metrizable Spaces

Let X be a metrizable space whose topology is generated by a metric �.

I Exercise 30. The metric 2� defined by 2�.x; y/ D 2 � �.x; y/ generates the

same topology on X .

Proof. Let O� be the collection of open sets in .X; �/, and let O2� be the col-

lection of open sets in .X; 2�/. If O 2 O�, then for every x 2 O , there exists an

open ball B�.x; "/ � O ; but then B2�.x; "=2/ � O . Hence, O 2 O2�. Similarly, we

can show that O2� � O�. In fact, � and 2� are equivalent metrics. ut

I Exercise 31. The closure of a setE � X is given by xE D fy 2 X W �.E; y/ D 0g.

Proof. Denote zE ´ fy 2 X W �.E; y/ D 0g. We first show that zE is closed

(see Definition 2.5, p. 17). Take an arbitrary x 2 X such that for every n 2 N,

there exists yn 2 zE with �.x; yn/ < 1=2n. For each yn 2 zE, take zn 2 E with

�.yn; zn/ < 1=2n. Then

�.x; zn/ 6 �.x; yn/C �.yn; zn/ < 1=n; for all n 2 N:

Thus, �.x;E/ D 0, i.e., x 2 zE. Therefore, zE is closed. It is clear that E � zE, and

so xE � zE.

We next show that zE � xE. Take an arbitrary x 2 zE and a closed set K

containing E. If x 2 XXK, then �.x;K/ > 0 (see Exercise 35). But then �.x;E/ >

0 since E � K and so

inf
y2E

�.x; y/ > inf
z2K

�.x; z/:

Hence, zE � xE. ut

I Exercise 32. The closed disk U.x; x"/ D fy W �.x; y/ 6 "g is closed in X , but

may not be the closure of the open disk U.x; "/.

Proof. Fix x 2 X . We show that the function �.x; �/ W X ! R is (uniformly)

continuous. For any y; z 2 X , the triangle inequality yields

j�.x; y/ � �.x; z/j 6 �.y; z/:

Hence, for every " > 0, take ı D ", and �.x; �/ satisfies the "-ı criterion. There-

fore, U.x; x"/ is closed since U.x; x"/ D ��1.x; Œ0; "�/ and Œ0; "� is closed in R.

To see it is not necessary that U.x; x"/ D U.x; "/, consider " D 1 and the usual

metric on n
.x; y/ 2 R2 W x2 C y2 D 1

o
[

n
.x; 0/ 2 R2 W 0 6 x 6 1

o
I

see Figure 2.1. Observe that .0; 0/ … U.x; 1/, but .0; 0/ 2 U.x;x1/. It follows from

Exercise 31 that .0; 0/ … U.x; 1/. ut
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0
x

Figure 2.1. U.x;x1/ ¤ U.x; 1/.

3H. Gı and F� Sets

I Exercise 33. The complement of a Gı is an F� , and vice versa.

Proof. If A is a Gı set, then there exists a sequence of open sets fUng such

that A D
T1
nD1 Un. Then Ac D

S1
nD1 U

c
n is F� . Vice versa. ut

I Exercise 34. An F� can be written as the union of an increasing sequence

F1 � F2 � � � � of closed sets.

Proof. Let B D
S1
nD1En, where En is closed for all n 2 N. Define F1 D E1

and Fn D
Sn
iD1Ei for n > 2. Then each Fn is closed, F1 � F2 � � � � , andS1

nD1 Fn D
S1
nD1 D B . ut

I Exercise 35. A closed set in a metric space is a Gı .

Proof. For an arbitrary set A � X and a point x 2 X , define

�.x; A/ D inf
y2A
f�.x; y/g:

We first show that �.�; A/ W X ! R is (uniformly) continuous by showing

j�.x; A/ � �.y;A/j 6 �.x; y/; for all x; y 2 X: (2.1)

For an arbitrary z 2 A, we have

�.x; A/ 6 �.x; z/ 6 �.x; y/C �.y; z/:

Take the infimum over z 2 A and we get

�.x; A/ 6 �.x; y/C �.y;A/: (2.2)
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Symmetrically, we have

�.y;A/ 6 �.x; y/C �.x; A/: (2.3)

Hence, (2.1) follows from (2.2) and (2.3). We next show that if A is closed, then

�.x; A/ D 0 iff x 2 A. The “if” part is trivial, so we do the “only if” part. If

�.x; A/ D 0, then for every n 2 N, there exists yn 2 A such that �.x; yn/ < 1=n;

that is, yn ! x. Since fyng � A and A is closed, we must have x 2 A.

Therefore,

A D

1\
nD1

fx 2 X W �.x; A/ < 1=ng :

The continuity of �.�; A/ implies that fx 2 X W �.x; A/ < 1=ng is open for all n.

Thus, A is a Gı set. ut

I Exercise 36. The rationals are an F� in R.

Proof. Q is countable, and every singleton set in R is closed; hence, Q is an

F� . ut

3I. Borel Sets

2.2 Neighborhoods

4A. The Sorgenfrey Line

I Exercise 37. Verify that the set Œx; z/, for z > x, do form a nhood base at x

for a topology on the real line.

Proof. We need only check that for each x 2 R, the family Bx ´ fŒx; z/ W z > xg

satisfies V-a, V-b, and V-c in Theorem 4.5. V-a is trivial. If Œx; z1/ 2 Bx and

Œx; z2/ 2 Bx , then Œx; z1/ \ Œx; z2/ D Œx; z1 ^ z2/ 2 Bx and is in Œx; z1/ \ Œx; z2/.

For V-c, let Œx; z/ 2 Bx . Let z0 2 .x; z�. Then
�
x; z0

�
2 Bx , and if y 2

�
x; z0

�
, the

right-open interval
�
y; z0

�
2 By and

�
y; z0

�
� Œx; z/.

Then, define open sets using V-d: G � R is open if and only if G contains a

set Œx; z/ of each of its points x. ut

I Exercise 38. Which intervals on the real line are open sets in the Sorgenfrey

topology?

Solution.

� Sets of the form .�1; x/, Œx; z/, or Œx;1/ are both open and closed.

� Sets of the form .x; z/ or .x;C1/ are open in R, since

.x; z/ D
[
fŒy; z/ W x < y < zg: ut
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I Exercise 39. Describe the closure of each of the following subset of the Sor-

genfrey line: the rationals Q, the set f1=n W n D 1; 2; : : : ; g, the set f�1=n W n D 1; 2; : : :g,

the integers Z.

Solution. Recall that, by Theorem 4.7, for each E � R, we have

xE D
˚
x 2 R W each basic nhood of x meets E

	
:

Then xQ D R since for any x 2 R, we have Œx; z/ \Q ¤ ¿ for z > x. Similarly,

f1=n W n D 1; 2; : : :g D f1=n W n D 1; 2; : : :g, and xZ D Z. ut

4B. The Moore Plane

I Exercise 40. Verify that this gives a topology on � .

Proof. Verify (V-a)—(V-c). It is easy. ut

4E. Topologies from nhoods

I Exercise 41. Show that if each point x in a set X has assigned a collection

Ux of subsets of X satisfying N-a through N-d of 4.2, then the collection

� D
˚
G � X W for each x in G, x 2 U � G for some U 2 Ux

	
is a topology for X , in which the nhood system at each x is just Ux .

Proof. We need to check G1—G3 in Definition 3.1. Since G1 and G3 are evi-

dent, we focus on G2. Let E1; E2 2 � . Take any x 2 E1 \ E2. Then there exist

some U1; U2 2 Ux such that x 2 U1 � E1 and x 2 U2 � E2. By N-b, we know

that U1 \ U2 2 Ux . Hence,

x 2 U1 \ U2 � E1 \E2;

and so E1 \E2 2 � . The induction principle then means that � is closed under

finite intersections. ut

4F. Spaces of Functions

I Exercise 42. For each f 2 RI , each finite subset F of I and each positive ı,

let

U.f; F; ı/ D
n
g 2 RI

W jg.x/ � f .x/j < ı, for each x 2 F
o
:

Show that the sets U.f; F; ı/ form a nhood base at f , making RI a topological

space.

