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1
MULTIVARIABLE CALCULUS

In this chapter we consider functions mapping Rm into Rn, and we define

what we mean by the derivative of such a function. It is important to be familiar

with the idea that the derivative at a point a of a map between open sets of

(normed) vector spaces is a linear transformation between the vector spaces

(in this chapter the linear transformation is represented as a n �m matrix).

This chapter is based on Spivak (1965, Chapters 1 & 2) and Munkres (1991,

Chapter 2)—one could do no better than to study theses two excellent books

for multivariable calculus.

Notation

We use standard notation:

N: The set of natural numbers: N D f1; 2; 3; : : :g.

Z: The set of integers: Z D f: : : ;�2;�1; 0; 1; 2; : : :g.

R: The set of real numbers.

Q: The set of rational numbers: Q´ fx 2 R W x D p=q; p; q 2 Z; q ¤ 0g.

We also define

RC D fx 2 R W x > 0g and RCC´ fx 2 R W x > 0g:

1.1 Functions on Euclidean Space

Norm, Inner Product and Metric

Definition 1.1 (Euclidean n-space). Euclidean n-space Rn is defined as the set

of all n-tuples .x1; : : : ; xn/ of real numbers xi :

1
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Rn´ f.x1; : : : ; xn/ W xi 2 R; i D 1; : : : ; ng :

An element of Rn is often called a point in Rn, and R1, R2, R3 are often called

the line, the plane, and space, respectively.

If x denotes an element of Rn, then x is an n-tuple of numbers, the i th one

of which is denoted xi ; thus, we can write

x D .x1; : : : ; xn/:

A point in Rn is frequently also called a vector in Rn, because Rn, with

x C y D .x1 C y1; : : : ; xn C yn/ x;y 2 Rn

and

˛x D .˛x1; : : : ; ˛xn/; ˛ 2 R and x 2 Rn;

as operations, is a vector space.

We now introduce three structures on Rn: the Euclidean norm, inner product

and metric.

Definition 1.2 (Norm). In Rn, the length of a vector x 2 Rn, usually called the

norm kxk of x, is defined by

kxk D

q
x21 C � � � x

2
n:

Remark 1.3. The norm k � k satisfies the following properties: for all x;y 2 Rn

and ˛ 2 R,

� kxk > 0,

� kxk D 0 iff1 x D 0,

� k˛xk D j˛j � kxk,

� kx C yk 6 kxk C kyk (Triangle inequality).

I Exercise 1.4. Prove that kxk � kyk 6 kx � yk for any two vectors x;y 2 Rn

(use the triangle inequality).

Definition 1.5 (Inner Product). Given x;y 2 Rn, the inner product of the vec-

tors x and y , denoted x � y or hx;yi, is defined as

x � y D

nX
iD1

xiyi :

Remark 1.6. The norm and the inner product are related through the following

identity:

kxk D
p
x � x:

1 “iff” is the abbreviation of “if and only if”.
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Figure 1.1. Distance in the plane.

Theorem 1.7 (Cauchy-Schwartz Inequality). For any x;y 2 Rn we have

jx � yj 6 kxk kyk:

Proof. We assume that x ¤ 0; for otherwise the proof is trivial. For every

a 2 R, we have

0 6 kax C yk2 D a2kxk2 C 2a.x � y/C kyk2:

In particular, let a D �.x � y/=kxk2. Then, from the above display, we get the

desired result. ut

I Exercise 1.8. Prove the triangle inequality (use the Cauchy-Schwartz In-

equality). Show it holds with equality iff one of the vector is a nonnegative scalar

multiple of the other.

Definition 1.9 (Metric). The distance d.x;y/ between two vectors x;y 2 Rn is

given by

d.x;y/ D

p
nX
iD1

.xi � yi /
2:

The distance function d is called a metric.

Example 1.10. In R2, choose two points x1 D .x11 ; x
1
2/ and x2 D .x21 ; x

2
2/ with

x21 � x
1
1 D a and x22 � x

1
2 D b. Then Pythagoras tells us that (Figure 1.1)

d.x1;x2/ D
p
a2 C b2 D

r�
x21 � x

1
1

�2
C

�
x22 � x

1
2

�2
:

Remark 1.11. The metric is related to the norm k � k through the identity

d.x;y/ D kx � yk:
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Subsets of Rn

Definition 1.12 (Open Ball). Let x 2 Rn and r > 0. The open ball B.xI r/ with

center x and radius r is given by

B.xI r/´
˚
y 2 Rn W d.x;y/ < r

	
:

Definition 1.13 (Interior). Let S � Rn. A point x 2 S is called an interior point

of S if there is some r > 0 such that B.xI r/ � S . The set of all interior points

of S is called its interior and is denoted SB.

Definition 1.14. Let S � Rn.

� S is open if for every x 2 S there exists r > 0 such that B.xI r/ � S .

� S is closed if its complement Rn X S is open.

� S is bounded if there exists r > 0 such that S � B.0I r/.

� S is compact if (and only if) it is closed and bounded (Heine-Borel Theo-

rem).2

Example 1.15. On R, the interval .0; 1/ is open, the interval Œ0; 1� is closed. Both

.0; 1/ and Œ0; 1� are bounded, and Œ0; 1� is compact. However, the interval .0; 1� is

neither open nor closed. But R is both open and closed.

Limit and Continuity

Functions

A function from Rm to Rn (sometimes called a vector-valued function of m

variables) is a rule which associates to each point in Rm some point in Rn. We

write

f W Rm ! Rn

to indicate that f .x/ 2 Rn is defined for x 2 Rm.

The notation f W A! Rn indicates that f .x/ is defined only for x in the set

A, which is called the domain of f . If B � A, we define f .B/ as the set of all

f .x/ for x 2 B :

f .B/´ ff .x/ W x 2 Bg :

If C � Rn we define

f �1.C /´ fx 2 A W f .x/ 2 C g :

The notation f W A! B indicates that f .A/ � B .

2 This definition does not work for more general metric spaces. See Willard (2004) for
details.



SECTION 1.1 FUNCTIONS ON EUCLIDEAN SPACE 5

A function f W A! Rn determines n component functions f1; : : : ; fn W A! R

by

f .x/ D
�
f1.x/; : : : ; fn.x/

�
:

Sequences

A sequence is a function that assigns to each natural number n 2 N a vector or

point xn 2 Rn. We usually write the sequences as fxng1nD1 or fxng.

Example 1.16. Examples of sequences in R2 are

a. fxng D f.n; n/g.

b. fxng D f.cos n�
2
; sin n�

2
/g.

c. fxng D f..�1/n=2n; 1=2n/g.

d. fxng D f..�1/n � 1=n; .�1/n � 1=n/g.

See Figure 1.2.

Definition 1.17 (Limit). A sequence fxng is said to have a limit x or to con-

verge to x if for every " > 0 there is N" 2 N such that whenever n > N", we

have xn 2 B.xI "/. We write

lim
n!1

xn D x or xn ! x:

Example 1.18. In Example 1.16, the sequences (a), (b) and (d) do not converge,

while the sequence (c) converges to .0; 0/.

Naive Continuity

Perhaps the simplest way to say that a function f W A! R is continuous would

be to say that one can draw its graph without taking the pencil off the pa-

per. For example, a function whose graph looks like in Figure 1.3 would be

continuous in this sense.3

But if we look at the function f .x/ D 1=x, then we see that things are not

so simple. The graph of this function has two parts—one part corresponding

to negative x values, and the other to positive x values. The function is not de-

fined at 0, so we certainly cannot draw both parts of this graph without taking

our pencil off the paper; see Figure 1.4. Of course, f .x/ D 1=x is continuous

near every point in its domain. Such a function deserves to be called continu-

ous. So this characterization of continuity in terms of graph-sketching is too

simplistic.

3 I thank Prof. Wolfgang Buehler for mentioning this intuitive explanation to me. The cur-
rent expression is from Crossley (2005, Chapter 2)
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(d) fxng D f..�1/n � 1=n; .�1/n � 1=n/g.

Figure 1.2. Examples of sequences.

0

Figure 1.3. A continuous function.
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0 x

Figure 1.4. We cannot draw the graph of 1=x without taking our pencil
off the paper.

Rigorous Continuity

The notation limx!a f .x/ D b means, as in the one-variable case, that we get

f .x/ as close to b as desired, by choosing x sufficiently close to, but not equal

to, a. In mathematical terms this means that for every number " > 0 there is

a number ı > 0 such that kf .x/ � bk < " for all x in the domain of f which

satisfy 0 < kx � ak < ı.

A function f W A ! Rn is called continuous at a 2 A if limx!a f .x/ D f .a/,

and f is continuous if it is continuous at each a 2 A.

I Exercise 1.19. Let

f .x/ D

˚
x if x ¤ 1

3=2 if x D 1:

Show that f .x/ is not continuous at a D 1.

1.2 Directional Derivative and Derivative

Let us first recall how the derivative of a real-valued function of a real variable

is defined. Let A � R; let f W A! R. Suppose A contains a neighborhood of the

point a, that is, there is an open ball B.aI r/ such that B.aI r/ � A. We define

the derivative of f at a by the equation

f 0.a/ D lim
t!0

f .aC t / � f .a/

t
; (1.1)

provided the limit exists. In this case, we say that f is differentiable at a.

Geometrically, f 0.a/ is the slope of the tangent line to the graph of f at the

point .a; f .a//.
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Definition 1.20. For a function f W .a; b/! R, and point x0 2 .a; b/, if

lim
t"0

f .x0 C t / � f .x0/

t

exists and is finite, we denote this limit by f 0�.x0/ and call it the left-hand

derivative of f at x0. Similarly, we define f 0C.x0/ and call it the right-hand

derivative of g at x0. Of course, f is differentiable at x0 iff it has left-hand and

right-hand derivatives at x0 that are equal.

Now let A � Rm, where m > 1; let f W A ! Rn. Can we define the derivative

of f by replacing a and t in the definition just given by points of Rm? Certainly

we cannot since we cannot divide a point of Rn by a point of Rm if m > 1.

Directional Derivative

The following is our first attempt at a definition of “derivative”.

Definition 1.21 (Directional Derivative). Let A � Rm; let f W A! Rn. Suppose

A contains a neighborhood of a. Given u 2 Rm with u ¤ 0, define

f 0.aIu/ D lim
t!0

f .aC tu/ � f .a/

t
;

provided the limit exists. This limit is called the directional derivative of f at

a with respect to the vector u.4

Example 1.22. Let f W R2 ! R be given by the equation

f .x1; x2/ D x1x2:

The directional derivative of f at a D .a1; a2/ with respect to the vector u D

.1; 0/ is

f 0.aIu/ D lim
t!0

f .aC tu/ � f .a/

t

D lim
t!0

.a1 C t /a2 � a1a2

t

D a2:

With respect to the vector v D .1; 2/, the directional derivative is

f 0.aI v/ D lim
t!0

.a1 C t /.a2 C 2t/ � a1a2

t
D 2a1 C a2:

4 In calculus, one usually requires u to be a unit vector, i.e., kuk D 1, but that is not
necessary.
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0 xa

f .a/

f .x/

f
.a
C
t /
�
f
.a
/

f
0 .a/
� t

t

Figure 1.5. f 0.a/t is the linear approximation to f .aC t/� f .a/ at a.

However, directional derivative is NOT the appropriate generalization of the

notion of “derivative”. The main problems are:

� Continuity does not follow from this definition of “differentiability” (There

exists functions such that f 0.aIu/ exists for all u ¤ 0 but are not continu-

ous);

� Composites of “differentiable” functions may not differentiable.

Derivative

To give the right generalization of the notion of “derivative”, let us rewrite (1.1)

as

lim
t!0

f .aC t / � f .a/ � f 0.a/ � t

t
D 0;

or equivalently

lim
t!0

jf .aC t / � f .a/ � f 0.a/ � t j

jt j
D 0;

which makes precise the sense in which we approximate the increment func-

tion f .a C t / � f .a/ by the linear function f 0.a/ � t . We often call f 0.a/ � t the

“first-order approximation” or the “linear approximation” to the increment

function.5 See Figure 1.5. It is this idea leads to the following definition:

Definition 1.23 (Differentiability). Let A � Rm; let f W A ! Rn. Suppose A

contains a neighborhood of a. We say that f is differentiable at a if there is an

n �m matrix Ba such that

lim
h!0

kf .aC h/ � f .a/ � Ba � hk

khk
D 0:

The matrix Ba, which is unique, is called the derivative of f at a; it is denoted

Df .a/.

5 “All science is dominated by the idea of approximation.”—Bertrand Russell.
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Remark 1.24. Notice that h is a point of Rm and f .a C h/ � f .a/ � Ba � h is a

point of Rn, so the norm signs are essential. (Actually, it is enough to only take

the norm of h.)

Remark 1.25. The derivative Df .a/ depends on the point a as well as the

function f . We are not saying that there exists a B which works for all a, but

that for a fixed a such a B exists.

Example 1.26. Let f W Rm ! Rn be defined by the equation

f .x/ D A � x C b;

where A is an n �m matrix, and a 2 Rn. Then

lim
h!0

kf .aC h/ � f .a/ �A � hk

khk
D 0I

that is, Df .a/ D A.

We now show that the definition of derivative is stronger than directional

derivative. In particular, we have:

Theorem 1.27. Let A � Rm; let f W A! Rn. If f is differentiable at a, then

f is continuous at a.

Proof. Let Ba D Df .a/. For h near 0 but different from 0, write

f .aC h/ � f .a/ D khk �

�
f .aC h/ � f .a/ � Ba � h

khk

�
C Ba � h:

Thus, kf .aC h/ � f .a/k ! 0 as h! 0. That is, f is continuous at a. ut

However, there is a nice connection between directional derivative and

derivative.

Theorem 1.28. Let A � Rm; let f W A! Rn. If f is differentiable at a, then

all the directional derivatives of f at a exist, and

f 0.aIu/ D Df .a/ � u:

Proof. Let Ba D Df .a/. Set h D tu in the definition of differentiability, where

t ¤ 0. Then by hypothesis,

0 D lim
t!0

kf .aC tu/ � f .a/ � Ba � tuk

ktuk

D lim
t!0

kf .aC tu/ � f .a/ � t � .Ba � u/k

jt j � kuk
:

(1.2)
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If t # 0, we multiply (1.2) by kuk to conclude that

lim
t#0

f .aC tu/ � f .a/

t
� Ba � u D 0:

If t " 0, we multiply (1.2) by �kuk to reach the same conclusion. Thus,

f 0.aIu/ D Ba � u. ut

I Exercise 1.29. Define f W R2 ! R by setting

f .x; y/ D

�
0 if .x; y/ D .0; 0/
x2y

x4 C y2
if .x; y/ ¤ .0; 0/:

Show that all directional derivatives of f exist at .0; 0/, but that f is not differ-

entiable at .0; 0/.

I Exercise 1.30. Let f W R2 ! R be defined by f .x; y/ D
p
jxyj. Show that f is

not differentiable at .0; 0/.