Proof. Denote
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Bf D
˚
U.f; F; ı/ W F � I; jF j <1; ı > 0

	
:

(V -a) For each U.f; F; ı/ 2 Bf , we have jf .x/ � f .x/j D 0 < ı for all x 2 F ;

hence, f 2 U.f; F; ı/.

(V -b) Let U.f; F1; ı1/; U.f; F2; ı2/ 2 Bf . Define U.f; F3; ı3/ by letting

F3 D F1 [ F2; and ı3 D minfı1; ı2g:

Clearly, U.f; F3; ı3/ 2 Bf . If g 2 U.f; F3; ı3/, then

jg.x/ � f .x/j < minfı1; ı2g; for all x 2 F1 [ F2:

Hence, jg.x/�f .x/j < ı1 for all x 2 F1 and jg.x/�f .x/j < ı2 for all x 2 F2; that

is, g 2 U.f; F1; ı1/ \ U.f; F2; ı2/. Hence, there exists U.f; F3; ı3/ 2 Bf such that

U.f; F3; ı3/ � U.f; F1; ı1/ \ U.f; F2; ı2/.

(V -c) Pick U.f; F; ı/ 2 Bf . We must show that there exists some U.f; F0; ı0/ 2

Bf such that if g 2 U.f; F0; ı0/, then there is some U.g; F 0; ı0/ 2 Bg with

U.g; F 0; ı0/ � U.f; F; ı/.

Let F0 D F , and ı0 D ı=2. Then U.f; F; ı=2/ 2 Bf . For every g 2 U.f; F; ı=2/,

we have

jg.x/ � f .x/j < ı=2; for all x 2 F:

Let U.g; F 0; ı0/ D U.g; F; ı=2/. If h 2 U.g; F; ı=2/, then

jh.x/ � f .x/j < ı=2; for all x 2 F:

Triangle inequality implies that

jh.x/ � f .x/j 6 jh.x/ � g.x/j C jg.x/ � f .x/j < ı=2C ı=2 D ı; for all x 2 F I

that is, h 2 U.f; F; ı/. Hence, U.g; F; ı=2/ � U.f; F; ı/.

Now, G � RI is open iff G is contains a U.f; F; ı/ of each f 2 G. This defines

a topology on RI . ut

I Exercise 43. For each f 2 RI , the closure of the one-point set ff g is just ff g.

Proof. For every g 2 RI X ff g, pick x 2 I with g.x/ ¤ f .x/. Define U.g; F; ı/

with F D fxg and ı < jg.x/ � f .x/j. Then f … U.g; fxg; ı/; that is, U.g; fxg; ı/ 2

RI X ff g. Hence, RI X ff g is open, and so ff g is closed. This proves that ff g D

ff g. ut

I Exercise 44. For f 2 RI and " > 0, let

V.f; "/ D
n
g 2 RI

W jg.x/ � f .x/j < "; for each x 2 I
o
:

Verify that the sets V.f; "/ form a nhood base at f , making RI a topological

space.
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Proof. Denote Vf D fV.f; "/ W " > 0g. We verify the following properties.

(V -a) If V.f; "/ 2 Vf , then jf .x/ � f .x/j D 0 < "; that is, f 2 V.f; "/.

(V -b) Let V.f; "1/; V .f; "2/ 2 Vf . Let "3 D minf"1; "2g. If g 2 V.f; "3/, then

jg.x/ � f .x/j < "3 D minf"1; "2g; for all x 2 I:

Hence, V.f; "3/ � V.f; "1/ \ V.f; "2/.

(V -c) For an arbitrary V.f; "/ 2 Vf , pick V.f; "=2/ 2 Vf . For each g 2 V.f; "=2/,

pick V.g; "=2/ 2 Vg . If h 2 V.g; "=2/, then jh.x/� g.x/j < "=2 for all x 2 I. Hence

jh.x/ � f .x/j 6 jh.x/ � g.x/j C jg.x/ � f .x/j < "I

that is, V.g; "=2/ � V.f; "/. ut

I Exercise 45. Compare the topologies defined in 1 and 3.

Proof. It is evident that for every U.f; F; ı/ 2 Bf , there exists V.f; ı/ 2 Vf

such that V.f; ı/ � U.f; F; ı/. Hence, the topology in 1 is weaker than in 3 by

Hausdorff criterion. ut

2.3 Bases and Subbases

5D. No Axioms for Subbase

I Exercise 46. Any family of subsets of a set X is a subbase for some topology

on X and the topology which results is the smallest topology containing the

given collection of sets.

Proof. Let � be a family of subsets of X . Let �.�/ be the intersection of all

topologies containing � . Such topologies exist, since 2X is one such. Also �.�/

is a topology. It evidently satisfies the requirements “unique” and “smallest.”

The topology �.�/ can be described as follows: It consists of ¿, X , all finite

intersections of the � -sets, and all arbitrary unions of these finite intersections.

To verify this, note that since � � �.�/, then �.�/ must contain all the sets

listed. Conversely, because
S

distributes over
T

, the sets listed actually do

from a topology containing � , and which therefore contains �.�/. ut

5E. Bases for the Closed Sets

I Exercise 47. F is a base for the closed sets in X iff the family of complements

of members of F is a base for the open sets.
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Proof. Let G be an open set in X . Then G D X XE for some closed subset E.

Since E D
T
F 2G�F F , we obtain

G D X X

0@ \
F 2G�F

F

1A D [
F 2G�F

F c :

Thus, fF c W F 2 F g forms a base for the open sets. The converse direction is

similar. ut

I Exercise 48. F is a base for the closed sets for some topology on X iff (a)

whenever F1 and F2 belong to F , F1 [ F2 is an intersection of elements of F ,

and (b)
T
F 2F F D ¿.

Proof. If F is a base for the closed sets for some topology on X , then (a)

and (b) are clear. Suppose, on the other hand, X is a set and F a collection

of subsets of X with (a) and (b). Let T be all intersections of subcollections

from F . Then any intersection of members of T certainly belongs to T , so T

satisfies (F-a). Moreover, if F1 � F and F2 � F , so that
T
E2F1

E and
T
F 2F2

F

are elements of T , then0@ \
E2F1

E

1A [
0@ \
F 2F2

F

1A D \
E2F1

\
F 2F2

.E [ F /:

But by property (a), the union of two elements of F is an intersection of el-

ements of F , so .
T
E2F1

E/ [ .
T
F 2F2

F / is an intersection of elements of F ,

and hence belongs to T . Thus T satisfies (F-b). Finally, ¿ 2 T by (b) and X 2 T

since X is the intersection of the empty subcollection from F . Hence T sat-

isfies (F-c). This completes the proof that T is the collection of closed sets of

X . ut





3
NEW SPACES FROM OLD

3.1 Subspaces

3.2 Continuous Functions

7A. Characterization of Spaces Using Functions

I Exercise 49. The characteristic function of A is continuous iff A is both open

and closed in X .

Proof. Let 1A W X ! R be the characteristic function of A, which is defined by

1A .x/ D

˚
1 if x 2 A

0 if x … A:

First suppose that 1A is continuous. Then, say, 1�1A

��
1=2; 2

��
D A is open,

and 1�1A

��
�1; 1=2

��
D X X A is open. Hence, A is both open and closed in X .

Conversely, suppose that A is both open and closed in X . For any open set

U � R, we have

1�1A .U / D

˚
A if 1 2 U and 0 … U

X X A if 1 … U and 0 2 U

¿ if 1 … U and 0 … U

X if 1 2 U and 0 2 U:

Then 1A is continuous. ut

I Exercise 50. X has the discrete topology iff whenever Y is a topological space

and f W X ! Y , then f is continuous.

Proof. Let Y be a topological space and f W X ! Y . It is easy to see that f

is continuous if X has the discrete topology, so we focus on the sufficiency

19
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direction. For any A � X , let Y D R and f D 1A. Then by Exercise 49 A is

open. ut

7C. Functions Agreeing on A Dense Subset

I Exercise 51. If f and g are continuous functions from X to R, the set of

points x for which f .x/ D g.x/ is a closed subset of X . Thus two continuous

maps on X to R which agree on a dense subset must agree on all of X .

Proof. Denote A D fx 2 X W f .x/ ¤ g.x/g. Take a point y 2 A such that

f .y/ > g.y/ (if it is not true then let g.y/ > f .y/). Take an " > 0 such that

f .y/�" > g.y/C". Since f and g are continuous, there exist nhoods U1 and U2
of y such that f ŒU1� � .�"C f .y/; "C f .y// and gŒU2� � .�"C g.y/; "C g.y//.

Let U D U1 \ U2. Then U is a nhood of x and for every z 2 U we have

f .z/ � g.z/ > Œf .x/ � "� � Œg.x/C "� > 0:

Hence, U � A; that is, U is open, and so fx 2 X W f .x/ D g.x/g D X X U is

closed.

Now suppose that D ´ fx 2 X W f .x/ D g.x/g is dense. Take an arbitrary

x 2 X . Since f and g are continuous, for each n 2 N, there exist nhoods Vf and

Vg such that jf .y/ � f .x/j < 1=n for all y 2 Vf and jg.y/ � g.x/j < 1=n for all

y 2 Vg . Let Vn D Vf \Vg . Then there exists xn 2 Vn\D with jf .xn/�f .x/j < 1=2n

and jg.xn/ � g.x/j < 1=2n. Since f .xn/ D g.xn/, we have

jf .x/ � g.x/j 6 jf .x/ � f .xn/j C jf .xn/ � g.x/j D jf .x/ � f .xn/j C jg.xn/ � g.x/j
< 1=n:

Therefore, f .x/ D g.x/. ut

7E. Range Immaterial

I Exercise 52. If Y � Z and f W X ! Y , then f is continuous as a map from

X to Y iff f is continuous as a map from X to Z.

Proof. Let f W X ! Z be continuous. Let U be open in Y . Then U D Y \ V for

some V which is open in Z. Therefore,

f �1.U / D f �1 .Y \ V / D f �1 .Y / \ f �1 .V / D X \ f �1 .V / D f �1 .V /

is open in X , and so f is continuous as a map from X to Y .

Conversely, let f W X ! Y be continuous and V be open in Z. Then

f �1 .V / D f �1 .Y \ V /. Since Y \ V is open in Y and f is continuous from

X to Y , the set f �1 .Y \ V / is open in X and so f is continuous as a map from

X to Z. ut
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7G. Homeomorphisms within the Line

I Exercise 53. Show that all open intervals in R are homeomorphic.

Proof. We have

� .a; b/ � .0; 1/ by f1.x/ D .x � a/=.b � a/.

� .a;1/ � .1;1/ by f2.x/ D x � aC 1.

� .1;1/ � .0; 1/ by f3.x/ D 1=x.

� .�1;�a/ � .a;1/ by f4.x/ D �x.

� .�1;1/ � .��=2; �=2/ by f5.x/ D arctan x.

Therefore, by compositing, every open interval is homeomorphic to .0; 1/. ut

I Exercise 54. All bounded closed intervals in R are homeomorphic.

Proof. Œa; b� � Œ0; 1� by f .x/ D .x � a/=.b � a/. ut

I Exercise 55. The property that every real-valued continuous function on X

assumes its maximum is a topological property. Thus, I ´ Œ0; 1� is not homeo-

morphic to R.

Proof. Every continuous function assumes its maximum on Œ0; 1�; however, x2

has no maximum on R. Therefore, I 6� R. ut

7K. Semicontinuous Functions

I Exercise 56. If f˛ is a lower semicontinuous real-valued function on X for

each ˛ 2 A, and if sup˛ f˛.x/ exists at each x 2 X , then the function f .x/ D

sup˛ f˛.x/ is lower semicontinuous on X .

Proof. For an arbitrary a 2 R, we have f .x/ 6 a iff f˛.x/ 6 a for all ˛ 2 A.

Hence,

fx 2 X W f .x/ 6 ˛g D
\
˛2A

fx 2 X W f˛.x/ 6 ag ;

and so f �1.�1; a� is closed; that is, f is lower semicontinuous. ut

I Exercise 57. Every continuous function from X to R is lower semicontinuous.

Thus the supremum of a family of continuous functions, if it exists, is lower

semicontinuous. Show by an example that “lower semicontinuous” cannot be

replaced by “continuous” in the previous sentence.

Proof. Suppose that f W X ! R is continuous. Since .�1; x� is closed in R, the

set f �1.�1; x� is closed in X ; that is, f is lower semicontinuous.

To construct an example, let f W Œ0;1/! R be defined as follows:
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fn.x/ D

˚
nx if 0 6 x 6 1=n
1 if x > 1=n:

Then

f .x/ D sup
n
fn.x/ D

˚
0 if x D 0

1 if x > 0;

and f is not continuous. ut

I Exercise 58. The characteristic function of a set A in X is lower semicontin-

uous iff A is open, upper semicontinuous iff A is closed.

Proof. Observe that

1�1A .�1; a� D

„
¿ if a < 0

X X A if 0 6 a < 1
X if a > 1:

Therefore, 1A is LSC iff A is open. Similarly for the USC case. ut

I Exercise 59. If X is metrizable and f is a lower semicontinuous function

from X to I, then f is the supremum of an increasing sequence of continuous

functions on X to I.

Proof. Let d be the metric on X . First assume f is nonnegative. Define

fn.x/ D inf
z2X
ff .z/C nd.x; z/g :

If x; y 2 X , then f .z/Cnd.x; z/ 6 f .z/Cnd.y; z/Cnd.x; y/. Take the inf over z

(first on the left side, then on the right side) to obtain fn.x/ 6 fn.y/C nd.x; y/.
By symmetry,

jfn.x/ � fn.y/j 6 nd.x; y/I

hence, fn is uniformly continuous on X . Furthermore, since f > 0, we have

0 6 fn.x/ 6 f .x/C nd.x; x/ D f .x/. By definition, fn increases with n; we must

show that limn fn is actually f .

Given " > 0, by definition of fn.x/ there is a point zn 2 X such that

fn.x/C " > f .zn/C nd.x; zn/ > nd.x; zn/ (3.1)

since f > 0. But fn.x/ C " 6 f .x/ C "; hence d.x; zn/ ! 0. Since f is LSC, we

have lim infn f .zn/ > f .x/ (Ash, 2009, Theorem 8.4.2); hence

f .zn/ > f .x/ � " ev: (3.2)

By (3.1) and (3.2),

fn.x/ > f .zn/ � "C nd.x; zn/ > f .zn/ � " > f .x/ � 2"
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for all sufficiently large n. Thus, fn.x/! f .x/.

If jf j 6 M < 1, then f CM is LSC, finite-valued, and nonnegative. If 0 6
gn " .f CM/, then fn D .gn �M/ " f and jfnj >M . ut

7M. C.X/ and C �.X/

I Exercise 60. If f and g belong to C.X/, then so do f C g, f � g and a � f , for

a 2 R. If, in addition, f and g are bounded, then so are f C g, f � g and a � f .