1.3 Partial Derivatives and the Jacobian

We now introduce the notion of the “partial derivatives” of a real-valued func-

tion. Let .e1; : : : ; em/ be the stand basis of Rm, i.e.,

e1 D .1; 0; 0; : : : ; 0/;

e2 D .0; 1; 0; : : : ; 0/;

: : :

em D .0; 0; : : : ; 0; 1/:

Definition 1.31 (Partial Derivatives). Let A � Rm; let f W A! R. We define the

j th partial derivative of f at a to be the directional derivative of f at a with

respect to the vector ej , provided this derivative exists; and we denote it by

Djf .a/. That is,

Djf .a/ D lim
t!0

f .aC tej / � f .a/

t
:

Remark 1.32. It is important to note that Djf .a/ is the ordinary derivative of a

certain function; in fact, if g.x/ D f .a1; : : : ; aj�1; x; ajC1; : : : ; am/, then Djf .a/ D

g0.aj /. This means that Djf .a/ is the slope of the tangent line at .a; f .a// to

the curve obtained by intersecting the graph of f with the plane xi D ai with

i ¤ j . See Figure 1.6.

We now relate partial derivatives to the derivative in the case where f is a

real-valued function.
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.a; b/

x1

x2

Figure 1.6. D1f .a; b/.

Theorem 1.33. Let A � Rm; let f W A! R. If f is differentiable at a, then

Df .a/ D
h
D1f .a/ D2f .a/ � � � Dmf .a/

i
:

Proof. If f is differentiable at a, then Df .a/ is a .1 �m/-matrix. Let

Df .a/ D
h
�1 �2 � � � �m

i
:

It follows from Theorem 1.28 that

Djf .a/ D f
0.aI ej / D Df .a/ � ej D �j : ut

Theorem 1.33 can be generalized as follows:
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Theorem 1.34. Let A � Rm; let f W A ! Rn. Suppose A contains a neigh-

borhood of a. Let fi W A! R be the i th component function of f , so that

f .x/ D

2664
f1.x/
:::

fn.x/

3775 :
a. The function f is differentiable at a iff each component function fi is

differentiable at a.

b. If f is differentiable at a, then its derivative is the .n �m/-matrix whose

i th row is the derivative of the function fi . That is,

Df .a/ D

2664
Df1.a/
:::

Dfn.a/

3775 D
2664

D1f1.a/ � � � Dmf1.a/
:::

: : :
:::

D1fn.a/ � � � Dmfn.a/

3775 :

I Exercise 1.35. Prove Theorem 1.34.

Definition 1.36 (Jocobian Matrix). Let A � Rm; let f W A ! Rn. If the partial

derivatives of the component functions fi of f exist at a, then one can form

the matrix that has Djfi .a/ as its entry in row i and column j . This matrix,

denoted by Jf .a/, is called the Jacobian matrix of f . That is,

Jf .a/ D

2664
D1f1.a/ � � � Dmf1.a/

:::
: : :

:::

D1fn.a/ � � � Dmfn.a/

3775 :
Remark 1.37. The Jacobian encapsulates all the essential information regard-

ing the linear function that best approximates a differentiable function at a

particular point. For this reason it is the Jacobian which is usually used in

practical calculations with the derivative

Remark 1.38. If f is differentiable at a, then Jf .a/ D Df .a/. However, it is

possible for the partial derivatives, and hence the Jacobian matrix, to exist,

without it following that f is differentiable at a (see Exercise 1.29).

1.4 Gradient and Its Geometric Interpretation

Definition 1.39 (Gradient). Let A � Rm; let f W A ! R. Suppose A contains a

neighborhood of a. The gradient of f , denoted by Of .a/, is defined by



14 CHAPTER 1 MULTIVARIABLE CALCULUS

Of .a/´
mX
iD1

Dif .a/ � ei D
h
D1f .a/ D2f .a/ � � � Dmf .a/

i
:

Remark 1.40. It follows from Theorem 1.33 that if f is differentiable at a,

then Of .a/ D Df .a/. The inverse does not hold; see Remark 1.38.

Let us now present a very important fact about gradient: the gradient is or-

thogonal to the level set.6 You will see this fact again and again. For simplicity,

we shall restrict ourselves on the case that f W R2 ! R.

Consider the gradient of f at .a; b/ 2 R2:

Of .a; b/ D .D1f .a; b/;D2f .a; b//:

We show that Of .a; b/ is orthogonal to the level set Lf .f .a; b// D f.x; y/ 2

R2 W f .x; y/ D f .a; b/g at .a; b/, which means that Of .a; b/ is orthogonal to the

tangent line at .a; b/. Let us begin with an example.

Example 1.41. Let f .x; y/ D x2Cy2. Then Of .1; 3/ D .2x; 2y/j.x;y/D.1;3/ D .2; 6/.
The level set of f .1; 3/ D 10 is given by x2 C y2 D 10. Calculus yields

dy

dx

ˇ̌̌̌
.1;3/

D �
1

3
:

Hence, the tangent line at .1; 3/ is given by

y D 3 �
x � 1

3
:

Then the result follows immediately; see Figure 1.7.

0 x

y Of .1; 3/ D .2; 6/

tangent line

.1; 3/

Lf .10/

Figure 1.7. The geometric interpretation of gradient.

6 Given a real-valued function f on A � Rm, the level set of f through c, where c is in the
range, is

Lf .c/´
˚
x 2 A W f .x/ D c

	
:

We use level sets to help analyze functions in higher-dimensional spaces.
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0 x1

x2

Lf .c/

x

Of .x/

slope D �D1f .x/
D2f .x/

Figure 1.8. The geometric interpretation of Of .x/.

We next turn to the more general analysis. Fix c in the range of f and take

an arbitrary point x D .x1; x2/ on the level set Lf .c/. If we change x1 and x2,

and are to remain on the level set, dx1 and dx2 must be such as to leave the

value of f unchanged at c. They must therefore satisfy

f 0.xI .dx1; dx2// D D1f .x/dx1 C D2f .x/dx2 D 0: (1.3)

By solving (1.3) for dx2=dx1, the slope of the level set through x will be (see

Figure 1.8)
dx2
dx1
D �

D1f .x/

D2f .x/
:

Since the slope of the vector Of .x/ D .D1f .x/;D2f .x// is D2f .x/=D1f .x/, we

obtain the desired result.

Remark 1.42. We will provide an physical interpretation of gradient in page

30.

1.5 Continuously Differentiable Functions

We know that mere existence of the partial derivatives does not imply differ-

entiability (see Exercise 1.29). If, however, we impose the additional condition

that these partial derivatives are continuous, then differentiability is assured.
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Theorem 1.43. Let A be open in Rm. Suppose that the partial derivatives

Djfi .x/ of the component functions of f exist at each point x 2 A and are

continuous on A. Then f is differentiable at each point of A.

A function satisfying the hypotheses of this theorem is often said to be

continuously differentiable, or of class C1, on A.

Proof of Theorem 1.43. It suffices to show that each component function of

f is differentiable. Therefore we may restrict ourselves to the case of a real-

valued function f W A! R. Let a 2 A. Then

f .aC h/ � f .a/ Df .a1 C h1; a2; : : : ; am/ � f .a1; : : : ; am/

C f .a1 C h1; a2 C h2; a3; : : : ; am/ � f .a1 C h1; a2; : : : ; am/

C � � �

C f .a1 C h1; : : : ; am C hm/ � f .a1 C h1; : : : ; am�1 C hm�1; am/:

Note that D1f is the derivative of the function g defined by

g.x/ D f .x; a2; : : : ; am/:

Applying the mean-value theorem (Rudin, 1976, Theorem 5.10) to g we obtain

f .a1 C h1; a2; : : : ; am/ � f .a1; : : : ; am/ D h1 � D1f .b1; a2; : : : ; am/

for some b1 2 .a1; a1 C h1/. Similarly the i th term in the sum equals

hi � Dif .a1 C h1; : : : ; ai�1 C hi�1; bi ; aiC1; : : : ; am/ D hi � Dif .ci /

for some ci . Then

lim
h!0

ˇ̌̌̌
ˇ̌f .aC h/ � f .a/ � mX

iD1

Dif .a/ � hi

ˇ̌̌̌
ˇ̌

khk
D lim

h!0

ˇ̌̌̌
ˇ̌ mX
iD1

�
Dif .ci / � Dif .a/

�
� hi

ˇ̌̌̌
ˇ̌

khk

D lim
h!0

mX
iD1

jDif .ci / � Dif .a/j �
jhi j

khk

6 lim
h!0

mX
iD1

jDif .ci / � Dif .a/j

D 0;

since Dif is continuous at a. ut

Remark 1.44. It follows from Theorem 1.43 that sin.xy/ and xy2 C zexy are

both differentiable since they are of class C1.
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Let A � Rm and f W A ! Rn. Suppose that the partial derivative Djfi of the

component functions of f exist on A. These then are functions from A to R,

and we may consider their partial derivatives, which have the form

Dk.Djfi /µ Djkfi

and are called the second-order partial derivatives of f . Similarly, one defines

the third-order partial derivatives of the functions fi , or more generally the

partial derivatives of order r for arbitrary r .

Definition 1.45. If the partial derivatives of the function fi of order less than

or equal to r are continuous on A, we say f is of class C r on A. We say f is of

class C1 on A if the partials of the functions fi of all orders are continuous

on A.

Definition 1.46 (Hessian). Let a 2 A � Rm; let f W A! R be twice-differentiable

at a. The m � m matrix representing the second derivative of f is called the

Hessian of f , denoted Hf .a/:

Hf .a/ D

266664
D11f .a/ D12f .a/ � � � D1mf .a/

D21f .a/ D22f .a/ � � � D2mf .a/
:::

:::
: : :

:::

Dm1f .a/ Dm2f .a/ � � � Dmmf .a/

377775 D D.Of /:

Remark 1.47. If f W A! R is of class C2, then the Hessian of f is a symmetric

matrix, i.e., Dijf .a/ D Dj if .a/ for all i; j D 1; : : : ; m and for all a 2 A. See Rudin

(1976, Corollary to Theorem 9.41, p. 236).

I Exercise 1.48. Find the Hessian of the Cobb-Douglas function

f .x; y/ D x˛yˇ :

1.6 The Chain Rule

We now extend the familiar chain rule to the current setting.

Theorem 1.49 (Chain Rule). Let A � Rm; let B � Rn. Let f W A ! Rn and

g W B ! Rp , with f .A/ � B . Suppose f .a/ D b. If f is differentiable at a,

and if g is differentiable at b, then the composite function g B f W A! Rp is

differentiable at a. Furthermore,

D.g B f /.a/ D Dg.b/ � Df .a/:
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Proof. Omitted. See Spivak (1965, Theorem 2-2), Rudin (1976, Theorem 9.15),

or Munkres (1991, Theorem 7.1). ut

1.7 Quadratic Forms: Definite and Semidefinite Matrices

Definition 1.50 (Quadratic Form). Let A be a symmetric n � n matrix. A

quadratic form on Rn is a function QA W Rn ! R of the form

QA.x/ D x �Ax D

nX
iD1

nX
jD1

aijxixj :

Since the quadratic form QA is completely specified by the matrix A, we

henceforth refer to A itself as the quadratic form. Observe that if f is of class

C2, then the Hessian Hf of f defines a quadratic form; see Remark 1.47.

Definition 1.51. A quadratic form A is said to be

� positive definite if we have x �Ax > 0 for all x 2 Rn X f0g;

� positive semidefinite if we have x �Ax > 0 for all x 2 Rn;

� negative definite if we have x �Ax < 0 for all x 2 Rn X f0g;

� negative semidefinite if we have x �Ax 6 0 for all x 2 Rn.

1.8 The Implicit Function Theorem

Here is a typical problem:

“Assume that the equation x3yC2exy D 0 determines y as a differentiable function
of x. Find dy=dx.”

One solves this calculus problem by “looking at y as a function of x,” and

differentiating with respect to x. One obtains the equation

3x2y C x3
dy

dx
C 2exy

�
y C x

@y

@x

�
D 0;

which one solves for dy=dx. The derivative dy=dx is of course expressed in

terms of x and the unknown function y.

The case of an arbitrary function f is handled similarly. Supposing that

the equation f .x; y/ D 0 determines y as a differentiable function of x, say

y D g.x/, the equation f .x; g.x// D 0 is an identity. One applies the chain rule

to calculate
@f

@x
C
@f

@y
g0.x/ D 0;
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so that

g0.x/ D �
@f=@x

@f=@y
;

where the partial derivatives are evaluated at the point .x; g.x//. Note that the

solution involves a hypothesis not given in the statement of the problem. In

order to find g0.x/, it is necessary to assume that @f=@y ¤ 0 at the point in

question.

It in fact turns out that @f=@y ¤ 0 is also sufficient to justify the assump-

tions we made in solving the problem. That is, if the function f .x; y/ has the

property that @f=@y ¤ 0 at a point .a; b/ that is a solution of the equation

f .x; y/ D 0, then this equation does determine y as a function of x, for x near

a, and this function of x is differentiable.

This result is a special case of a theorem called the implicit function theorem,

which we consider in this section.

Example 1.52. Consider the function f W R2 ! R defined by

f .x; y/ D x2 C y2 � 1:

If we choose .a; b/ with f .a; b/ D 0 and a ¤ ˙1, there are (Figure 1.9) open

intervals A containing a and B containing b with the following property: if x 2

A, there is a unique y 2 B with f .x; y/ D 0. We can therefore define a function

g W A! R by the condition g.x/ 2 B and f .x; g.x// D 0 (if b > 0, as indicated in

Figure 1.9, then g.x/ D
p
1 � x2). For the function f we are considering there

is another number b1 such that f .a; b1/ D 0. There will also be an interval B1
containing b1 such that, when x 2 A, we have f .x; g1.x// D 0 for a unique

g1.x/ 2 B1 (here g1.x/ D �
p
1 � x2). Both g and g1 are differentiable. These

functions are said to be defined implicitly by the equation f .x; y/ D 0.

If we choose a D 1 or �1 it is impossible to find any such function g defined

in an open interval containing a.

We now introduce the Implicit Function Theorem. Let E be open in RkCn;

let f W E ! Rn. Write f in the form f .x;y/ for x 2 Rk and y 2 Rn. Think

of the equation f .x;y/ D 0 as a system of n equations in k C n variables.

With .a;b/ 2 Rk � Rn as a given solution, i.e. f .a;b/ D 0, the theorem tells

us under what condition, we can solve for the variables y near b in terms of

the variables x, to obtain a unique continuously differentiable solution. The

new function g.x/ so obtained is said to be given by the equation f .x;y/ D 0

implicitly. That is why the theorem is so named.
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0 x

y

graph of g

graph of g1
f .x; y/ D 0

.a; b/B

B1

A

b

b1

a

Figure 1.9. Implicit function theorem.

Theorem 1.53 (Implicit Function Theorem). Let E � RkCn be open; let

f W E ! Rn be of class C r . Write f in the form f .x;y/ for x 2 Rk and

y 2 Rn. Suppose that .a;b/ is a point of E such that f .a;b/ D 0. Let M be

the n � n matrix

M D

266664
DkC1f1.a;b/ DkC2f1.a;b/ � � � DkCnf1.a;b/

DkC1f2.a;b/ DkC2f1.a;b/ � � � DkCnf2.a;b/
:::

:::
: : :

:::

DkC1fn.a;b/ DkC2fn.a;b/ � � � DkCnfn.a;b/

377775 :

If det .M/ ¤ 0, then there is a neighborhood A of a 2 Rk and a unique

continuous function g W A! Rn such that g.a/ D b and

f .x; g.x// D 0

for all x 2 A. The function g is in fact of class C r .

Proof. The proof is too long to give here. You can find it from, e.g., Spivak

(1965, Theorem 2-12), Rudin (1976, Theorem 9.28), or Munkres (1991, Theo-

rem 2.9.2). ut

Example 1.54. Let f W R2 ! R be given by the equation
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f .x; y/ D x2 � y3:

Then .0; 0/ is a solution of the equation f .x; y/ D 0. Because @f .0; 0/=@y D 0,

we do not expect to be able to solve this equation for y in terms of x near

.0; 0/. But in fact, we can; and furthermore, the solution is unique! However,

the function we obtain is not differentiable at x D 0. See Figure 1.10.

0 x

y

Figure 1.10. y is not differentiable at x D 0.

Example 1.55. Let f W R2 ! R be given by the equation

f .x; y/ D �x4 C y2:

Then .0; 0/ is a solution of the equation f .x; y/ D 0. Because @f .0; 0/=@y D 0, we

do not expect to be able to solve for y in terms of x near .0; 0/. In fact, however,

we can do so, and we can do so in such a way that the resulting function is

differentiable. However, the solution is not unique. See Figure 1.11.

Now the point .1; 1/ is also a solution to f .x; y/ D 0. Because @f .1; 1/=@y D 2,

one can solve this equation for y as a continuous function of x in a neighbor-

hood of x D 1. See Figure 1.11.

0 x

y

−2 −1 1 2

−1

1

Figure 1.11. Example 1.55.
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Remark 1.56. We will use the Implicit Function Theorem in Theorem 2.10. The

theorem will also be used to derive comparative statics for economic models,

which we perhaps do not have time to discuss.

1.9 Homogeneous Functions and Euler’s Formula

Definition 1.57 (Homogeneous Function). A function f W Rn ! R is homoge-

neous of degree r (for r D : : : ;�1; 0; 1; : : :) if for every t > 0 we have

f .tx1; : : : ; txn/ D t
rf .x1; : : : ; xn/:

I Exercise 1.58. The function

f .x; y/ D Ax˛yˇ ; A; ˛; ˇ > 0;

is known as the Cobb-Douglas function. Check whether this function is homoge-

neous.

Theorem 1.59 (Euler’s Formula). Suppose that f W Rn ! R is homogeneous

of degree r (for some r D : : : ;�1; 0; 1; : : :) and differentiable. Then at any

x� 2 Rn we have

Of .x�/ � x� D rf .x�/:

Proof. By definition we have

f .tx�/ � t rf .x�/ D 0:

Differentiating with respect to t using the chain rule, we have

Of .tx�/ � x� D rt r�1f .x�/:

Evaluating at t D 1 gives the desired result. ut

Lemma 1.60. If f is homogeneous of degree r , its partial derivatives are homo-

geneous of degree r � 1.

I Exercise 1.61. Prove Lemma 1.60.

I Exercise 1.62. Let f .x; y/ D Ax˛yˇ with ˛ C ˇ D 1 and A > 0. Show that

Theorem 1.59 and Lemma 1.60 hold for this function.
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OPTIMIZATION IN RN

This chapter is based on Luenberger (1969, Chapters 8 & 9), Mas-Colell, Whin-

ston and Green (1995, Sections M.J & M.K), Sundaram (1996), Duggan (2010),

and Jehle and Reny (2011, Chapter A2).

2.1 Introduction

An optimization problem in Rn, or simply an optimization problem, is one where

the values of a given function f W Rn ! R are to be maximized or minimized

over a given set X � Rn. The function f is called the objective function and the

set X the constraint set. Notationally, we will represent these problems by

Maximize f .x/ subject to x 2 X;

and

Minimize f .x/ subject to x 2 X;

respectively. More compactly, we shall also write

max ff .x/ W x 2 Xg and min ff .x/ W x 2 Xg :

Example 2.1. (a) Let X D Œ0;1/ and f .x/ D x. Then the problem maxff .x/ W

x 2 Xg has no solution; see Figure 2.1(a).

(b) Let X D Œ0; 1� and f .x/ D x.1�x/. Then the problem maxff .x/ W x 2 Xg has

exactly one solution, namely x D 1=2; see Figure 2.1(b).

(c) Let X D Œ�1; 1� and f .x/ D x2. Then the problem maxff .x/ W x 2 Xg has

two solutions, namely x D �1 and x D 1; see Figure 2.1(c).

˘

Example 2.1 suggests that we shall talk of the set of solutions of the opti-

mization problem, which is denoted

23
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0 x

x

(a) No solution.

0 x1

x.1 � x/

(b) Exactly one solution.

0 x−1 1

x
2

(c) Two solutions.

Figure 2.1. Example 2.1.

argmax ff .x/ W x 2 Xg D
˚
x 2 X W f .x/ > f .y/ for all y 2 X

	
:

We close this section by considering an optimization problem in economics.

Example 2.2. There are n commodities in an economy. There is a consumer

whose utility from consuming xi > 0 units of commodity i (i D 1; : : : ; n) is

given by u.x1; : : : ; xn/, where u W RnC ! R is the consumer’s utility function. The

consumer’s income is I > 0, and faces the price vector p D .p1; : : : ; pn/. His

budget set is given by (see Figure 2.2)

B.p; I /´
˚
x 2 RnC W p � x 6 I

	
:

The consumer’s objective is to maximize his utility over the budget set, i.e.,

Maximize u.x/ subject to x 2 B.p; I /:

0 x1

x2

B.p; I /

I=px1

I=px2

Figure 2.2. The budget set B.px1 ; px2 ; I /.
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2.2 Unconstrained Optimization

Definition 2.3 (Maximizer). Given X � Rn, f W X ! R, x 2 X , we say x is a

maximizer of f if

f .x/ D max ff .y/ W y 2 Xg :

We say x is a local maximizer of f if there is some " > 0 such that for all

y 2 X \B.xI "/ we have f .x/ > f .y/. And x is a strict local maximizer of f if

the latter inequality holds strictly.

First-Order Analysis

Recall that XB is the interior of X � Rn (Definition 1.13), and f 0.xIu/ is the

directional derivative of f at x with respect to u (Definition 1.21).

Theorem 2.4. Let X � Rn; let x 2 XB; let f W X ! R be differentiable at

x. If x is a local maximizer of f , then for every direction u 2 X we have

f 0.xIu/ D 0.

Proof. Suppose that x is an interior local maximizer and let u 2 X . Take

" > 0 such that B.xI "/ � X and f .x/ > f .y/ for all y 2 B.xI "/. In particular,

f .x/ > f .x C ˛u/ for ˛ 2 R small. Since f is differentiable at x, we have

f 0.xIu/ D lim
˛#0

f .x C ˛u/ � f .x/

˛
6 0;

and

f 0.xIu/ D lim
˛"0

f .x C ˛u/ � f .x/

˛
> 0:

Therefore, f 0.xIu/ D 0, as claimed. ut

Remark 2.5. If f is differentiable at x and x is an interior local maximizer of

f , then since f 0.xIu/ D Of .x/ � u (Theorem 1.28, Theorem 1.33 and Defini-

tion 1.39), we know that for all u

Of .x/ � u D 0;

which implies that Of .x/ D 0.

Definition 2.6 (Critical Point). A vector x 2 Rn such that Of .x/ D 0 is called

a critical point.

Example 2.7. Let X D R2 and f .x; y/ D xy�2x4�y2. The first order condition

is

Of .x; y/ D .y � 8x3; x � 2y/ D .0; 0/:
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0 x−1 1

2
x
3
�
3
x
2

Figure 2.3. x D 0 and x D 1 are local optima but not global optima.

Thus, the critical points are .x; y/ D .0; 0/; .1=4; 1=8/; .�1=4;�1=8/.

Second-Order Analysis

The first-order conditions for unconstrained local optima do not distinguish

between maxima and minima (see the following Example 2.9). To obtain such

a distinction in the behavior of f at an optimum, we need to examine the

behavior of the Hessian Hf of f (see Definition 1.46).

Theorem 2.8. Suppose f is of class C2 on X � Rn, and x 2 XB.

a. If f has a local maximum at x, then Hf .x/ is negative semidefinite.

b. If f has a local minimum at x, then Hf .x/ is positive semidefinite.

c. If Of .x/ D 0 and Hf .x/ is negative definite at some x, then x is a strict

local maximum of f on X .

d. If Of .x/ D 0 and Hf .x/ is positive definite at some x, then x is a strict

local minimum of f on X .

Proof. See Sundaram (1996, Section 4.6). ut

Example 2.9. Let f W R! R be defined by f .x/ D 2x3 � 3x2. It is easy to check

that f 2 C2 on R and there are two critical points: x D 0 and x D 1. Invoking

the second-order conditions, we get f 00.0/ D �6 and f 00.1/ D 6. Thus, the point

x D 0 is a strict local maximum of f on R, and the point x D 1 is a strict local

minimum of f on R; see Figure 2.3.
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However, there is nothing in the first- or second-order conditions that will

help determine whether these points are global optima. In fact, they are not:

global optima do not exist in this example, since limx!C1 f .x/ D C1 and

limx!�1 f .x/ D �1.

2.3 Equality Constrained Optimization: Lagrange’s

Method

First-Order Analysis

Lagrange’s Theorem

Theorem 2.10 (Lagrange’s Theorem). Let f W Rn ! R, and gi W Rn ! R be

C1 functions, where i D 1; : : : ; k. Suppose that x� is a local maximizer or

minimizer of f on the set

X ´ U \
˚
x 2 Rn W gi .x/ D 0; i D 1; : : : ; k

	
;

where U � Rn is open. Suppose also that the list of vectors

.Og1.x�/; : : : ;Ogk.x�// is linearly independent (this is called the constraint

qualification). Then, there exists a vector �� D .��1 ; : : : ; �
�
k
/ 2 Rk such that

Of .x�/ D
kX
iD1

��i �Ogi .x
�/:

Here we give a proof for the case of two variables and one constraint (This

proof is from Duggan 2010, Theorem 5.1). We are interested in this proof

partly because we will use the Implicit Function Theorem (Theorem 1.53). For

a general proof, see Sundaram (1996, Section 5.6).

Proof (Two variables, one constraint). We show that if

x� 2 argmax ff .x/ W g.x/ D 0g ;

and Og.x�/ ¤ 0, then there exists � 2 R such that

Of .x�/ D �Og.x�/: (2.1)

Without loss of generality, we assume that x� D 0 and D2g.x�/ ¤ 0. The

Implicit Function Theorem (Theorem 1.53) implies that in an open interval I

around x�1 D 0, we may then view the level set Lg.0/ as the graph of a function

' W I ! R such that for all z 2 I we have
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0 x1

x2

0 x1

x2

z

'.z/

. /
I

Og.x�/
Lg .0/

Figure 2.4. Proof of Lagrange’s Theorem.

g.z; '.z// D 0: (2.2)

See Figure 2.4. Notice that

0 D x� D .0; '.0//:

Furthermore, ' is continuously differentiable with derivative (by (2.2))

'0.z/ D �
D1g.z; '.z//

D2g.z; '.z//
: (2.3)

Because x� 2 U and U is open, we can choose the interval I small enough

that each .z; '.z// 2 U . Then z D 0 is a local maximizer of the unconstrained

problem

max
z2I

f .z; '.z//:

Then, by the first-order condition, we have

D1f .0/C D2f .0/ � '
0.0/ D 0;

which implies (by (2.3))

D1f .0/ � D2f .0/ �
D1g.0/

D2g.0/
D 0: (2.4)

Defining

� D
D2f .0/

D2g.0/
;

we have
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�Og.0/ D
D2f .0/

D2g.0/
�

h
D1g.0/ D2g.0/

i
D

h
D2f .0/D1g.0/

D2g.0/
D2f .0/

i
D

h
D1f .0/ D2f .0/

i
D Of .0/;

where the third equality follows from (2.4). ut

Geometric Interpretation

Let us consider an optimization problem on R2 and with one constraint:

max
x1;x2

f .x1; x2/ subject to g.x1; x2/ D 0: (2.5)

Consider the level sets Lf .c/ and Lg.0/. Recall that (see Section 1.4) for every

point x 2 Lf .c/, we have

dx2
dx1

ˇ̌̌̌
ˇ
along Lf .c/

D �
D1f .x/

D2f .x/
; (2.6)

and for every point y 2 Lg.0/ we have

dy2
dy1

ˇ̌̌̌
ˇ
along Lg.0/

D �
D1g.y/

D2g.y/
: (2.7)

It follows from Theorem 2.10 that if x� is a solution to (2.5), then

D1f .x
�/ D ��D1g.x

�/;

D2f .x
�/ D ��D2g.x

�/;

g.x�/ D 0:

Suppose that �� ¤ 0. Then we can rewrite the above conditions as follows:

D1f .x�/

D2f .x�/
D

D1g.x�/

D2g.x�/
(2.8)

g.x�/ D 0: (2.9)

The first equation (2.8) says that solution values of x1 and x2 will be at a

point where the slope of the level set for the objective function and the slope

of the level set for the constraint are equal. The second equation (2.9) tells us

we must also be on the level set of the constraint equation. See Figure 2.5.
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0 x1

x2

Lg .0/

Lf .y
�/

Lf .y/

Slope at tangency D �D1f .x
�/

D2f .x�/
D �

D1g.x
�/

D2g.x�/

x�

Figure 2.5. The first-order conditions for a solution to Lagrange’s prob-
lem identify a point of tangency between a level set of the objective func-
tion and the constraint.

The Constraint Qualification

We show that Theorem 2.10 fails without the constraint qualification.

Example 2.11. Let X D R, f .x/ D .xC1/2 and g.x/ D x2. Consider the problem

of maximizing f subject to g.x/ D 0. The maximizer is clearly x D 0. But

Dg.0/ D 0 and Df .0/ D 2, so there is no � such that Df .0/ D �Dg.0/.

The Lagrange Multipliers

The vector �� D .��1 ; : : : ; �
�
k
/ in Theorem 2.10 is called the vector of Lagrange

multipliers corresponding to the local optimum x�. The i th multiplier ��i mea-

sures the sensitivity of the value of the objective function at x� to a small

relaxation of the i th constraint gi .

Physical Interpretation of Gradient ?

We now can provide a physical interpretation of gradient (Shastri, 2011). Con-

sider any linear functional ' W Rn ! R defined by '.x/ D
Pn
iD1 ˛ixi , and the

problem of finding its maxima on the unit sphere Sn�1 ´ fx 2 Rn W kxk D 1g.