Proof. We first do f C g. Since f; g 2 C.X/, for each x 2 X and each " > 0,

there exist nhoods U1 and U2 of x such that f ŒU1� � .�"=2C f .x/; "=2C f .x//

and gŒU2� � .�"=2C g.x/; "=2C g.x//. Let U D U1 \U2. Then U is a nhood of x,

and for every y 2 U , we have

jŒf .y/C g.y/� � Œf .x/C g.x/�j 6 jf .y/ � f .x/j C jg.y/ � g.x/j < "I

that is, f C g is continuous.

We then do a � f . We suppose that a > 0 (all other cases are similar). For

each x 2 X and " > 0, there exists a nhood U of x such that f ŒU � � .�"=a C

f .x/; "=aC f .x//. Then .a � f /ŒU � 2 .�"C a � f .x/; "C a � f .x//. So a � f 2 C.X/.

Finally, to do f � g, we first show that f 2 2 C.X/ whenever f 2 C.X/. For

each x 2 X and " > 0, there is a nhood U of x such that f ŒU � � .�
p
" C

f .x/;
p
"C f .x//. Then f 2ŒU � � .�"C f 2.x/; "C f 2.x//, i.e., f 2 2 C.X/. Since

f .x/ � g.x/ D
1

4

h�
f .x/C g.x/

�2
�
�
f .x/ � g.x/

�2i
;

we know that f � g 2 C.X/ from the previous arguments. ut

I Exercise 61. C.X/ and C �.X/ are algebras over the real numbers.

Proof. It follows from the previous exercise that C.X/ is a vector space on R.

So everything is easy now. ut

I Exercise 62. C �.X/ is a normed linear space with the operations of addition

and scalar multiplication given above and the norm kf k D supx2X jf .x/j.

Proof. It is easy to see that C �.X/ is a linear space. So it suffices to show that

k � k is a norm on C �.X/. We focus on the triangle inequality. Let f; g 2 C �.X/.

Then for every x 2 X , we have jf .x/ C g.x/j 6 jf .x/j C jg.x/j 6 kf k C kgk;
hence, kf C gk 6 kf k C kgk. ut
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3.3 Product Spaces, Weak Topologies

8A. Projection Maps

I Exercise 63. The ˇth projection map �ˇ is continuous and open. The projec-

tion �1 W R2 ! R is not closed.

Proof. Let Uˇ be open in Xˇ . Then ��1
ˇ
.Uˇ / is a subbasis open set of the

Tychonoff topology on�˛ X˛ , and so is open. Hence, �ˇ is continuous.

Take an arbitrary basis open set U in the Tychonoff topology. Denote I ´

f1; : : : ; ng. Then

U D �̨U˛;

where U˛ is open in X˛ for every ˛ 2 A, and U
j̨
D X

j̨
for all j … I . Hence,

�ˇ .U / D

˚
Uˇ if ˇ D ˛i for some i 2 I

Xˇ otherwise.

That is, �ˇ .U / is open in Xˇ in both case. Since any open set is a union of

basis open sets, and since functions preserve unions, the image of any open

set under �ˇ is open.

0

F

Figure 3.1. �1.F / D .0;1/

Finally, let F D epi.1=x/. Then F is closed in R2, but �1.F / D .0;1/ is open

in R; that is, �1 is not closed. See Figure 3.1. ut

I Exercise 64. Show that the projection of I � R onto R is a closed map.

Proof. Let � W I � R ! R be the projection. Suppose A � I � R is closed, and

suppose y0 2 R X �ŒA�. For every x 2 I, since .x; y0/ … A and A is closed,

we find a basis open subset U.x/ � V.x/ of I � R that contains .x; y0/, and

ŒU.x/ � V.x/� \ A D ¿. The collection fU.x/ W x 2 Ig covers I, so finitely many

of them cover I by compactness, say U.x1/; : : : ; U.xn/ do. Now define V D
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iD1 V.xi /, and note that V is an open nhood of y0, and V \ �ŒA� D ¿. So �ŒA�

is closed; that is, � is closed. See Lee (2011, Lemma 4.35, p. 95) for the Tube

Lemma.

Generally, if � W X � Y ! X is a projection may where Y is compact, then �

is a closed map. ut

8B. Separating Points from Closed Sets

I Exercise 65. If f˛ is a map (continuous function) of X to X˛ for each ˛ 2 A,

then ff˛ W ˛ 2 Ag separates points from closed sets in X iff ff �1˛ ŒV � W ˛ 2

A; V open in X˛g is a base for the topology on X .

Proof. Suppose that ff �1˛ ŒV � W ˛ 2 A; V open in X˛g consists of a base for the

topology on X . Let B be closed in X and x … B . Then x 2 X X B and X X B is

open in X . Hence there exists f �1˛ ŒV � such that x 2 f �1˛ ŒV � � X X B ; that is,

f˛.x/ 2 V . Since V \ f˛ŒB� D ¿, i.e., f˛ŒB� � X˛ X V , and X˛ X V is closed, we

get f˛ŒB� � X˛ X V . Thus, f˛.x/ … f˛ŒB�.

Next assume that ff˛ W ˛ 2 Ag separates points from closed sets in X . Take

an arbitrary open subset U � X and x 2 U . Then B ´ X X U is closed in X ,

and hence there exists ˛ 2 A such that f˛.x/ … f˛ŒB�. Then f˛.x/ 2 X˛ X f˛ŒB�

and, since X˛ X f˛ŒB� is open in X˛ , there exists an open set V of X˛ such that

f˛.x/ 2 V � X˛ X f˛ŒB�. Therefore,

x 2 f �1˛ ŒV � � f �1˛

h
X˛ X f˛ŒB�

i
D X X f �1˛

h
f˛ŒB�

i
� X X f �1˛ Œf˛ŒB��

� X X B

D U:

Hence, ff �1˛ ŒV � W ˛ 2 A; V open in X˛g is a base for the topology on X . ut

8D. Closure and Interior in Products

Let X and Y be topological spaces containing subsets A and B , respectively. In

the product space X � Y :

I Exercise 66. .A � B/B D AB � BB.

Proof. Since AB � A is open in A and BB � B is open in B , the set AB � BB �

A � B is open in A � B ; hence, AB � BB � .A � B/B.

For the converse inclusion, let x D .a; b/ 2 .A � B/B. Then there is an basis

open set U1 � U2 such that x 2 U1 � U2 � A � B , where U1 is open in A and U2
is open in B . Hence, a 2 U1 � A and b 2 U2 � B ; that is, a 2 AB and b 2 BB.

Then x 2 AB � BB. ut
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I Exercise 67. A � B D xA � xB .

Proof. See Exercise 68. ut

I Exercise 68. Part 2 can be extended to infinite products, while part 1 can be

extended only to finite products.

Proof. Assume that y D
�
y˛
�
2�A˛ ; we show that y˛ 2 SA˛ for each ˛; that

is, y 2� SA˛ . Let y˛ 2 U˛ , where U˛ is open in Y˛ ; since y 2 ��1˛ .U˛/, we must

have

¿ ¤ ��1˛ .U˛/ \�A˛ D .U˛ \ A˛/ �

 
�̌
¤˛

Aˇ

!
;

and so U˛\A˛ ¤ ¿. This proves y˛ 2 SA˛ . The converse inclusion is established

by reversing these steps: If y 2� SA˛ , then for any open nhood

B ´ U˛1 � � � � � U˛n �
�
�

˚
Yˇ W ˇ ¤ ˛1; : : : ; ˛n

	�
;

each U˛i \ A˛i ¤ ¿ so that B \�A˛ ¤ ¿. ut

I Exercise 69. Fr.A � B/ D Œ xA � Fr.B/� [ ŒFr.A/ � xB�.

Proof. We have

Fr.A � B/ D A � B \ .X � Y / X .A � B/

D . xA � xB/ \
�
.X � Y / X .Aı � Bı/

�
D . xA � xB/ \

h�
X � .Y X Bı/

�
[
�
.X X Aı/ � Y

�i
D Œ xA � Fr.B/� [ ŒFr.A/ � xB�: ut

I Exercise 70. If X˛ is a nonempty topological space and A˛ � X˛ , for each

˛ 2 A, then�A˛ is dense in�X˛ iff A˛ is dense in X˛ , for each ˛.