The Lagrange multiplier function in this case is

L D

nX
iD1

˛ixi � �

0@ nX
iD1

x2i � 1

1A :
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Thus,

˛i D 2�xi for all i D 1; : : : ; n:

Now fix i 2 f1; : : : ; ng, and we have

xj D j̨

xi

˛i
for all j D 1; : : : ; n:

Therefore, for each i 2 f1; : : : ; ng

xi D ˙
˛i�Pn

iD1 ˛
2
i

�1=2 : (2.10)

Now let f W U ! R be a C1 function in a neighborhood U of 0 2 Rn. Let

'.x/ D Df .0/ � x. To each v 2 Sn�1 we can consider the path .�"; "/! U given

by t 7! tv and look at the function t 7! f .tv/. The derivative of this map at 0 is

nothing by Df .0/ � v. Therefore, form (2.10), it follows that the extrema of the

function

v 7! Df .0/ � v D
nX
iD1

Dif .0/ � vi

occur at ˙Of .0/=kOf .0/k. Thus, Of is the direction in which the increment in

f is the maximum.

Lagrange’s Method

Let an equality-constrained optimization problem of the form

Maximize f .x/ subject to x 2 X D U \
˚
x 2 Rn W g.x/ D 0

	
; (2.11)

be give, where f W Rn ! R and g W Rn ! Rk are of C1 functions, and U � Rn is

open. We describe a procedure for using Theorem 2.10 to solve (2.11).

Step 1. Set up a function L W X � Rk ! R, called the Lagrangian, defined by

L.x;�/ D f .x/ �

kX
iD1

�igi .x/:

The vector � D .�1; : : : ; �k/ 2 Rk is called the vector of Lagrange multipliers.

Step 2. Find all critical points of L.x;�/:

@L

@xi
.x;�/ D Dif .x/ �

kX
`D1

�`Dig`.x/ D 0; i D 1; : : : ; n (2.12)

@L

@�j
.x;�/ D gj .x/ D 0; j D 1; : : : ; k: (2.13)

Define
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M ´
˚
.x;�/ W x 2 U , and .x;�/ satisfies (2.12) and (2.13)

	
:

Step 3. Evaluate f at each point x in the setn
x 2 Rn W 9 � 2 Rk such that .x;�/ 2M

o
:

Thus, we see that Lagrange’s method is a clever way of converting a maxi-

mization problem with constraints, to another maximization problem without

constraint, by increasing the number of variables.

Why the Lagrange’s Method typically succeeds in identifying the desired

optima? This is because the set of all critical points of L contains the set of

all local maximizers and minimizers of the objective function f on X at which

the constraint qualification is met. That is, if x� is a maximizer or minimizer

of f on X , and if the constraint qualification holds at x�, then there exists ��

such that .x�;��/ is a critical point of L.

We are not going to explain why the Lagrange’s method could fail (but see

Sundaram 1996, Section 5.4 for details).

Example 2.12. Consider the problem

max
.x;y/2R2

n
f .x; y/ D �x2 � y2

o
subject to g.x; y/ D x C y � 1 D 0:

First, form the Lagrangian,

L.x; y; �/ D �x2 � y2 � �.x C y � 1/:

Then set all of its first-order partials equal to zero:

@L

@x
D �2x � � D 0

@L

@y
D �2y � � D 0

@L

@�
D x C y � 1 D 0:

So the critical points of L is

.x�; y�; ��/ D .1=2; 1=2;�1/:

Hence, f .x�; y�/ D �1=2; see Figure 2.6.

I Exercise 2.13. A consumer purchases a bundle .x; y/ to maximize utility. His

income is I > 0 and prices are px > 0 and py > 0. His utility function is

u.x; y/ D xayb;

where a; b > 0. Find his optimal choice .x�; y�/.
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0 x

y

L f
.�
2/

L f
.�
1/

L f
.�
1=
2/

x�

Lg .0/

Figure 2.6. Lagrange’s method.

Lagrange’s Theorem Is Not Sufficient

Lagrange’s Theorem (Theorem 2.10) only gives us a necessary—not a suffi-

cient—condition for a constrained local maximizer. To see why the first order

condition is not generally sufficient, consider the following example.

Example 2.14. Let U D R2, f .x; y/ D x C y2, and g.x; y/ D x � 1. Consider the

problem

max
.x;y/2R2

f .x; y/

s.t. g.x; y/ D 0:

Observe that .x�; y�/ D .1; 0/ satisfies the constraint g.x�; y�/ D 0, and the

constraint qualification is also satisfied. Furthermore, the first-order condition

from Lagrange’s Theorem is satisfied at .x�; y�/ D .1; 0/. This is because

Of .1; 0/ D .1; 0/ and Og.1; 0/ D .1; 0/:

Hence, by letting � D 1 we have Of .1; 0/ D �Og.1; 0/.
However, .1; 0/ is NOT a constrained local maximizer: for arbitrarily small

" > 0, we have g.1; "/ D 0 and f .1; "/ D 1C "2 > 1 D f .1; 0/. See Figure 2.7.
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0 x
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.1; 0/

.1; "/

Lg .0/

Lf .1/

Lf .1C "
2/

Figure 2.7. The Lagrange’s Theorem is not sufficient.

Second-Order Analysis

We probably do not have time to discus the second-order conditions. See Jehle

and Reny (2011, Section A2.3.4) and Sundaram (1996, Section 5.3).

2.4 Inequality Constrained Optimization: Kuhn-Tucker

Theorem

We now consider maximization defined by inequality constraints. The con-

straint set will now be

X D U \
˚
x 2 Rn W hi .x/ 6 0; i D 1; : : : ; `

	
;

where U � Rn is open, and hi W Rn ! R for every i D 1; : : : ; `. Given x 2 Rn, we

say the i th constraint is binding if hi .x/ D 0, and slack if hi .x/ < 0.

First-Order Analysis

Example 2.15. Figure 2.8 illustrates a problem with two inequality constraints

and depicts three possibilities, depending on whether none, one, or two con-

straints are binding.
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0 x1

x2

0 x1

x2

0 x1

x2

0 x1

x2

Of .y/

Oh1.y/

Oh2.z/

Oh1.z/

Of .z/

h1 D 0

h2 D 0

x

Df .x/ D 0

y

z

Figure 2.8. Inequality constrained optimization.

� In the first case, we could have a constrained local maximizer such as x,

for which no constraints bind. Such a vector must be a critical point of the

objective function.

� In the second case, we could have a single constraint binding at a con-

strained local maximizer such as y , and here the gradients of the objective

and constraint are collinear. As we will see, these gradients actually point in

the same direction.

� Lastly, we could have a constrained local maximizer such as z, where both

constraints bind. Here, the gradient of the objective is not collinear with the

gradient of either constraint, and it may appear that no gradient restriction

is possible. But in fact, Of .z/ can be written as a linear combination of

Oh1.z/ and Oh2.z/ with non-negative weights.

The restrictions evident in Figure 2.8 are formalized in the next theorem.



36 CHAPTER 2 OPTIMIZATION IN RN

Oh1.x�/

Oh2.x�/

Of .x�/

x�

Figure 2.9. Kuhn-Tucker Theorem.

Theorem 2.16 (Kuhn-Tucker Theorem). Let f W Rn ! R and hi W Rn ! R be

of C1 class functions, i D 1; : : : ; `. Suppose x� is a local maximizer of f on

X D U \
˚
x 2 Rn W hi .x/ 6 0; i D 1; : : : ; `

	
;

where U is an open subset in Rn. Suppose that the first k, where k 6 `, con-

straints are the binding ones at x�, and assume the gradients of the binding

constraints, fOh1.x�/; : : : ;Ohk.x�/g, are linear independent (this is called

the constraint qualification). Then there exists a vector �� D .��1 ; : : : ; �
�
`
/ 2

R` such that

��i > 0 and ��i hi .x
�/ D 0 for all i D 1; : : : ; `; (KT-1)

Of .x�/ D
X̀
iD1

�iOhi .x�/: (KT-2)

Proof. See Sundaram (1996, Section 6.5). ut

Remark 2.17. Geometrically, the first-order condition from the Kuhn-Tucker

Theorem means that the gradient of the objective function, Of .x�/, is con-

tained in the “semi-positive cone” generated by the gradients of binding con-

straints, i.e., it is contained in the set8<:X̀
iD1

˛iOhi .x�/ W ˛1; : : : ; ˛` > 0

9=; ;
depicted in Figure 2.9.

Remark 2.18. Condition (KT-1) in Theorem 2.16 is called the condition of com-

plementary slackness: if hi .x�/ < 0 then ��i D 0; if ��i > 0 then hi .x�/ D 0.
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The Kuhn-Tucker Multipliers

The vector �� in Theorem 2.16 is called the vector of Kuhn-Tucker multipliers

corresponding to the local maximizer x�. The Kuhn-Tucker multipliers mea-

sure the sensitivity of the objective function at x� to relaxations of the various

constraints:

� If hi .x�/ < 0, then the i th constraint is already slack, so relaxing it further

will not help raise the value of the objective function, and ��i must be zero.

� If hi .x�/ D 0, then relaxing the i th constraint may help increase the value of

the maximization exercise, so we have ��i > 0.

Two Differences

There are two important differences from the case of equality constraints (see

Theorem 2.10 and Theorem 2.16):

� The constraint qualification now holds only for the gradients of binding

constraints. (With equality constraints, every constraint is binding, but now

some may not be.)

� The multipliers are non-negative. This difference comes from the fact that

now only the inequality hi .x/ 6 0 needs to be maintained, so relaxing the

constraint never hurts.

The Constraint Qualification

As with the analogous condition in Theorem 2.10 (see Example 2.11), here we

show that the constraint qualification in Theorem 2.16 is essential.

Example 2.19. Consider the following maximization problem

max ff .x; y/ D xg

s.t. h1.x; y/ D �.1 � x/
3
C y 6 0

h2.x; y/ D �x 6 0
h3.x; y/ D �y 6 0:

See Figure 2.10. Clearly the solution is .x�; y�/ D .1; 0/. At this point we have

Oh1.1; 0/ D .0; 1/; Oh3.1; 0/ D .0;�1/ and Of .1; 0/ D .1; 0/:

Since x� > 0, it follows from the complementary slackness condition (KT-1)

that ��2 D 0. But now (KT-2) fails: for any �1 > 0 and �3 > 0, we have

�1Oh1.1; 0/C �3Oh3.1; 0/ D .0; �1 � �3/ ¤ Of .1; 0/:
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0 x

y

1

Lf .1=2/ Lf .1/
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1 .0/

Oh3.1; 0/

Of .1; 0/

Oh1.1; 0/

Figure 2.10. The constraint qualification fails at .1; 0/.

This is because the constraint qualification fails at .1; 0/: There are two

binding constraints at .x�; y�/ D .1; 0/, namely h1 and h3, and the gradients

Oh1.1; 0/ and Oh3.1; 0/ are colinear. Certainly Of .1; 0/ cannot be contained in

the cone generated by Oh1.1; 0/ and Oh3.1; 0/; see Remark 2.17.

The Lagrangian

As with equality constraints, we can define the Lagrangian L W Rn � R` ! R by

L.x;�/ D f .x/ �
X̀
iD1

�ihi .x/;

and then condition (KT-2) from Theorem 2.16 is the requirement that x is a

critical point of the Lagrangian given multipliers �1; : : : ; �`.

Let us consider a numerical example.

Example 2.20. Consider the problem

max
n
f .x; y/ D x2 � y

o
s.t. h.x; y/ D x2 C y2 � 1 6 0:

Set the Lagrangian:

L.x; y; �/ D x2 � y � �.x2 C y2 � 1/:

The critical points of L are the solutions .x; y; �/ to
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Figure 2.11. A numerical example.

2x � 2�x D 0 (2.14)

�1 � 2�y D 0 (2.15)

� > 0 (2.16)

x2 C y2 � 1 6 0 (2.17)

�.x2 C y2 � 1/ D 0: (2.18)

For (2.14) to hold, we must have x D 0 or � D 1.

� If � D 1, then from (2.15) we have y D �1=2, and from (2.18) we have

x D ˙
p
3=2. That is,

.x; y; �/ D

 
˙

p
3

2
;�
1

2
; 1

!
:

We thus have f .x; y/ D 5=4; see Figure 2.11.

� Now suppose that x D 0. Then � > 0 by (2.15). Hence h is binding: x2 C y2 �

1 D 0, and so y D ˙1. Since (2.15) implies that y D 1 is impossible, we have

.x; y; �/ D

�
0;�1;

1

2

�
:

At this critical point, we have f .0;�1/ D 1 < 5=4, which means that

.0;�1; 1=2/ cannot be a solution. Since there are no other critical points,

it follows that there are exactly two solutions to the maximization problem,

namely .x�; y�/ D .˙
p
3=2;�1=2/.

I Exercise 2.21. Let U D R2; let
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f .x; y/ D .x � 1/2 C y2;

and let

h.x; y/ D 2kx � y2 6 0; k > 0:

Solve the maximization problem

max ff .x; y/ W h.x; y/ 6 0g :

Example 2.22. Consider a consumer’s problem:

max
.x;y/2R2

fu.x; y/ D x C yg

s.t. h1.x; y/ D �x 6 0
h2.x; y/ D �y 6 0
h3.x; y/ D pxx C pyy � I 6 0;

(2.19)

where px ; py ; I > 0.

We first identify all possible combinations of constraints that can, in princi-

ple, be binding at the optimum. There are eight combinations to be check:

¿; h1; h2; h3; .h1; h2/; .h1; h3/; .h2; h3/; and .h1; h2; h3/:

Of these, the last one can be ruled out, since h1 D h2 D 0 implies that h3 < 0.

Moreover, since u is strictly increasing in both arguments, it is obvious that

h3 D 0. So we only need to check three combinations: .h1; h3/, .h2; h3/, and h3.

� If the optimum occurs at a point where only h1 and h3 are binding, then�
Oh1.x; y/;Oh3.x; y/

�
D
�
.�1; 0/; .px ; py/

�
is linear independent. So the constraint qualification holds at such a point.

� Similarly, the constraint qualification holds if only .h2; h3/ bind.

� If h3 is the only binding constraint, then Oh3.x; y/ D .px ; py/ ¤ 0; that is,

the constraint qualification holds.

I Exercise 2.23. Solve the problem of (2.19).

Second-Order Analysis

We probably do not have time to discus the second-order conditions. See Dug-

gan (2010, Section 6.3).
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2.5 Envelop Theorem

Let A � R. The graph of a real-valued function f on A is a curve in the R2

plane, and we shall also refer to the curve itself as f . Given a one-dimensional

parametrized family of curves f˛ W A ! R, where ˛ runs over some interval,

the curve h W A! R is the envelope of the family if

� each point on the curve h is tangent to the graph of one of the curves f˛
and

� each curve f˛ is tangent to h.

(See, e.g., Apostol 1967, p. 342 or Zorich 2004b, p. 252 for this definition.) That

is, for each ˛, there is some q and also for each q, there is some ˛, satisfying
˚
f˛.q/ D h.q/

f 0˛.q/ D h
0.q/:

We may regard h as a function of ˛ if the correspondence between curves and

points on the envelope is one-to-one.

An Envelopment Theorem for Unconstrained Maximization

Consider now an unconstrained parametrized maximization problem. Let

x�.q/ be the value of the control variable x that maximizes f .x; q/, where q

is our parameter of interest. For some fixed x, the function

'x.q/´ f .x; q/

defines a curve. We also define the value function

V.q/´ f
�
x�.q/; q

�
D max

x
'x.q/:

Under appropriate conditions, the graph of the value function V will be the

envelope of the curves 'x . “Envelope theorems” in maximization theory are

concerned with the tangency conditions this entails.

Example 2.24. Let

f .x; q/ D q � .x � q/2 C 1; x; q 2 Œ0; 2�:

Then given q, the maximizing x is given by x�.q/ D q, and V.q/ D q C 1.

For each x, the function 'x is given by

'x.q/ D q � .x � q/
2
C 1:
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(b) The envelop.

Figure 2.12. The graph of V is the envelope of the family of graphs of
the functions 'x .

The graphs of these functions and of V are shown for selected values of x

in Figure 2.12. Observe that the graph of V is the envelope of the family of

graphs of the functions 'x . Consequently the slope of V is the slope of the 'x
to which it is tangent, that is,

V 0.q/ D
@'x

@q

ˇ̌̌̌
xDx�.q/Dq

D
@f

@q

ˇ̌̌̌
xDx�.q/Dq

D 1C 2.x � q/jxDx�.q/Dq D 1:

This last observation is one version of the Envelope Theorem.

An Envelope Theorem for Constrained Maximization

Consider the maximization problem,

max
x2Rn

f .x; q/ s.t. gi .x; q/ D 0; i D 1; : : : ; m; (2.20)

where x is a vector of choice variables, and q D .q1; : : : ; q`/ 2 R` is a vector of

parameters that may enter the objective function, the constraints, or both.

Suppose that for each q there exists a unique solution x.q/. Furthermore,

we assume that the objective function f W Rn ! R, constraints gi W Rn � R` ! R

(i D 1; : : : ; m), and solutions x W R` ! Rn are differentiable in the parameter q.
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Then, for every parameter q, the maximized value of the objective function

is f .x.q/; q/. This defines a new function, V W R` ! R, called the value function.

Formally,

V.q/´ max
x2Rn

ff .x; q/ W gi .x; q/ D 0; i D 1; : : : ; mg : (2.21)

Theorem 2.25 (Envelope Theorem). Consider the value function V.q/ for

the problem (2.20). Let .�1; : : : ; �m/ be values of the Lagrange multipliers

associated with the maximizer solution x. Nq/ at Nq. Then for each k D 1; : : : ; `,

@V. Nq/

@q
k

D
@f .x. Nq/; Nq/

@q
k

�

mX
jD1

�j
@gj .x. Nq/; Nq/

@q
k

(2.22)

Proof. By definition, V.q/ D f .x.q/; q/ for all q. Using the chain rule, we have

@V. Nq/

@q
k

D

nX
iD1

"
@f .x. Nq/; Nq/

@xi

@xi . Nq/

@q
k

#
C
@f .x. Nq/; Nq/

@q
k

:

It follows from Theorem 2.10 that

@f .x. Nq/; Nq/

@xi
D

mX
jD1

�j
@gj .x. Nq/; Nq/

@xi
:

Hence,

@V. Nq/

@q
k

D

nX
iD1

"
@f .x. Nq/; Nq/

@xi

@xi . Nq/

@q
k

#
C
@f .x. Nq/; Nq/

@q
k

D

nX
iD1

264
0@ mX
jD1

�j
@gj .x. Nq/; Nq/

@xi

1A @xi . Nq/

@q
k

375C @f .x. Nq/; Nq/

@q
k

D

nX
jD1

�j

nX
iD1

"
@gj .x. Nq/; Nq/

@xi

@xi . Nq/

@q
k

#
C
@f .x. Nq/; Nq/

@q
k

:

Finally, since gj .x.q/; q/ D 0 for all q, we have

nX
iD1

"
@gj .x. Nq/; Nq/

@xi

@xi . Nq/

@q
k

#
C
@gj .x. Nq/; Nq/

@q
k

D 0:

Combining, we get (2.22). ut

Let us consider an example.

Example 2.26. We are given the problem

max
.x;y/2R2

ff ..x; y/; q/ D xyg s.t. g..x; y/; q/ D 2x C 4y � q D 0:
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Forming the Lagrangian, we get

L D xy � �.2x C 4y � q/;

with first-order conditions:

y � 2� D 0

x � 4� D 0

q � 2x � 4y D 0:

(2.23)

These solve for x.q/ D q=4, y.q/ D q=8 and �.q/ D q=16. Thus,

V.q/ D x.q/y.q/ D
q2

32
:

Differentiating V.q/ with respect to q we get

V 0.q/ D
q

16
:

Now let us verify this using the Envelope Theorem. The theorem tells us that

V 0.q/ D
@f ..x.q/; y.q//; q/

@q
� �.q/

@g..x.q/; y.q//; q/

@q
D �.q/ D

q

16
:

Example 2.27. Consider a consumer whose utility function u W RnC ! R is

strictly increasing in every commodity i D 1; : : : ; n. Then this consumer’s prob-

lem is

maxu.x/ s.t.
nX
iD1

xipi D I:

The Lagrangian is

L.x; �/ D u.x/ � �

0@I � nX
iD1

xipi

1A :
It follows from Theorem 2.25 that

V 0.I / D
@L.x; �/

@I
D �:

That is, � measures the marginal utility of income.

Integral Form Envelope Theorem

The Envelope theorems we introduced so far rely on assumptions that are not

satisfactory for applications, e.g., mechanism design. Unfortunately, it is too

technique to develop the more advanced treatment of the Envelope Theorem.

We refer the reader to Milgrom and Segal (2002) and Milgrom (2004, Chapter

3) for the integral form Envelope Theorem.
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Rockafellar (1970) is the classical reference for finite-dimensional convex

analysis. As for infinite-dimensional convex analysis, Luenberger (1969) is an

excellent text.

To understand the material what follows, it is necessary that the reader have

a good background in Multivariable Calculus (Chapter 1) and Linear Algebra.

In this chapter, we will exclusively consider convexity in Rn for concreteness,

but much of the discussion here generalizes to infinite dimensional vector

spaces. You can consult Berkovitz (2002), Ok (2007, Chapter G) and Royden

and Fitzpatrick (2010, Chapter 6).

3.1 Convex Sets

Definition 3.1 (Convex Set). A subset C � Rn is convex if for every pair of

points x1;x2 2 C , the line segment

Œx1;x2�´ fx W x D �x1 C .1 � �/x2; 0 6 � 6 1g

belongs to C .

I Exercise 3.2. Sketch the following sets in R2 and determine from figure which

sets are convex and which are not:

a.
n�
x; y

�
W x2 C y2 6 1

o
,

b.
n�
x; y

�
W 0 < x2 C y2 6 1

o
,

c.
n�
x; y

�
W y > x2

o
,

d.
n�
x; y

�
W jxj Cjyj 6 1

o
, and

e.
n�
x; y

�
W y > 1

ı
1C x2

o
.

45
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(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

Figure 3.1. �2 in R3.

Lemma 3.3. Let fC˛g be a collection of convex sets such that C ´
T
˛ C˛ ¤ ¿.

Then C is convex.

Proof. Let x1;x2 2 C . Then x1;x2 2 C˛ for all ˛. Since C˛ is convex, we have

Œx1;x2� � C˛ for all ˛. Hence, Œx1;x2� � C , so C is convex. ut

Notation. For each positive integer n, define

�n�1´

8<:.�1; : : : ; �n/ 2 Œ0; 1�n W
nX
iD1

�i D 1

9=; : (3.1)

For n D 1, the set �0 is the singleton f1g. For n D 2, the set �1 is the closed

line segment joining .0; 1/ and .1; 0/. For n D 3, the set �2 is the closed triangle

with vertices .1; 00/, .0; 1; 0/ and .0; 0; 1/ (see Figure 3.1).

Definition 3.4. A point x 2 Rn is a convex combination of points x1; : : : ;xk if

there exists � 2 �k�1 such that

x D

kX
iD1

�ixi :

Lemma 3.5. A set C � Rn is convex iff every convex combination of points in C

is also in C .

Proof. The “if” part is evident. So we shall prove the “only if” statement by

induction on k. It holds for k D 2 by definition. Suppose the statement is true

for k D n. Now consider k D n C 1. Let x1; : : : ;xkC1 2 C and � 2 �n with

�kC1 2 .0; 1/. Then
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x D

nC1X
iD1

�ixi

D

0@ nX
jD1

�j

1A24 nX
iD1

 
�iPn
jD1 �j

!
xi

35C �kC1xkC1
2 C: ut

Let A � Rn, and let A be the class of all convex subsets of Rn that contain

A. We have A ¤ ¿—after all, Rn 2 A. Then, by Lemma 3.3,
T

A is a convex

set in Rn that contains A. Clearly, this set is the smallest (that is, �-minimum)

convex subset of Rn that contains A.

Definition 3.6. The convex hull of A, denoted by cov.A/, is the intersection

of all convex sets containing A.

I Exercise 3.7. For a given set A, let K.A/ denote the set of all convex combi-

nations of points in A. Show that K.A/ is convex and A � K.A/.

Theorem 3.8. Let A � Rn. Then cov.A/ D K.A/.

Proof. Let A be the family of convex sets containing A. Since cov.A/ D
T

A

and K.A/ 2 A (Exercise 3.7), we have cov.A/ � K.A/.

To prove the reverse inclusion relation, take an arbitrary C 2 A. Then A �

C . It follows from Lemma 3.5 that K.A/ � C . Hence K.A/ �
T

A D cov.A/. ut

3.2 Separation Theorem

This section is devoted to the establishment of separation theorems. In some

sense, these theorems are the fundamental theorems of optimization theory.

For simplicity, we restrict our analysis on Rn.

Definition 3.9. A hyperplane H
ˇ
a in Rn is defined to be the set of points that

satisfy the equation ha;xi D ˛. Thus,

Hˇ
a ´

˚
x 2 Rn W ha;xi D ˇ

	
:

The vector a is said to be a normal to the hyperplane.

Remark 3.10. Geometrically, a hyperplane H
ˇ
a in Rn is a translation of an

.n � 1/-dimensional subspace (an affine manifold). Algebraically, it is a level

set of a linear functional. For an excellent explanation about hyperplanes, see

Luenberger (1969, Section 5.12).
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H
ˇ
a

a

Half-space below H
ˇ
a

Half-space above H
ˇ
a

Figure 3.2. Hyperplane and half-spaces.

A hyperplane H
ˇ
a divides Rn into two half spaces, one on each side of H

ˇ
a .

The set fx 2 Rn W ha;xi > ˇg is called the half-space above the hyperplane H
ˇ
a ,

and the set fx 2 Rn W ha;xi 6 ˇg is called the half-space below the hyperplane

H
ˇ
a ; see Figure 3.2.

It therefore seems natural to say that two sets X and Y are separated by

a hyperplane H
ˇ
a if they are contained in different half spaces determined by

H
ˇ
a . We will introduce two separation theorems.

Theorem 3.11 (A First Separation Theorem). Let C be a closed and convex

subset of Rn; let y 2 Rn X C . Then there exists a vector a 2 Rn with a ¤ 0,

and a scalar ˇ 2 R such that ha;yi > ˇ and ha;xi < ˇ for all x 2 C .

To motivate the proof, we argue heuristically from Figure 3.3, where C is

assumed to have a tangent at each boundary point. Draw a line from y to x�,

the point of C that is closest to y . The vector y � x� is orthogonal to C in

the sense that y � x� is orthogonal to the tangent line at x�. The tangent line,

which is exactly the set fz 2 Rn W hy � x�; z � x�i D 0g, separates y and C . The

point x� is characterized by the fact that hy � x�;x � x�i 6 0 for all x 2 C .

If we move the tangent line parallel to itself so as to pass through a point

x0 2 .x
�;y/, we are done. We now justify these steps in a series of claims.

Claim 1. Let C be a convex subset of Rn and let y 2 Rn X C . If there exists a

point in C that is closest to y , then it is unique.

Proof. Suppose that there were two points x1 and x2 of C that were closest

to y . Then .x1 C x2/=2 2 C since C is convex, and so1

1 For a set X � Rn, the function d.y;X/ is the distance from y to X defined by

d.y;X/ D inf
x2X
ky � xk:
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H
ˇ
a

y

a

C

x�

x

y � x�

x � x�

Figure 3.3. The separating hyperplane theorem.

d.y; C / 6
x1 C x22

� y


D

12 �.x1 � y/C .x2 � y/�


6
1

2
kx1 � yk C

1

2
kx2 � yk

D d.y; C /:

Hence the triangle inequality holds with equality. It follows from Exercise 1.8

that there exists � > 0 such that x1�y D �.x2�y/. Clearly, � ¤ 0; for otherwise

x1 � y D 0 implies that y D x1 2 C . Then � D 1 since kx1 � yk D kx2 � yk D

d.y; C /. But then x1 D x2.

Claim 2. Let C be a closed subset of Rn and let y 2 Rn X C . Then there exists

a point x� 2 C that is closest to y .

Proof. Take an arbitrary point x0 2 C . Let r > kx0�yk. Then C1´ B.yI r/\C

is nonempty (at least x0 is in the intersection), closed, and bounded and hence

is compact. The function x 7! kx � yk is continuous on C1 and so attains its

minimum at some point x� 2 C1, i.e.,

kx� � yk 6 kx � yk for all x 2 C1:

For every x 2 C X C1, we have

kx � yk > r > kx0 � yk > kx� � yk;

since x0 2 C1.

Claim 3. Let C be a convex subset of Rn and let y 2 Rn X C . Then x� 2 C is a

closest point in C to y iff˝
y � x�;x � x�

˛
6 0 for all x 2 C: (3.2)
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Proof. Let x� 2 C be a closest point to y and let x 2 C . Since C is convex, we

have

Œx�;x�´
˚
z.t/ 2 Rn W z.t/ D x� C t .x � x�/; t 2 Œ0; 1�

	
� C:

Let

g.t/´ kz.t/ � yk2 D
˝
x� C t .x � x�/ � y;x� C t .x � x�/ � y

˛
D

nX
iD1

�
x�i � yi C t .xi � x

�
i /
�2
:

Observe that g.0/ D x�. Since g is continuously differentiable on .0; 1� and

x� 2 argminx2C kx � yk, we have g0C.0/ > 0. Since

g0.t/ D 2

nX
iD1

�
x�i � yi C t .xi � x

�
i /
�
.xi � x

�
i /

D 2

24� nX
iD1

.yi � x
�
i /.xi � x

�
i /C t

nX
iD1

.xi � x
�
i /
2

35
D 2

h
�
˝
y � x�;x � x�

˛
C tkx � x�k2

i
:

(3.3)

Letting t # 0 we get (3.2).

Conversely, suppose that (3.2) holds. Take an arbitrary x 2 C X fx�g. It

follows from (3.3) that if t 2 .0; 1� then

g0.t/ D 2
h
�
˝
y � x�;x � x�

˛
C tkx � x�k2

i
> 2tkx � x�k2 > 0:

That is, g is strictly increasing on Œ0; 1�. Thus, g.1/ D kx � yk > kx� � yk D

g.0/.

Proof of Theorem 3.11. We now can complete the proof of Theorem 3.11.

Let x� 2 C be the closest point to y (by Claim 1 and Claim 2). Let a D y � x�.