Proof. It follows from Exercise 68 that

�A˛ D� xA˛I

that is,�A˛ is dense in�X˛ iff A˛ is dense in X˛ , for each ˛. ut

8E. Miscellaneous Facts about Product Spaces

Let X˛ be a nonempty topological space for each ˛ 2 A, and let X D�X˛ .

I Exercise 71. If V is a nonempty open set in X , then �˛.V / D X˛ for all but

finitely many ˛ 2 A.

Proof. Let T˛ be the topology on X˛ for each ˛ 2 A. Let V be an arbitrary open

set in X . Then V D
S
k2K Bk , where for each k 2 K we have Bk D�˛2AE˛k ,
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and for each ˛ 2 A we have E˛k 2 T˛ while

Ak ´ f˛ 2 A W E˛k ¤ X˛g

is finite. Then
T
k2K Ak is finite. If ˛0 …

T
k2K Ak , then there exists k0 2 K such

that E˛0k0 D X˛0 . Then

��1˛0 .Bk0/ D �
�1
˛0

 
�̨
2A

E˛k0

!
D X˛0 ;

and so X˛0 D �
�1
˛0
.Bk0/ � �

�1
˛0
.V / implies that ��1˛0 .V / D X˛0 . ut

I Exercise 72. If b˛ is a fixed point in X˛ , for each ˛ 2 A, then X 0˛0 D fx 2 X W

x˛ D b˛ whenever ˛ ¤ ˛0g is homeomorphic to X˛0 .

Proof. Write an element in X 0˛0 as .x˛0 ;b�˛0/. Then consider the mapping

.x˛0 ;b�˛0/ 7! x˛0 . ut

8G. The Box Topology

Let X˛ be a topological space for each ˛ 2 A.

I Exercise 73. In�X˛ , the sets of the form�U˛ , where U˛ is open in X˛
for each ˛ 2 A, form a base for a topology.

Proof. Let B ´
˚
�U˛ W ˛ 2 A;U˛ open in X˛

	
. Then it is clear that�X˛ 2

B since X˛ is open for each ˛ 2 A. Now take any B1; B2 2 B, with B1 D�U 1˛
and B2 D�U 2˛ . Let

p D
�
p1; p2; : : :

�
2 B1 \ B2 D�

�
U 1˛ \ U

2
˛

�
:

Then p˛ 2 U 1˛ \ U
2
˛ , and so there exists an open set B˛ � X˛ such that p˛ 2

B˛ � U
1
˛ \ U

2
˛ . Hence,�B˛ 2 B and p 2 B � B1 \ B2. ut

8H. Weak Topologies on Subspaces

Let X have the weak topology induced by a collection of maps f˛ W X ! X˛ ,

for ˛ 2 A.

I Exercise 74. If each X˛ has the weak topology given by a collection of maps

g˛� W X˛ ! Y˛�, for � 2 �˛ , then X has the weak topology given by the maps

g˛� B f˛ W X ! Y˛� for ˛ 2 A and � 2 �˛ .

Proof. A subbase for the weak topology on X˛ induced by fg˛� W � 2 �˛g isn
g�1˛� .U˛�/ W � 2 �˛; U˛� open in Y˛�

o
:
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Then a subbasic open set in X for the weak topology on X induced by

ff˛ W ˛ 2 Ag is n
f �1˛ Œg�1˛� .U˛�/� W ˛ 2 A; � 2 �˛; U˛� open in Y˛�

o
:

Since f �1˛ .g�1
˛�
.U˛�// D .g˛� B f˛/

�1.U˛�/, we get the result. ut

I Exercise 75. Any B � X has the weak topology induced by the maps f˛�B .

Proof. As a subspace of X , the subbase on B isn
B \ f �1˛ .U˛/ W ˛ 2 A;U˛ open in X˛

o
:

On the other hand, .f˛�B/�1.U˛/ D B \ f �1˛ .U˛/ for every ˛ 2 A and U˛ open

in X˛ . Hence, the above set is also the subbase for the weak topology induced

by ff˛�B W ˛ 2 Ag. ut

3.4 Quotient Spaces

9B. Quotients versus Decompositions

I Exercise 76. The process given in 9.5 for forming the topology on a decom-

position space does define a topology.

Proof. Let .X; T / be a topological space; let D be a decomposition ofX . Define

F � D is open in D ()

[
fF W F 2 F g is open in X: (3.3)

Let T be the collection of open sets defined by (3.3). We show that .D ;T / is a

topological space.

� Take an arbitrary collection fFigi2I � T ; then
S
fF W F 2 Fig is open in X

for each i 2 I . Hence,
S
i2I Fi 2 T since

[
F 2

S
i2I Fi

F D
[
i2I

0@ [
F 2Fi

F

1A
is open in X .

� Let F1;F2 2 T ; then
S
E2F1

E and
S
F 2F2

F are open in X . Therefore, F1 \

F2 2 T since [
F 2F1\F2

F D

0@ [
E2F1

E

1A \
0@ [
F 2F2

F

1A
is open in X .

� ¿ 2 T since
S
¿ D ¿ is open in X ; finally, D 2 T since

S
D D X . ut
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I Exercise 77. The topology on a decomposition space D of X is the quotient

topology induced by the natural map P W X ! D . (See 9.6.)

Proof. Let T be the decomposition topology of D , and let TP be the quotient

topology induced by P . Take an open set F 2 T ; then
S
F 2F F is open in X .

Hence,

P�1.F / D P�1

0@ [
F 2F

F

1A D [
F 2F

P�1.F / D
[
F 2F

F

is open in X , and so F 2 TP . We thus proved that T � TP .

Next take an arbitrary F 2 TP . By definition, we have P�1.F / D
S
F 2F F is

open in X . But then F 2 T .

We finally prove Theorem 9.7 (McCleary, 2006, Theorem 4.18): Suppose

f W X ! Y is a quotient map. Suppose � is the equivalence relation defined

on X by x � x0 if f .x/ D f .x0/. Then the quotient space X= � is homeomorphic

to Y .

By the definition of the equivalence relation, we have the diagram:

X

X= �

Y

Y

h B P
D
f

f

P

h

Define h W X= �! Y by letting h.Œx�/ D f .x/. It is well-defined. Notice that

h B P D f since for each x 2 X we obtain

.h B P /.x/ D h.P.x// D h.Œx�/ D f .x/:

Both f and P are quotient maps so h is continuous by Theorem 9.4. We show

that h is injective, subjective and h�1 is continuous, which implies that h is a

homeomorphism. If h.Œx�/ D h.Œx0�/, then f .x/ D f .x0/ and so x � x0; that is,

Œx� D Œx0�, and h is injective. If y 2 Y , then y D f .x/ since f is surjective and

h.Œx�/ D f .x/ D y so h is surjective. To see that h�1 is continuous, observe that

since f is a quotient map and P is a quotient map, this shows P D h�1 Bf and

Theorem 9.4 implies that h�1 is continuous. ut





4
CONVERGENCE

4.1 Inadequacy of Sequences

10B. Sequential Convergence and Continuity

I Exercise 78. Find spaces X and Y and a function F W X ! Y which is not

continuous, but which has the property that F.xn/! F.x/ in Y whenever xn !

x in X .

Proof. Let X D RR and Y D R. Define F W RR ! R by letting F.f / D

supx2R jf .x/j. Then F is not continuous: Let

E D
n
f 2 RR

W f .x/ D 0 or 1 and f .x/ D 0 only finitely often
o
;

and let g 2 RR be the function which is 0 everywhere. Then g 2 xE. However,

0 2 F Œ xE� since F.g/ D 0, and F ŒE� D f1g. ut

10C. Topology of First-Countable Spaces

Let X and Y be first-countable spaces.