Then for all x 2 C , we have ha;x � x�i 6 0 (by Claim 3), i.e., ha;xi 6 ha;x�i,
with equality occurring when x D x�. Hence,

max
x2C
ha;xi D

˝
a;x�

˛
:

On the other hand, ha;y � x�i D kak2 > 0, so

ha;yi D
˝
a;x�

˛
C kak2 >

˝
a;x�

˛
:

Finally, take an arbitrary ˇ 2 .ha;x�i ; ha;yi/. We thus have ha;yi > ˇ and

ha;xi 6 ha;x�i < ˇ for all x 2 C . ut
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Theorem 3.12 (A Second Separation Theorem). Let X and Y be two dis-

joint convex subsets of Rn. Then there exists a 2 Rn with a ¤ 0 and a scalar

ˇ 2 R such that ha;xi > ˇ for all x 2 X and ha;yi 6 ˇ for all y 2 Y . That

is, there is a hyperplane H
ˇ
a that separates X and Y .

Proof. We leave the proof to the reader. See Berkovitz (2002, Theorem 3.3)

and Jehle and Reny (2011, Theorem A2.24). ut

3.3 Convex Functions

Throughout this section we will assume the subset C � Rn is convex and f is a

real-valued function defined on C , that is, f W C ! R. When we take x1;x2 2 C ,

we will let xt ´ tx1C .1� t /x2, for t 2 Œ0; 1�, denote the convex combination of

x1 and x2.

Definitions

Definition 3.13. A function f W C ! R is convex if for all x1;x2 2 C and

t 2 Œ0; 1�,

f Œtx1 C .1 � t /x2� 6 tf .x1/C .1 � t /f .x2/:

The function f is strictly convex if the above inequality holds strictly.

A function f W C ! R is concave if for all x1;x2 2 C and t 2 Œ0; 1�,

f Œtx1 C .1 � t /x2� > tf .x1/C .1 � t /f .x2/:

The function f is strictly concave if the above inequality holds strictly.

Definition 3.14. A function f W C ! R is quasi-convex if, for all x1;x2 2 C

and t 2 Œ0; 1�,

f Œtx1 C .1 � t /x2� 6 max ff .x1/; f .x2/g :

The function f is strictly quasi-convex function if the above inequality holds

strictly.

A function f W C ! R is quasi-concave if, for all x1;x2 2 C and t 2 Œ0; 1�,

f Œtx1 C .1 � t /x2� > min ff .x1/; f .x2/g :

The function f is strictly quasi-concave if the above inequality holds strictly.



52 CHAPTER 3 CONVEX ANALYSIS IN RN

0 x

f .x/

epi.f /

(a) f is convex.

0 x

f .x/

sub.f /

(b) f is concave.

0 x1

x2

I.y0/

L
f .y

0 /

(c) f is quasi-convex.

0 x1

x2

S.y0/

L
f
.y
0 /

(d) f is quasi-concave.

Figure 3.4.

Geometric Interpretation

Given a function f W C ! R and y0 2 R, let us define

The epigraph of f : epi.f /´ f.x; y/ 2 C � R W f .x/ 6 yg;

The subgraph of f : sub.f /´ f.x; y/ 2 C � R W f .x/ > yg;

The superior set for level y0: S.y0/´ fx 2 C W f .x/ > y0g;

The inferior set for level y0: I.y0/´ fx 2 C W f .x/ 6 y0g.

We then have (see Figure 3.4)

� f is convex () epi.f / is convex.

� f is concave () sub.f / is convex.

� f is quasi-convex () I.y0/ is convex.

� f is quasi-concave () S.y0/ is convex.
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Convexity and Quasi-convexity

It is a simple matter to show that concavity (convexity) implies quasi-concavity

(quasi-convexity).

Theorem 3.15. Let C � Rn and f W C ! R. If f is concave on C , it is also

quasi-concave on C . If f is convex on C , it is also quasi-convex on C .

Proof. We only prove the first claim, and leave the second as an exercise.

Suppose f is concave on C . Take any x;y 2 C and t 2 Œ0; 1�. Without loss of

generality, we let

f .x/ > f .y/:

By the definition of concavity, we have

f
�
tx C .1 � t /y

�
> tf .x/C .1 � t /f .y/
D t

�
f .x/ � f .y/

�
C f .y/

> f .y/
D min ff .x/; f .y/g :

Hence, f is quasi-concave. ut

I Exercise 3.16. Prove the second claim in Theorem 3.15: if f is convex, then

it is also quasi-convex.

Concavity and Hessian

We now characterize concavity of a function using the Hessian matrix.

Theorem 3.17. Let A � Rn. The (twice continuously differentiable) function

f W A! R is concave if and only if Hf .x/ is negative semidefinite for every

x 2 A.

Proof. See Mas-Colell et al. (1995, Theorem M.C.2). ut

Example 3.18. Let A´ .0;1/� .�5;1/. Let f .x; y/ D ln xC ln.yC5/. For each

point .x; y/ 2 A, the Hessian of f is

Hf .x; y/ D

"
�1=x2 0

0 �1=.y C 5/2

#
:

Then for each .u; v/ 2 R2, we have
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10

20

30

x

0

10

20

30

y

0
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6

Figure 3.5. The function lnxC ln.y C 5/ is concave.

h
u v

i
�

"
�1=x2 0

0 �1=.y C 5/2

#"
u

v

#
D �

u2

x2
�

v2

.y C 5/2
6 0:

That is, Hf .x; y/ is negative semidefinite. Hence, f .x; y/ is concave. See Fig-

ure 3.5.

Jensen’s Inequality

Theorem 3.19 (Jensen’s Inequality). Let f W C ! R, where C � Rn is con-

vex. Then f is convex iff for every finite set of points x1; : : : ;xk 2 C and

every t D .t1; : : : ; tk/ 2 �k�1 (see (3.1) for the definition of �k�1),

f

0@ kX
iD1

tixi

1A 6 kX
iD1

tif .xi /: (3.4)

Proof. The ”If” part is evident. So we only prove the “only if” part. Suppose

that f is convex. We shall prove (3.4) by induction on k. For k D 1 the relation

is trivial (remember that �0 D f1g when k D 1). For k D 2 the relation follows

from the definition of a convex function. Suppose that k > 2 and that (3.4) has

been established for k � 1. We show that (3.4) holds for k.
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If tk D 1, then there is nothing to prove. If tk < 1, set T D
Pk�1
iD1 ti . Then

T C tk D 1, T D 1 � tk > 0 and

k�1X
iD1

ti

T
D
T

T
D 1:

Hence,

f

0@ kX
iD1

tixi

1A D f
0@k�1X
iD1

tixi C tkxk

1A
D f

0B@T
24k�1X
iD1

�
ti

T

�
xi

35C tkxk
1CA

6 Tf

0@k�1X
iD1

�
ti

T

�
xi

1AC tkf .xk/
6 T

24k�1X
iD1

�
ti

T

�
f .xi /

35C tkf .xk/
D

kX
iD1

tif .xi /;

where the first inequality follows from the convexity of f and the second in-

equality follows from the inductive hypothesis. ut

3.4 Convexity and Optimization

Concave Programming

We first present two results which indicates the importance of convexity for

optimization theory.

� In convex optimization problems, all local optima must also be global op-

tima.

� If a strictly convex optimization problem admits a solution, the solution

must be unique.



56 CHAPTER 3 CONVEX ANALYSIS IN RN

Theorem 3.20. Let X � Rn be convex and f W X ! R be concave. Then

a. Any local maximizer of f is a global maximizer of f .

b. The set argmaxff .x/ W x 2 Xg of maximizers of f on X is either empty

or convex.

Proof. (a) Suppose x is a local maximizer but not a global maximizer of f .

Then there exists " > 0 such that

f .x/ > f .y/; for all y 2 X \B.xI "/;

and there exists z 2 X such that

f .z/ > f .x/: (3.5)

Since X is convex, Œtx C .1 � t /z� 2 X for all t 2 .0; 1/. Take Nt sufficiently close

to 1 so that Ntx C .1 � Nt /z 2 B.xI "/. By the concavity of f and (C1), we have

f
�
Ntx C .1 � Nt /z

�
> Ntf .x/C .1 � Nt /f .z/ > f .x/:

A contradiction.

(b) Suppose that x1 and x2 are both maximizers of f on X . Then f .x1/ D

f .x2/. For any t 2 .0; 1/, we have

f .x1/ > f
�
tx1 C .1 � t /x2

�
> tf .x1/C .1 � t /f .x2/ D f .x1/:

That is, f Œtx C .1� t /x2� D f .x1/. Thus, tx1 C .1� t /x2 is a maximizer of f on

X . ut

Theorem 3.21. Let X � Rn be convex and f W X ! R is strictly concave.

Then argmaxff .x/ W x 2 Xg either is empty or contains a single point.

I Exercise 3.22. Prove Theorem 3.21.

We now present a extremely important theorem, which says that the first-

order conditions of the Kuhn-Tucker Theorem (Theorem 2.16) are both nec-

essary and sufficient to identify optima of convex inequality-constrained opti-

mization problem, provided a mild regularity condition is met.
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Theorem 3.23 (Kuhn-Tucker Theorem under Convexity). Let U � Rn be

open and convex. Let f W U ! R be a concave C1 function. For i D 1; : : : ; `,

let hi W U ! R be convex C1 functions. Suppose there is some Nx 2 U such

that

hi . Nx/ < 0; i D 1; : : : ; `:

(This is called the Slater’s condition.) Then x� maximizes f over

X ´ fx 2 U W hi .x/ 6 0; i D 1; : : : ; `g

if and only if there is �� 2 R` such that the Kuhn-Tucker first-order condi-

tions hold:

�� > 0;
X̀
iD1

��i hi .x
�/ D 0: (KTC-1)

Of .x�/ D
X̀
iD1

��i Ohi .x
�/: (KTC-2)

Proof. See Sundaram (1996, Section 7.7). ut

Example 3.24. Let U D .0;1/�.�5;1/. Let f .x; y/ D ln xCln.yC5/, h1.x; y/ D

x C y � 4 and h2.x; y/ D �y. Consider the problem

max
.x;y/2U

f .x; y/

s.t. h1.x; y/ 6 0; h2.x; y/ 6 0:
(3.6)

I Exercise 3.25. Show that .x�; y�/ D .4; 0/ is the unique point satisfying the

first-order condition for a local maximizer of the problem (3.6).

Clearly, the Slater’s condition holds. Then, combining Theorem 3.23, Exer-

cise 3.25 and Example 3.18, we conclude that .4; 0/ is a global maximizer. See

Figure 3.6.

Slater’s Condition

For a formal demonstration of the need for Slater’s condition, let us consider

the following example.

Example 3.26. Let U D R; let f .x/ D x and g.x/ D x2. The only point in R

satisfying g.x/ 6 0 is x D 0, so this is trivially the constrained maximizer of f .

But

f 0.0/ D 1 and g0.0/ D 0;
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0 x

y

4

4

X

L
h
1 .0/

L
f
.ln
4
C

ln
5
/

.4; 0/

Figure 3.6. .4; 0/ is the global maximizer.

so there is no � > 0 such that f 0.0/ D �g0.0/.

Quasi-concavity and Optimization

Quasi-concave and quasi-convex functions fail to exhibit many of the sharp

properties that distinguish concave and convex functions. As an example, we

show that Theorem 3.23 fails for quasi-concave objective functions.

Example 3.27. Let f W R ! R and h W R ! R be quasi-concave continuously

differentiable functions, where

f .x/ D

„
x3 if x 2 .�1; 0/

0 if x 2 Œ0; 1�

.x � 1/2 if x 2 .1;1/;

and h.x/ D �x; see Figure 3.7.

I Exercise 3.28. Show that for every point x 2 Œ0; 1�, there exists � > 0 such

that the pair .x; �/ satisfies (KT-1) and (KT-2) (see p. 36).

Furthermore, the Slater’s condition holds. However, it is clear that no point

x 2 Œ0; 1� can be a solution to the problem (Why?).
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0 x

f
.x
/

h.x/
D
�
x

1

Figure 3.7. Quasi-concavity and optimization.





4
DYNAMIC OPTIMIZATION THEORY

Dynamic optimization theory is widely used in repeated games (Mailath

and Samuelson, 2006), macroeconomics (Ljungqvist and Sargent, 2004) and

finance (Duffie, 2001).

The classical reference for this topic is Stokey and Lucas (1989). We will

follow Ok (2007, Section C.6, C.7.1 and E).

4.1 Correspondences

Correspondences arise quite frequently in optimization theory and theoretical

economics. This section introduces basic notion and properties of correspon-

dences. For an advanced discussion, see Aubin and Frankowska (1990) and

Aliprantis and Border (2006, Chapter 17).

Basic Definition

Definition 4.1 (Correspondence). Let X and Y be subsets of Rm and Rn, re-

spectively. A correspondence � from X to Y is a map that associates with each

element x 2 X a nonempty subset � .x/ � Y . We write � W X � Y to denote

that � is a correspondence from X into Y .

Example 4.2. For any n 2 N, p 2 RnCC and I > 0, defnie

B.p; I /´

8<:x 2 RnC W
nX
iD1

xipi 6 I

9=; ;
which is called the budget set of a consumer with income I at prices p. If we

treat p and I as variables, then it would be necessary to view B as a correspon-

dence. We have B ´ RnC1CC � RnC.

61
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0000
x1 x2

(a) Not upper hemicontinu-
ous at x1. Not upper hemi-
continuous at x2. Lower
hemicontinuous.

0000
x1 x2

(b) Not lower hemicontinu-
ous at x1. Not lower hemi-
continuous at x2. Upper
hemicontinuous.

0000
x1 x2

(c) Now upper hemicontinu-
ous at x1 and x2. Not lower
hemicontinuous at x1 and
x2.

Figure 4.1. Upper hemicontinuity and lower hemicontinuity.

Continuity of Correspondence

Definition 4.3. For any two subsets X � Rm and Y � Rn, a correspondence

� W X � Y is said to be

� upper hemicontinuous at x 2 X if, for every open subset O of Y with � .x/ �

O, there exists a ı > 0 such that

� .B.xI ı// � O:

� is called upper hemicontinuous if it is upper hemicontinuous on the entire

X .

� lower hemicontinuous at x 2 X if, for every open set O in Y with � .x/\O ¤

¿, there exists a ı > 0 such that

� .x0/ \O ¤ ¿ for all x0 2 B.xI ı/:

� is called lower hemicontinuous if it is lower hemicontinuous on the entire

X .

� continuous at x 2 X if it is both upper and lower hemicontinuous at x. It is

called continuous if it is continuous on the entire X .

Intuitively speaking, upper hemicontinuity of a correspondence � W X � Y

guarantees that the image set � .x/ of a point x 2 X does not explode conse-

quent on a small perturbation of x, and lower hemicontinuity of � guarantees

that the image set � .x/ of a point x 2 X does not implode consequent on a

small perturbation of x; see Figure 4.1.

I Exercise 4.4. Define ˚;	; � W Œ0; 1�� Œ0; 1� by
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˚.x/ D

˚
f0g if x 2 Œ0; 1/

Œ0; 1� if x D 1;

	.x/ D

˚
Œ0; 1� if x 2 Œ0; 1/

f0g if x D 1;

and

� .x/ D Œ0; x�:

Show that (i) ˚ is upper hemicontinuous everywhere, but it is not lower hemi-

continuous at the point 1. (ii) 	 is lower hemicontinuous everywhere, but it is

not upper hemicontinuous at 1. (iii) � is continuous.