I Exercise 79. U � X is open iff whenever xn ! x 2 U , then .xn/ is eventually

in U .

Proof. If U is open and xn ! x 2 U , then x has a nhood V such that x 2 V �

U . By definition of convergence, there is some positive integer n0 such that

n > n0 implies xn 2 V � U ; hence, .xn/ is eventually in U .

Conversely, suppose that whenever xn ! x 2 U , then .xn/ is eventually in

U . If U is not open, then there exists x 2 U such that for every nhood of V of

x we have V \ .X XU/ ¤ ¿. Since X is first-countable, we can pick a countable

nhood base fVn W n 2 Ng at x. Replacing Vn D
Tn
iD1 Vi where necessary, we

may assume that V1 � V2 � � � � . Now Vn \ .X X U/ ¤ ¿ for each n, so we

can pick xn 2 Vn \ .X X U/. The result is a sequence .xn/ contained in X X U

31
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which converges to x 2 U ; that is, xn ! x but .xn/ is not eventually in U . A

contradiction. ut

I Exercise 80. F � X is closed iff whenever .xn/ is contained in F and xn ! x,

then x 2 F .

Proof. Let F be closed; let .xn/ be contained in F and xn ! x. Then x 2 xF D

F .

Conversely, assume that whenever .xn/ is contained in F and xn ! x, then

x 2 F . It follows from Theorem 10.4 that x 2 xF with the hypothesis; therefore,
xF � F , i.e., xF D F and so F is closed. ut

I Exercise 81. f W X ! Y is continuous iff whenever xn ! x in X , then

f .xn/! f .x/ in Y .

Proof. Suppose f is continuous and xn ! x. Since f is continuous at x,

for every nhood V of f .x/ in Y , there exists a nhood U of x in X such that

f .U / � V . Since xn ! x, there exists n0 such that n > n0 implies that xn 2 U .

Hence, for every nhood V of f .x/, there exists n0 such that n > n0 implies that

f .xn/ 2 V ; that is, f .xn/! f .x/.

Conversely, let the criterion hold. Suppose that f is not continuous. Then

there exists x 2 X and a nhood V of f .x/, such that for every nhood base

Un, n 2 N, of x, there is xn 2 Un with f .xn/ … V . By letting U1 � U2 � � � � ,

we have xn ! x and so f .xn/ ! f .x/; that is, eventually, f .xn/ is in V . A

contradiction. ut

4.2 Nets

11A. Examples of Net Converence

I Exercise 82. In RR, let

E D
n
f 2 RR

W f .x/ D 0 or 1; and f .x/ D 0 only finitely often
o
;

and g be the function in RR which is identically 0. Then, in the product topology

on RR, g 2 xE. Find a net .f�/ in E which converges to g.

Proof. Let Ug D fU.g; F; "/ W " > 0; F � R a finite setg be the nhood base of g.

Order Ug as follows:

U.g; F1; "1/ 6 U.g; F2; "2/ () U.g; F2; "2/ � U.g; F; "2/

() F1 � F2 and "2 6 "1:

Then Ug is a directed set. So we have a net .fF;"/ converging to g. ut
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11B. Subnets and Cluster Points

I Exercise 83. Every subnet of an ultranet is an ultranet.

Proof. Take an arbitrary subset E � X . Let .x�/ be an ultranet in X , and

suppose that .x�/ is residually in E, i.e., there exists some �0 2 � such that

� > �0 implies that x� 2 E. If .x��/ is a subnet of .x�/, then there exists some

�0 such that ��0 > �0. Then for every � > �0, we have �� > �0, and so � > �0
implies that x�� 2 E; that is, .x��/ is residually in E. ut

I Exercise 84. Every net has a subnet which is an ultranet.

Proof. See Adamson (1996, Exercise 127, p. 40). ut

I Exercise 85. If an ultranet has x as a cluster point, then it converges to x.

Proof. Let .x�/ be an ultranet, and x be a cluster point of .x�/. Let U be a

nhood of x. Then .x�/ lies in U eventually since for any �0 there exists � > �0
such that x� 2 U . ut

11D. Nets Describe Topologies

I Exercise 86. Nets have the following four properties:

a. if x� D x for each � 2 �, then x� ! x,

b. if x� ! x, then every subnet of .x�/ converges to x,

c. if every subnet of .x�/ has a subnet converging to x, then .x�/ converges to

x,

d. (Diagonal principal) if x� ! x and, for each � 2 �, a net .x��/u2M� converges

to x�, then there is a diagonal net converging to x; i.e., the net .x��/�2�;�2M� ,

ordered lexicographically by �, then by M�, has a subnet which converges to

x.

Proof. (a) If the net .x�/ is trivial, then for each nhood U of x, we have x� 2 U

for all � 2 �. Hence, x� ! x.

(b) Let .x'.�//�2M be a subnet of .x�/. Take any nhood U of x. Then there

exists �0 2 � such that � > �0 implies that x� 2 U since x� ! x. Since ' is

cofinal in �, there exists �0 2 M such that '.�0/ > �0; since ' is increasing,

� > �0 implies that '.�/ > '.�0/ > �0. Hence, there exists �0 2 M such that

� > �0 implies that x'.�/ 2 U ; that is, x'.�/ ! x.

(c) Suppose by way of contradiction that .x�/ does not converge to x. Then

there exists a nhood U of x such that for any � 2 �, there exists some '.�/ > �
with x'.�/ … U . Then .x'.�// is a subnet of .x�/, but which has no converging

subnets.
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(d) Order f.�; �/ W � 2 �;� 2M�g as follows:

.�1; �1/ 6 .�2; �2/ () �1 6 �2, or �1 D �2 and �1 6 �2:

Let U be the nhood system of x which is ordered by U1 6 U2 iff U2 � U1 for all

U1; U2 2 U. Define

� D
n
.�; U / W � 2 �;U 2 U such that x� 2 U

o
:

Order � as follows: .�1; U1/ 6 .�2; U2/ iff �1 6 �2 and U2 � U1. For each

.�; U / 2 � pick �� 2 M� so that x�� 2 U for all � > �� (such a �� exists since

x�� ! x� and x� 2 U ). Define ' W .�; U / 7! x��� for all .�; U / 2 � . It now easy to

see that this subnet converges to x. ut

4.3 Filters

12A. Examples of Filter Convergence

I Exercise 87. Show that if a filter in a metric space converges, it must con-

verge to a unique point.

Proof. Suppose a filter F in a metric space .X; d/ converges to x; y 2 X . If

x ¤ y, then there exists r > 0 such that B.x; r/ \ B.y; r/ D ¿. But since F ! x

and F ! y, we must have B.x; r/ 2 F and B.y; r/ 2 F . This contradicts the

fact that the intersection of every two elements in a filter is nonempty. Thus,

x D y. ut

12C. Ultrafilters: Uniqueness

I Exercise 88. If a filter F is contained in a unique ultrafilter F 0, then F D F 0.

Proof. We first show: Every filter F on a non-empty set X is the intersection of

the family of ultrafilters which include F .

Let E be a set which does not belong to F . Then for each set F 2 F we

cannot have F � E and hence we must have F \Ec ¤ ¿. So F [fEcg generates

a filter on X , which is included in some ultrafilter FE . Since Ec 2 FE we must

have E … FE . Thus E does not belong to the intersection of the set of all

ultrafilters which include F . Hence this intersection is just the filter F itself.

Now, if F is contained in a unique ultrafilter F 0, we must have F D F 0. ut



SECTION 4.3 FILTERS 35

12D. Nets and Filters: The Translation Process

I Exercise 89. A net .x�/ has x as a cluster point iff the filter generated by

.x�/ has x as a cluster point.

Proof. Suppose x is a cluster point of the net .x�/. Then for every nhood U of

x, we have x� 2 U i:o: But then U meets every B�0 ´ fx� W � > �0g, the filter

base of the filter F generated by .x�/; that is, x is a cluster point of F . The

converse implication is obvious. ut

I Exercise 90. A filter F has x as a cluster point iff the net based on F has x

as a cluster point.

Proof. Suppose x is a cluster point of F . If U is a nhood of x, then U meets

every F 2 F . Then for an arbitrary .p; F / 2 �F , pick q 2 F \ U so that

.q; F / 2 �F , .q; F / > .p; F /, and P.p; F / D p 2 U ; that is, x is a cluster point

of the net based on F .

Conversely, suppose the net based on F has x as a cluster point. Let U be

a nhood of x. Then for every .p0; F0/ 2 �F , there exists .p; F / > .p0; F0/ such

that p 2 U . Then F0 \ U ¤ ¿, and so x is a cluster point of F . ut

I Exercise 91. If .x��/ is a subnet of .x�/, then the filter generated by .x��/ is

finer than the filter generated by .x�/.

Proof. Suppose .x��/ is a subnet of .x�/. Let F�� is the filter generated by

.x��/, and F� be the filter generated by .x�/. Then the base generating F��
is the sets B��0 D fx�� W � > �0g, and the base generating F� is the sets

B�0 D fx� W � > �0g. For each such a B�0 , there exists �0 such that ��0 > �0;
that is, B��0 � B�0 . Therefore, F� � F�� . ut

I Exercise 92. The net based on an ultrafilter is an ultranet and the filter

generated by an ultranet is an ultrafilter.

Proof. Suppose F is an ultrafilter. Let E � X and we assume that E 2 F . Pick

p 2 E. If .q; F / > .p;E/, then q 2 E; that is, P.p; F / 2 E ev: Hence, the net

based on F is an ultranet.

Conversely, suppose .x�/ is an ultranet. Let E � X and we assume that there

exists �0 such that x� 2 E for all � > �0. Then B�0 D fx� W � > �0g � E and so

E 2 F , where F is the filter generated by .x�/. Hence, F is an ultrafilter. ut

I Exercise 93. The net based on a free ultrafilter is a nontrivial ultranet.

Hence, assuming the axiom of choice, there are nontrivial ultranets.

Proof. Let F be a free ultrafilter, and .x�/ be the net based on F . It follows

from the previous exercise that .x�/ is an ultranet. If .x�/ is trivial, i.e., x� D x

for some x 2 X and all � 2 �F , then for all F 2 F , we must have F D fxg. But

then
T

F D fxg ¤ ¿; that is, F is fixed. A contradiction.
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Now, for instance, the Frechet filter F on R is contained in some free ultra-

filter G by Example (b) when the Axiom of Choice is assumed. Hence, the net

based on G is a nontrivial ultranet. ut
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SEPARATION AND COUNTABILITY

5.1 The Separation Axioms

13B. T0- and T1-Spaces

I Exercise 94. Any subspace of a T0- or T1-space is, respectively, T0 or T1.

Proof. Let X be a T0-space, and A � X . Let x and y be distinct points in A.

Then, say, there exists an open nhood U of x such that y … U . Then U \ A

is relatively open in A, contains x, and y … A \ U . The T1 case can be proved

similarly. ut

I Exercise 95. Any nonempty product space is T0 or T1 iff each factor space

is, respectively, T0 or T1.

Proof. If X˛ is a T0-space, for each ˛ 2 A, and x ¤ y in�X˛ , then for some

coordinate ˛ we have x˛ ¤ y˛ , so there exists an open set U˛ containing, say,

x˛ but not y˛ . Now ��1˛ .U˛/ is an open set in�X˛ containing x but not y.

Thus,�X˛ is T0.

Conversely, if�X˛ is a nonempty T0-space, pick a fixed point b˛ 2 X˛ , for

each ˛ 2 A. Then the subspace B˛ ´ fx 2�X˛ W xˇ D bˇ unless ˇ D ˛g is T0,

by Exercise 94, and is homeomorphic to X˛ under the restriction to B˛ of the

projection map. Thus X˛ is T0, for each ˛ 2 A. The T1 case is similar. ut

13C. The T0-Identification

For any topological space X , define � by x � y iff fxg D fyg.

I Exercise 96. � is an equivalence relation on X .

Proof. Straightforward. ut

I Exercise 97. The resulting quotient space X= �D �X is T0.

37
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Proof. We first show that X is T0 iff whenever x ¤ y then fxg ¤ fyg. If X is

T0 and x ¤ y, then there exists an open nhood U of x such that y … U ; then

y … fxg. Since y 2 fyg, we have fxg ¤ fyg. Conversely, suppose that x ¤ y

implies that fxg ¤ fyg. Take any x ¤ y in X and we show that there exists an

open nhood of one of the two points such that the other point is not in U . If

not, then y 2 fxg; since fxg is closed, we have fyg � fxg; similarly, fxg � fyg. A

contradiction.

Now take any fxg ¤ fyg in X= �. Then fxg D fxg ¤ fyg D fyg. Hence, X= � is

T0. ut

13D. The Zariski Topology

For a polynomial P in n real variables, let Z.P / D f.x1; : : : ; xn/ 2 Rn W

P.x1; : : : ; xn/ D 0g. Let P be the collection of all such polynomials.

I Exercise 98. fZ.P / W P 2 P g is a base for the closed sets of a topology (the

Zariski topology) on Rn.

Proof. Denote Z ´ fZ.P / W P 2 P g. If Z.P1/ and Z.P2/ belong to Z, then

Z.P1/ [ Z.P2/ D Z.P1 � P2/ 2 Z since P1 � P2 2 P . Further,
T
P2P Z.P / D ¿

since there are P 2 P with Z.P / D ¿ (for instance, P D 1 C X21 C � � � C X
2
n ).

It follows from Exercise 48 that Z is a base for the closed sets of the Zariski

topology on Rn. ut

I Exercise 99. The Zariski topology on Rn is T1 but not T2.

Proof. To verify that the Zariski topology is T1, we show that every single-

ton set in Rn is closed (by Theorem 13.4). For each .x1; : : : ; xn/ 2 Rn, define a

polynomial P 2 P as follows:

P D .X1 � x1/
2
C � � � .Xn � xn/

2:

Then Z.P / D f.x1; : : : ; xn/g; that is, f.x1; : : : ; xn/g is closed.

To see the Zariski topology is not T2, consider the R case. In R, the Zariski

topology coincides with the cofinite topology (see Exercise 100). It is well know

that the cofinite topology is not Hausdorff (Example 13.5(a)). ut

I Exercise 100. On R, the Zariski topology coincides with the cofinite topology;

in Rn, n > 1, they are different.

Proof. On R, every Z.P / is finite. So on R every closed set in the Zariski topol-

ogy is finite since every closed set is an intersection of some subfamily of Z.

However, if n > 1, then Z.P / can be infinite: for example, consider the polyno-

mial X1X2 (let X1 D 0, then all X2 2 R is a solution). ut
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13H. Open Images of Hausdorff Spaces

I Exercise 101. Given any set X , there is a Hausdorff space Y which is the

union of a collection fYx W x 2 Xg of disjoint subsets, each dense in Y .

Proof. ut

5.2 Regularity and Complete Regularity

Theorem 5.1 (Dugundji 1966). a. Let P W X ! Y be a closed map. Given any

subset S � Y and any open U containing P�1.S/, there exists an open V � S

such that P�1.V / � U .

b. Let P W X ! Y be an open map. Given any subset S � Y , and any closed A

containing P�1S , there exists a closed B � S such that P�1.B/ � A.