Definition 4.5. For any two subsets X � Rm and Y � Rn, a correspondence

� W X � Y is said to be compact-valued if � .x/ is a compact subset of Y for

each x 2 X .

4.2 The Standard Dynamic Programming Problem

Chapter 2 deals essentially with static optimization, that is optimal choice at

a single point of time. Many optimization problems that arise in economic

models often possess a structure that is inherently dynamic—then involve op-

timization over time. Such problems are significantly more complex than the

static ones in general.

The basic dynamic programming problem is to find a sequence fxtg that

would

Maximize '.x0; x1/C

1X
tD1

ıt'.xt ; xtC1/

s.t.

˚
xtC1 2 � .xt /; t D 0; 1; 2; : : :

x0 2 X given:

(DP)

Here,

� X � Rn is called the state space of the problem;

� x0 is called the initial state;

� � W X � X is called the transition correspondence, which tells which states

are possible “tomorrow” given the state of the system “today”;

� ' W Gr.� /! xR is referred to as the return function;1

1 Here Gr.� / is the graph of � , i.e.,

Gr.� /´ f.x;y/ 2 X � Y W y 2 � .x/g:
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� ı 2 .0; 1/ is called the discount factor.

Definition 4.6. A sequence fxtg � X such that x1 2 � .x0/ and xtC1 2 � .xt /

for each t is called a feasible plan.

We call the series
1X
tD0

ıt'.xt ; xtC1/

the present value of the stream of returns that obtain every period along the

feasible plan fxtg.

Assumption 1. For every feasible plan fxtg � X ,

lim
k!1

kX
tD0

ıt'.xt ; xtC1/ 2 xR:

Assumption 1 says that we can compute the present value of the intertem-

poral stream of returns that is induced by any feasible plane; that is, the seriesP1
tD0 ı

t'.xt ; xtC1/ converges. Throughout this chapter we suppose that As-

sumption 1 holds, so we consider a standard dynamic programming problem

.X; x0; �; '; ı/.

We need two further assumptions.

Assumption 2. The return function ' W Gr.� / ! NR is continuous and

bounded.

Assumption 3. The transition correspondence � W X � X is compact-

valued and continuous.

Definition 4.7. Let .X; x0; �; '; ı/ be a standard dynamic programming prob-

lem. We define the class

D.X; �; '; ı/´ f.X; x; �; '; ı/ W x 2 Xg ; (4.1)

which is the collection of all dynamic programming problems that differ from

our original problem only in their initial states. The class of all such collections

of standard dynamic programming problems is denoted by DP .

We can rewrite our optimization problem (DP) in more familiar terms. Let

˝� .x/ stand for the set of all feasible plans for the problem .X; x; �; '; ı/. That

Further, xR´ R[ f�1;C1g.
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is, define the correspondence ˝� W X � X1 by

˝� .x/´
˚
fxtg 2 X

1
W x1 2 � .x/ and xtC1 2 � .xt /; t 2 N

	
:

Define next the map F�;' ´ f˝� .x/ � fxg W x 2 Xg ! xR by

F�;'
�
fxtg; x

�
D '.x; x1/C

1X
tD1

ıt'.xt ; xtC1/:

Because ' is bounded (Assumption 2), the function F�;' is bounded: there

exists a K > 0 with j'j 6 K, so

ˇ̌̌
F�;'

�
fxtg; x

�ˇ̌̌
6 j'.x; x1/j C

1X
tD1

ıt j' .xt ; xtC1/j 6 K C
1X
tD1

ıtK D
K

1 � ı

for all x 2 X and fxtg 2 ˝� .x/.

We may now rewrite our optimization problem (DP) as

Maximize F�;'
�
fxtg; x

�
subject to fxtg 2 ˝� .x/:

(DP0)

In the next section, we shall develop a recursive method to solve the problem

(DP0). For simplicity, we suppose throughout this section that a solution to (DP0)

exists:

Assumption 4. A solution to the problem (DP0) exists. That is,

argmax
n
F�;'

�
fxtg; x

�
W fxtg 2 ˝� .x/

o
¤ ¿:

4.3 The Principle of Optimality

The Value Function

Fix any D ´ D.X; �; '; ı/ 2 DP . Define a function V W X ! NR by letting

V.x/´ max
n
F�;'

�
fxtg; x

�
W fxtg 2 ˝� .x/

o
: (4.2)

The function V is called the value function for the collection D .

We will fix X , � , ' and ı from now on. To save notation, let us denote ˝�
by ˝ and F˝;ı by F .
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Theorem 4.8 (Bellman). Let D 2 DP , take any x0 2 X and fx�t g 2 ˝.x0/

and define V W X ! xR by (4.2). If V.x0/ D F.fx�t g; x0/, then

V.x0/ D '.x0; x
�
1 /C ıV .x

�
1 /; (4.3)

V.x�t / D '.x
�
t ; x
�
tC1/C ıV .x

�
tC1/; (4.4)

for each t D 1; 2; : : :. If Assumption 2 holds, the converse is also true.

The second part of Theorem 4.8 says that if a solution to (DP0) exists, we

can deduce the optimal plan from the value function V under quite general

circumstances.

Proof of Theorem 4.8. (i) We first have

V.x0/ D F.fx
�
t g; x0/ D '.x0; x

�
1 /C

1X
tD1

ıt'.x�t ; x
�
tC1/

> '.x0; x1/C
1X
tD1

ıt'.xt ; xtC1/

for all fxtg 2 ˝.x0/. Notice that if fx2; x3; : : :g 2 ˝.x�1 /, then fx�1 ; x2; x3; : : :g 2

˝.x0/. We thus have

'.x0; x
�
1 /C

1X
tD1

ıt'.x�t ; x
�
tC1/ > '.x0; x

�
1 /C ı'.x

�
1 ; x2/C

1X
tD2

ıt'.xt ; xtC1/;

that is,

F.fx�2 ; x
�
3 ; : : :g; x

�
1 / > F.fx2; x3; : : :g; x

�
1 /;

for all fx2; x3; : : :g 2 ˝.x�1 /. But then V.x�1 / D F.fx
�
2 ; x
�
3 ; : : :g; x

�
1 /, and hence

V.x0/ D F.fx
�
t g; x0/ D '.x0; x

�
1 /C

1X
tD1

ıt'.x�t ; x
�
tC1/

D '.x0; x
�
1 /C ı

24'.x�1 ; x�2 /C 1X
tD2

ıt�1'.x�t ; x
�
tC1/

35
D '.x0; x

�
1 /C ı

24'.x�1 ; x�2 /C 1X
tD1

ıt'.x�tC1; x
�
tC2/

35
D '.x0; x

�
1 /C ıF.fx

�
2 ; x
�
3 ; : : :g; x

�
1 /

D '.x0; x
�
1 /C ıV .x

�
1 /:

This gives (4.3). By induction we obtain (4.4).

(ii) Conversely, assume that Assumption 2 holds. Let x0 2 X and fx�t g 2 ˝.x0/

satisfy (4.3) and (4.4). Then
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V.x0/ D '.x0; x
�
1 /C ıV .x

�
1 /

D '.x0; x
�
1 /C ı

�
'.x�1 ; x

�
2 /C ıV .x

�
2 /
�

D '.x0; x
�
1 /C ı'.x

�
1 ; x
�
2 /C ı

2V.x�2 /

D � � �

D '.x0; x
�
1 /C

kX
tD1

ıt'.x�t ; x
�
tC1/C ı

kC1V.x�kC1/

for all k 2 N. It follows from Assumption 2 that V is bounded, so there exists

a K > 0 such that jV j 6 K, and this clearly entails that ıkV.xk/ ! 0. Thus,

letting k !1, we obtain V.x0/ D F.fx�t g; x0/. ut

The Optimal Policy Correspondence

The second part of Theorem 4.8 tells us how to go from the value function V

of a standard dynamic programming problem with Assumptions 2 and 4 to its

optimal path.

Definition 4.9 (Optimal Policy Correspondence). We define the optimal policy

correspondence for D.X; �; '; ı/ 2 DP as the correspondence P W X � X with

P.x/´ argmax f'.x; y/C ıV .y/ W y 2 � .x/g :

It follows from Theorem 4.8 that if Assumptions 2 and 4 hold, then a se-

quence fxtg � X is a solution to (DP0) iff

x1 2 P.x0/;

x2 2 P.x1/;

� � � ;

xtC1 2 P.xt /;

� � �

The Principle of Optimality

We then turn to the existence problem by the following important result:
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Theorem 4.10 (Principle of Optimality, Bellman). For every D.X; �; '; ı/ 2

DP and every bounded real-valued function W W X ! R, if

W.x/ D max f'.x; y/C ıW.y/ W y 2 � .x/g for all x 2 X; (4.5)

then

W.x/ D max
n
F�;'

�
fxtg; x

�
W fxtg 2 ˝� .x/

o
for all x 2 X:

Theorem 4.10 says that if there exists a bounded real-valued function

W W X ! R satisfying (4.5), then W is the value function for our dynamic pro-

gramming problem. Thus, by Theorem 4.8, we can deduce the optimal plan

from W .

Proof of Theorem 4.10. Suppose that W satisfies (4.5), and fix an arbitrary

x 2 X . By (4.5), for every fxtg 2 ˝.x/,

W.x/ > '.x; x1/C ıW.x1/
> '.x; x1/C ı'.x1; x2/C ı2W.x2/
� � �

> '.x; x1/C
kX
tD1

ık'.xt ; xtC1/C ı
kC1W.xkC1/:

Letting k !1 and noticing that limk ı
kC1W.xkC1/ D 0, we have

W.x/ > F
�
fxtg; x

�
for all fxtg 2 ˝.x/:

We then show that there exists a feasible plan fx�t g 2 ˝.x/ such that

W.x/ D F
�
fx�t g; x

�
: (4.6)

It follows from (4.5) that there is a sequence fx�t g 2 ˝.x/ such that W.x/ D

'.x; x�1 /C ıW.x
�
1 / and

W.x�t / D '.x
�
t ; x
�
tC1/C ıW.x

�
tC1/ m D 1; 2; : : :

Hence, for each k 2 N we have

W.x/ D '.x; x�1 /C ıW.x
�
1 /

D '.x; x�1 /C
h
ı'.x�1 ; x

�
2 /C ı

2W.x�2 /
i

� � �

D '.x; x�1 /C

kX
tD1

ıt'.x�t ; x
�
tC1/C ı

kC1W.x�kC1/:
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Taking limit yields (4.6). ut

We close this chapter with an example.

Example 4.11. Let x0 2 Œ0; 1�. Consider the problem of choosing a sequence

fxtg � R in order to

max
1X
tD0

1

2t
ln
�p
xt � xtC1

�
s.t. xtC1 2

�
0;
p
xt
�
; t D 0; 1; : : :

We may view this problem as a standard dynamic programming problem

.X; x0; �; '; ı/, where

� X D Œ0; 1�

� � .x/ D Œ0;
p
x�

� '.xt ; xtC1/ D ln.
p
xt � xtC1/

� ı D 1=2.

We first compute the value function. Theorem 4.10 says that it is sufficient

to solve the following functional equation:

W.x/ D max

�
ln
�p

x � y
�
C
1

2
W.y/ W y 2

h
0;
p
x
i�
; x 2 Œ0; 1�: (4.7)

We guess that

W.x/ D ˛ ln x C ˇ; ˛ 2 RC and ˇ 2 R:

With this guess, the problem is to find .˛; ˇ/ 2 RC � R such that

˛ ln x C ˇ D max

�
ln
�p

x � y
�
C
˛

2
lny C

ˇ

2
W y 2

h
0;
p
x
i�
; x 2 Œ0; 1�:

Calculus gives

y D
˛

2C ˛

p
x: (4.8)

Hence,

˛ ln x C ˇ D ln

�
p
x �

˛

2C ˛

p
x

�
C
˛

2
ln

�
˛

2C ˛

p
x

�
C
ˇ

2

D

�
1

2
C
˛

4

�
™

˛

ln x C

"
ln

�
1 �

˛

2C ˛

�
C
˛

2
ln

�
˛

2C ˛

�
C
ˇ

2

#
•

ˇ

:

This gives us

˛ D
2

3
and ˇ D ln 9 �

8

3
ln 4:

Therefore, the value function is
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0 x1

−4

−3

−2

−1

1

V.x/

P.x/

Figure 4.2. The value function V.x/ and the optimal policy correspon-
dence P.x/.

V.x/ D
2

3
ln x C ln 9 �

8

3
ln 4; x 2 Œ0; 1�:

Then let us consider the optimal policy correspondence, P.x/. We have the

following problem

max f'.x; y/C ıV .y/ W y 2 � .x/g ;

which gives

P.x/ D

�
1

4

p
x

�
; x 2 Œ0; 1�:

See Figure 4.2.
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METRIC SPACES

The ideas of “metric” and “metric space” are abstractions of the concept of

distance in Euclidean space. Most of the ideas about metric spaces in general

are motivated by geometric ideas about sets in R or Rn, where n > 1.

There are a lot of excellent introductory references for the analysis of met-

ric spaces, e.g., Kolmogorov and Fomin (1970), Apostol (1974), Rudin (1976),

Gamelin and Greene (1999, Chapter 1), Carothers (2000), Zorich (2004a), Shirali

and Vasudeva (2006), Ok (2007), etc. For more advanced references, Folland

(1999), Dudley (2002) and Royden and Fitzpatrick (2010) are classic texts.

This chapter is based on Carothers (2000, Part One) and Ok (2007, Chapter

C). Our discussion is very elementary and incomplete. Anyone wants to learn

metric spaces should refer a text from the above list.

5.1 Basic Notions

Given a set X ¤ ¿, our first order of business is to define a distance function

on X . Suppose X D R2. What would we want a “reasonable” distance to do?

Definition 5.1 (Metric). LetX be a nonempty set. A function d W X�X ! Œ0;1/

is called a metric provided for all x; y; z 2 X ,

a. d.x; y/ D 0 iff x D y;

b. (Symmetry) d.x; y/ D d.y; x/;

c. (Triangle Inequality) d.x; y/ 6 d.x; z/C d.z; y/.

If d is a metric on X , we say that .X; d/ is a metric space. If .X; d/ is a metric

space and Y is a subset of X , then the restriction d 0 of d to Y � Y is clearly a

metric on Y . The metric space .Y; d 0/ is called a subspace of .X; d/.1

I Exercise 5.2. Prove that d.x; y/ > 0 for all x; y 2 X by (a)—(c) in Defini-

tion 5.1.

1 Precisely, d 0 D d�.Y � Y /.

71
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Remark 5.3. Sometimes we suppress mention of the metric d and refer to X

itself as being a metric space.

Example 5.4. (a) The real line R with the metric d.x; y/ D jx � yj is a metric

space. More generally, Rn is a metric space when provided with the metric

d
�
.x1; : : : ; xn/; .y1; : : : ; yn/

�
D

p
nX
kD1

.xk � yk/
2;

called the usual metric on Rn. The space .Rn; d / is called the n-dimensional

Euclidean space.

(b) Let X ¤ ¿. Then X admits at least one metric: the discrete metric d defined

by setting

d.x; y/ D

˚
1 if x ¤ y

0 if x D y:

I Exercise 5.5. Prove that the functions defined in Example 5.4 are metrics.

5.2 Convergent Sequences

Open Balls

Our aim is to define and discuss the notions of convergence and continuity

in metric space. Before this, we need to introduce some notation for “small”

sets. Throughout this section, we will assume that we are always dealing with

a generic metric space .X; d/, unless otherwise specified.

Definition 5.6 (Open Ball). For a point x 2 X and r > 0, the set

B.xI r/´
˚
x0 2 X W d.x0; x/ < r

	
is called the open ball centered at x of radius r .

Example 5.7. In R we have B.xI r/ D .x � r; x C r/; in R2 the set B.xI r/ is the

open disk of radius r centered at x.

I Exercise 5.8. Consider the discrete metric space defined in Example 5.4(b).

Find B.xI 1/ and B.xI 2/, where x 2 X .

A subset A � X is bounded if there is x 2 X and r > 0 such that A � B.xI r/;

that is, A is bounded if it is contained in some ball of large enough radius. But

exactly which x and r does not much matter.
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Convergence

In order to prove the existence of a vector satisfying a desired property, it

is common to establish an appropriate sequence of vectors converging to a

limit. In many cases the limit of this sequence can be shown to satisfy the

required property. It is for this reason that the concept of convergence plays an

important role in analysis. Thus, we have the convergence of sequences of real

numbers, the convergence of sequences of complex numbers, the convergence

of sequence of functions, etc.

We will use the following terminology to define convergence:

Definition 5.9 (Neighborhood). A neighborhood (nhood, for short) of x is any

set containing an open ball about x. Intuitively, you should think of a nhood

of x as a “thick” set of points near x.

We now discuss the convergence of sequences that live in metric space. Its

value will be made clear through seeing how often it will be called in subse-

quent work.

Definition 5.10 (Convergence). A sequence fxng is said to converge to the

point x 2 X if

lim
n!1

d.xn; x/ D 0:

In this case, x is the limit of fxng and we write xn ! x, or limn!1 xn D x.

Remark 5.11. Since the definition of convergence is stated in terms of the se-

quence of real numbers fd.xn; x/g, we can easily derive the following equivalent

reformulations:

xn ! x iff, given any " > 0, there is an N 2 N

such that d.xn; x/ < " whenever n > N ,
(C1)

or

xn ! x iff, given any " > 0, there is an N 2 N

such that fxn W n > N g � B.xI "/.
(C2)

If it should happen that fxn W n > N g � A for some N 2 N, we say that the

sequence fxng is eventually in A. Thus, our last formulation (C2) can be written

xn ! x iff, given any " > 0, the sequence fxng is eventually in B.xI "/; (C3)

or, in yet another incarnation,

xn ! x iff fxng is eventually in every nhood of x: (C4)

This final version (C4) is blessed by a total lack of N s and "s!

Lemma 5.12. The limit of a convergent sequence in a metric space is unique.
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Proof. Suppose that x; y 2 X are both limits of a sequence fxng in X . Then for

all n,

d.x; y/ 6 d.x; xn/C d.xn; y/:

Let n ! 1. Then the RHS of the above display tends to 0, so that d.x; y/ D 0.

Consequently, x D y. ut

Example 5.13. (a) A sequence fxng is convergent in a discrete space iff it is

eventually constant.

(b) Take any n 2 N, and let fxmg D f.x1;m; : : : ; xn;m/g be a sequence in Rn. It is

easy to show that xm ! .x1; : : : ; xn/ iff xi;m ! xi for each i D 1; : : : ; n.

5.3 Open Sets and Closed Sets

Open Sets

We now make precise the vague notion of a “thick” set in a metric space: a

“thick” set is one that contains an entire nhood of each of its points. Let us

give it a better name: open set.

Definition 5.14 (Open Set). A subset U of X is said to be open provided for

every point x 2 U , there is an open ball centered at x that is contained in

U . In other words, U is open if, given x 2 U , there is some r > 0 such that

B.xI r/ � U .

Example 5.15. We show that an open ball is open. Take an arbitrary x0 2

B.xI r/ and define r 0 D r � d.x0; x/. Let y 2 B.x0I r 0/. Then d.y; x0/ < r 0, so

that, by the triangle inequality,

d.y; x/ 6 d.y; x0/C d.x0; x/ < r 0 C d.x0; x/ D r:

Therefore, B.x0I r 0/ � B.xI r/. See Figure 5.1.

Theorem 5.16. The open sets in a metric space .X; d/ have the following

properties:

a. Any union of open sets is open.

b. Any finite intersection of open sets is open.

c. ¿ and X are both open.

Proof. (a) Let fO�g�2� be a family of open subsets of X and let O D
S
�2�O�.

Suppose x 2 O . Then there exists an index � such that x 2 O�. Since O� is

open, there exists some r > 0 such that B.xI r/ � O�. Then B.xI r/ � O .
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x0 r 0

r

x

Figure 5.1. An open ball is open.

(b) Let O1; : : : ; Om be open subsets of X and let O D O1 \ � � �Om. Let y 2 O .

Since each Oi is open, there exists ri > 0 such that

B.yI ri / � Oi ; 8 i D 1; : : : ; m:

Set r D minfr1; : : : ; rmg.

(c) ¿ is open since ¿ has no elements and, obviously, X is open. ut

Remark 5.17. The finiteness assumption in Theorem 5.16(2) is essential. In R,

we have
1\
nD1

B.0I 1=n/ D f0g;

which is not open in R.

Closed Sets

Definition 5.18 (Closed Set). A set F in a metric space .X; d/ is said to be a

closed set if its complement X X F is open (see Definition 5.14).

All statements concerning open sets may be translated into statements con-

cerning closed sets.

I Exercise 5.19. Prove:

a. ¿ and X are closed.

b. An arbitrary intersection of closed sets is closed. A finite union of closed sets

is closed.
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c. Any finite set is closed.

Observe that the Definition 5.18 depends on a knowledge of open sets. We

would like to define a closed set in terms of, say, sequences. First observe that

F is closed iff X X F is open, and so F is closed iff

x 2 X X F H) B.xI r/ � X X F for some r > 0:

But this is the same as saying: F is closed iff

B.xI r/ \ F ¤ ¿ for every r > 0 H) x 2 F: (5.1)

Remark 5.20. Intuitively, a point x that satisfies B.xI r/ \ F ¤ ¿ for every

r > 0 is evidently “very close” to F in the sense that x cannot be separated

from F by any positive distance. At worst, x might be on the “boundary” of

F . Thus, condition (5.1) is telling us that a set is closed iff it contains all such

“boundary” points.

Let us now translate condition (5.1) into a sequential characterization of

closed sets.

Theorem 5.21. Given a set F in .X; d/, the following are equivalent:

a. F is closed; that is, X X F is open.

b. If B.xI r/ \ F ¤ ¿ for every r > 0, then x 2 F .

c. If a sequence fxng � F converges to some point x 2 X , then x 2 F .

Proof. (a () b) This is clear from our observations above and the definition

of an open set.

(b H) c) Suppose that fxng � F and xn ! x 2 X . Then B.xI r/ contains

infinitely many xn for any r > 0, and hence B.xI r/\F ¤ ¿ for any r > 0. Thus

x 2 F , by (b).

(c H) b) If B.xI r/ \ F ¤ ¿ for all r > 0, then for each n there is an xn 2

B.xI 1=n/. The sequence fxng satisfies fxng � F and xn ! x. Hence, by (c),

x 2 F . ut

Interior and Closure

Sets are not “doors”! For example, X is open and closed, but .0; 1� is neither

open nor closed in R. However, it is possible to describe the “open part” of a

set and the “closure” of a set.
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Definition 5.22 (Interior). Given a set E in .X; d/, we define the interior of E,

written EB, to be the largest open set contained in E. That is,

EB D
[˚

U W U is open and U � E
	

D

[˚
B.xI r/ W B.xI r/ � E and for some x 2 E; r > 0

	
D
˚
x 2 E W B.xI r/ � E for some r > 0

	
:

Definition 5.23 (Closure). For a subset E of a metric space X , the closure of

E, written xE, is the smallest closed set containing E. That is,

xE D
\˚

F W F is closed and E � F
	
:

Clearly, EB is an open subset of E and xE is a closed set containing E.

You will need the following result in Mas-Colell, Whinston and Green (1995).

Lemma 5.24. If A is convex, then so is xA.

Proof. Take arbitrary points x;y 2 xA. We need to show that Œx;y� � xA. Let

x 2 Œx;y�, so z D �x C .1 � �/y for some � 2 Œ0; 1�. There exist sequences

fxng � A and fyng � A such that xn ! x and yn ! y . Since A is convex, we

have zn´ �xnC .1��/yn 2 A for all n 2 N. Therefore, zn ! �xC .1��/y D z,

so z 2 xA. ut

I Exercise 5.25. Show that if A � B , then xA � xB .

5.4 Continuous Functions

Throughout this section, unless otherwise specified, .X; dX / and .Y; dY / are

arbitrary metric spaces.

Definition 5.26 (Continuous Mapping). We say that the map f W X ! Y is

continuous at a point x 2 X if, for any " > 0, there exists a ı > 0 (which may

depend on f , x and ") such that for each y 2 Y (see Figure 5.2)

dX .x; y/ < ı implies dY
�
f .x/; f .y/

�
< ":

Put differently, f is continuous at x if, for any " > 0, there exists a ı > 0 such

that

f
�
BX .xI ı/

�
� BY .f .x/I "/:

If f is continuous at every point of X , we simply say that f is continuous on

X , or often just that f is continuous.

We now turn to characterize continuity in terms of open sets, closed sets

and sequences.
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x
f .x/

y

f .y/

ı

"

Figure 5.2. Inequalities in Definition 5.26 illustrated in the case of Eu-
clidean planes X D R2 and Y D R2.

Theorem 5.27. Given f W X ! Y , the following are equivalent:

a. f is continuous on X (by the "-ı definition).

b. For every x 2 X , if xn ! x in X , then f .xn/! f .x/ in Y .

c. If E is closed in Y , then f �1.E/ is closed in X .

d. If V is open in Y , then f �1.V / is open in X .

Proof. (a H) b) Suppose that xn ! x 2 X . Given " > 0, let ı > 0 be such

that f .BX .xI ı// � BY .f .x/I "/. Since fxng is eventually in BX .xI ı/, the sequence

ff .xn/g is eventually in BY .f .x/I "/. Since " is arbitrary, this means that f .xn/!

f .x/ 2 Y .

(b H) c) Let E � Y be closed. To show f �1.E/ � X is closed, we only need

to show that for every convergent sequence fxng � f �1.E/ with xn ! x, we

have x 2 f �1.E/. Observe that fxng � f �1.E/ implies that ff .xn/g � E. It

follows from (b) that f .xn/! f .x/. Since E is closed, we have f .x/ 2 E and so

x 2 f �1.E/.

(c () d) It is evident since for every set A � Y we have f �1.Y X A/ D

X X f �1.A/.

(d H) a) Given x 2 X and " > 0, the set BY .f .x/I "/ is open in Y and so, by (d),

the set f �1.BY .f .x/I "// is open in X . But then there exists some ı > 0 such

that BX .xI ı/ � f �1.BY .f .x/I "// since x 2 f �1.BY .f .x/I "//. ut

Example 5.28. Let f W X ! R is a continuous real-valued function. Then the

set E ´ fx 2 X W f .x/ D 0g is closed.
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5.5 Complete Metric Spaces

Definition 5.29 (Cauchy Sequence). A sequence fxng in a metric space .X; d/

is said to be a Cauchy sequence if for every " > 0, there exists an M 2 N (which

may depend on ") such that d.xk ; x`/ < " for all k; ` >M .

Metric spaces in which every Cauchy sequence is convergent are of partic-

ular interest in analysis; in such spaces it is possible to identify convergent

sequences without explicitly identifying their limits.

Example 5.30. (a) The sequence f1=ng is a Cauchy sequence in R becauseˇ̌̌̌
1

k
�
1

`

ˇ̌̌̌
6
ˇ̌̌̌
1

k

ˇ̌̌̌
C

ˇ̌̌̌
1

`

ˇ̌̌̌
! 0 as k; `!1:

(b) Every convergent sequence fxng � X is Cauchy (Prove it). A Cauchy se-

quence need not converge. For example, f1=ng is Cauchy in .0; 1�, but it does

not converge in .0; 1� since 1=n! 0 … .0; 1�.

Remark 5.31. The difference between the definition of convergence (Defini-

tion 5.10) and the definition of a Cauchy sequence is that the limit is explicitly

involved in the former, but not in the latter.

Definition 5.32 (Completeness). A metric space X is said to be complete if

every Cauchy sequence in X converges to a point in X .

Example 5.33. All Euclidean n-spaces are complete. One should remember this

important fact though we are not going to prove it.2

Recall that .0; 1� is not a complete metric subspace of R, while Œ0; 1� is. This

suggests a tight connection between the closedness of a set and its complete-

ness as a metric subspace.

Proposition 5.34. Let X be a metric space, and Y a metric subspace of X .

If Y is complete, then it is closed in X . Conversely, if Y is closed in X and X

is complete, then Y is complete.

Proof. (i) Let Y be complete, and take an arbitrary fxng � Y that converges

in X . Then fxng is Cauchy, and thus lim xn 2 Y . It follows from Theorem 5.21

that Y is closed.

(ii) Suppose that X is complete and Y is closed in X . If fxng is a Cauchy se-

quence in Y , then it is Cauchy in X . So xn ! x 2 X . But since Y is closed, it

must be the case that x 2 Y (Theorem 5.21). It follows that Y is complete. ut

2 The proof can be found in Rudin (1976, Theorem 3.11).



80 CHAPTER 5 METRIC SPACES

5.6 Compact Metric Spaces

A compact space is the best of all possible worlds. Compactness is one of the

most fundamental concepts of real analysis and one that plays an important

role in optimization theory.

Definition 5.35 (Open Cover). Let X be a metric space and S � X . A class O

of subsets of X is said to cover S if S �
S

O. If all members of such a class O

are open in X , then we say that O is an open cover of S .

Definition 5.36 (Compactness). A metric space X is said to be compact if

every open cover of X has a finite subset that also covers X . A subset S of X

is said to be compact in X (or a compact subset of X ) if every open cover of S

has a finite subset that also covers S .

Example 5.37. We claim that .0; 1/ is not compact in R. Consider the collection

O ´ f.1=n; 1/ W n D 1; 2; : : :g and observe that .0; 1/ D .1=2; 1/ [ .1=3; 1/ [ � � � ,

that is, O is an open cover of .0; 1/. However, O does not have a finite subset

covering .0; 1/.

Theorem 5.38 (Characterization of Compactness for a Metric Space). For

a metric space X , the following three assertions are equivalent:

a. X is complete and totally bounded;

b. X is compact;

c. X is sequentially compact.

Proof. See Royden and Fitzpatrick (2010, Section 9.5). ut
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