Proof. It is enough to prove (a). Let V D Y X P.X X U/. Then

P�1.S/ � U H) X X U � X X P�1.S/ D P�1.Y X S/

H) P.X X U/ � P ŒP�1.Y X S/�

H) Y X P ŒP�1.Y X S/� � V:

Since P ŒP�1.Y X S/� � Y X S , we obtain

S D Y X .Y X S/ � Y X P ŒP�1.Y X S/� � V I

that is, S � V . Because P is closed, V is open in Y . Observing that

P�1.V / D X X P�1ŒP.X X U/� � X X .X X U/ D U

completes the proof. ut

Theorem 5.2 (Theorem 14.6). If X is T3 and f is a continuous, open and closed

map of X onto Y , then Y is T2.

Proof. By Theorem 13.11, it is sufficient to show that the set

A´ f.x1; x2/ 2 X �X W f .x1/ D f .x2/g

is closed in X � X . If .x1; x2/ … A, then x1 … f
�1Œf .x2/�. Since a T3-space is

T1, the singleton set fx2g is closed in X ; since f is closed, ff .x2/g is closed in

Y ; since f is continuous, f �1Œf .x2/� is closed in X . Because X is T3, there are

disjoint open sets U and V with

x1 2 U; and f �1Œf .x2/� � V:
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Since f is closed, it follows from Theorem 5.1 that there exists open setW � Y

such that ff .x2/g � W , and f �1.W / � V ; that is,

f �1Œf .x2/� � f
�1.W / � V:

Then U � f �1.W / is a nhood of .x1; x2/. We finally show that ŒU � f �1.W /� \

A D ¿. If there exists .y1; y2/ 2 A such that .y1; y2/ 2 U � f �1.W /, then y1 2

f �1Œf .y2/� � f �1.W /; that is, y1 2 U � f �1.W /. However, U \ V D ¿ and

f �1.W / � V imply that U \ f �1.W / D ¿. A contradiction. ut

Definition 5.3. If X is a space and A � X , then X=A denotes the quotient

space obtained via the equivalence relation whose equivalence classes are A

and the single point sets fxg, x 2 X X A.

Theorem 5.4. If X is T3 and Y is obtained from X by identifying a single closed

set A in X with a point, then Y is T2.

Proof. Let A be a closed subset of a T3-space X . Then X XA is an open subset

in both X and X=A and its two subspace topologies agree. Thus, points in

XXA � X=A are different from ŒA� and have disjoint nhoods as X is Hausdorff.

Finally, for x 2 X X A, there exist disjoint open nhoods V.x/ and W.A/. Their

images, f .V / and f .W /, are disjoint open nhoods of x and ŒA� in X=A, because

V D f �1Œf .V /� and W D f �1Œf .W /� are disjoint open sets in X . ut

5.3 Normal Spaces

15B. Completely Normal Spaces

I Exercise 102. X is completely normal iff whenever A and B are subsets of

X with A\ xB D xA\B D ¿, then there are disjoint open sets U � A and V � B .

Proof. Suppose that whenever A and B are subsets of X with A\ xB D xA\B D

¿, then there are disjoint open sets U � A and V � B . Let Y � X , and C;D � Y

be disjoint closed subsets of Y . Hence,

¿ D clY .C / \ clY .D/ D Œ xC \ Y � \ Œ xD \ Y � D xC \ Œ xD \ Y �:

Since D � clY .D/, we have xC \D D ¿. Similarly, C \ xD D ¿. Hence there are

disjoint open sets U 0 and V 0 in X such that C � U 0 and D � V 0. Let U D U 0\Y

and V D V 0 \ Y . Then U and V are open in Y , C � U , and D � V ; that is, Y is

normal, and so X is completely normal.

Now suppose that X is completely normal and consider the subspace Y ´

X X . xA\ xB/. We first show that A;B � Y . If A š Y , then there exists x 2 A with

x … Y ; that is, x 2 xA \ xB . But then x 2 A \ xB . A contradiction. Similarly for B .

In the normal space Y , we have
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clY .A/ \ clY .B/ D Œ xA \ Y � \ Œ xB \ Y � D . xA \ xB/ \ ŒX X . xA \ xB/� D ¿:

Therefore, there exist disjoint open sets U � clY .A/ and V � clY .B/. Since

A � clY .A/ and B � clY .B/, we get the desired result. ut

I Exercise 103. Why can’t the method used to show every subspace of a reg-

ular space is regular be carried over to give a proof that every subspace of a

normal space is normal?

Proof. In the first proof, if A � Y � X is closed in Y and x 2 Y XA, then there

must exists closed set B in X such that x … B . This property is not applied if

fxg is replaced a general closed set B in Y . ut

I Exercise 104. Every metric space is completely normal.

Proof. Every subspace of a metric space is a metric space; every metric space

is normal Royden and Fitzpatrick (2010, Proposition 11.7). ut

5.4 Countability Properties

16A. First Countable Spaces

I Exercise 105. Every subspace of a first-countable space is first countable.

Proof. Let A � X . If x 2 A, then V is a nhood of x in A iff V D U \ A, where

U is a nhood of x 2 X (Theorem 6.3(d)). ut

I Exercise 106. A product�X˛ of first-countable spaces is first countable

iff each X˛ is first countable, and all but countably many of the X˛ are trivial

spaces.

Proof. If�X˛ is first-countable, then each X˛ is first countable since it is

homeomorphic to a subspace of�X˛ . If the number of the family of untrivial

sets fX˛g is uncountable, then for x 2 �X˛ the number of nhood bases is

uncountable. ut

I Exercise 107. The continuous image of a first-countable space need not be

first countable; but the continuous open image of a first-countable space is first

countable.

Proof. Let X be a discrete topological space. Then any function defined on X

is continuous.

Now suppose that X is first countable, and f is a continuous open map of

X onto Y . Pick an arbitrary y 2 Y . Let x 2 f �1.y/, and Ux be a countable

nhood base of x. If W is a nhood of y, then there is a nhood V of x such that
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f .V / � W since f is continuous. So there exists U 2 Ux with f .U / � W . This

proves that ff .U / W U 2 Uxg is a nhood base of y. Since ff .U / W U 2 Uxg is ut
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COMPACTNESS

6.1 Compact Spaces

17B. Compact Subsets

I Exercise 108. A subset E of X is compact iff every cover of E by open subsets

of X has a finite subcover.

Remark (Lee 2011, p. 94). To say that a subset of a topological space is com-

pact is to say that it is a compact space when endowed with the subspace

topology. In this situation, it is often useful to extend our terminology in the

following way. If X is a topological space and A � X , a collection of subsets of

X whose union contains A is also called a cover of A; if the subsets are open

in X we sometimes call it an open cover of A. We try to make clear in each

specific situation which kind of open cover of A is meant: a collection of open

subsets of A whose union is A, or a collection of open subsets of X whose

union contains A.

Proof. The “only if” part is trivial. So we focus on the “if” part. Let U be an

open cover of E, i.e., U D
S
fU W U 2 Ug. For every U 2 U, there exists an open

set VU in X such that U D VU \ E. Then fVU W U 2 Ug is an open cover of E,

i.e., U �
S
fVU W U 2 Ug. Then there exists a finite subcover, say VU1 ; : : : ; VUn

of fVU W U 2 Ug, such that E �
Sn
iD1 VUi . Hence, E D

Sn
iD1.VUi \E/; that is, E

is compact. ut

I Exercise 109. The union of a finite collection of compact subsets of X is

compact.

Proof. Let A and B be compact, and U be a family of open subsets of X

which covers A [ B . Then U covers A and there is a finite subcover, say,

UA1 ; : : : ; U
A
m of A; similarly, there is a finite subcover, say, UB1 ; : : : ; U

B
n of B .

But then fUA1 ; : : : ; U
A
m ; U

B
1 ; : : : ; U

B
n g is an open subcover of A [ B , so A [ B is

compact. ut
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