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1. Introduction

Groups or organizations are a means of carrying out most social, political, or

economic activities. After all, a society is an organization of organizations

(North, Wallis and Weingast, 2009). Broadly speaking, organizations include

labor unions, professional associations, farm organizations, cartels, lobbies,

universities, government, and so on. Presumably, groups or organizations in-

crease the benefits of collective action in situations in which the price system

fails (Arrow, 1974). Furthermore, social groups are treated as key political

actors because the most important forces in political conflict and change are

groups of individuals (Acemoglu and Robinson 2006 and Besley and Persson

2011). As Coleman (1974) writes:

It is the corporate actors, the organizations that draw their power from

persons and employ that power to corporate ends, that are the primary

actors in the social structure of modern society (1974, p. 49).

What forces shape the creation and maintenance of a group? According to

the insight of Olson (1965), groups or organizations are characterized by the

furtherance of the common interests of their members. However, “the achieve-

ment of any common goal or the satisfaction of any common interest means

that a public or collective good has been provided for that group” (Olson 1965,
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p. 15). That is, it is the fundamental function of organizations to provide pub-

lic goods. Though all of the members of a group have a common interest in

achieving the collective benefit, they have no common interest in sharing the

cost of providing that collective benefit. Therefore, free-rider problem will be

prevalent in organizations if they fail to provide some sanction or some attrac-

tion distinct from the public good itself.

Olson (1965, Chapter I.F) (see also Olson 1982, Chapter 2) points out that

groups are supported because they can find selective incentives. A selective in-

centive is “one that applies selectively to the individuals depending on whether

they do or do not contribute to the provision of the collective good” (Olson,

1982, p. 21). Olson (1965) also points out that it is difficult for large groups to

find selective incentives.

In this paper we follow Olson’s logic of collective action. We show that

competitive grouping based on individuals’ group contributions increases co-

operation and efficiency in an environment of voluntarily provision of public

goods. In other words, contribution-based grouping provides a selective incen-

tive which can be used to distinguish among individuals: an individual who

does not contribute is ostracized, and an individual who contributes can be

invited into a charmed group. This incentive results in efficient, or almost

efficient, allocation. Precisely, if the players are grouped according to their

contributions and if their endowments are heterogeneous, then there exist

two positive contribution equilibria: one is fully efficient in the sense that all

individuals contribute fully, and the other is near fully efficient in the sense

that almost all individuals contribute fully.

Contribution-based grouping and social development appear to have gone

hand in hand. Falling barriers to international trade and investment, and in-

creased competition in product and service markets around the world make

firms pay more attention to efficiency for success and even survival (Roberts,

2004, Chapter 5). With the resulting increase in competition, contribution-

based grouping becomes more important. Moreover, North, Wallis and Wein-

gast (2009) define modern societies by open accesses to political and economic

opportunities. In those open access orders, access to organizations is an im-

personal right that all citizens possess. For instance, North, Wallis and Wein-

gast (2009) write:

: : : impersonal categories of individuals, often called citizens, interact

over wide areas of social behavior with no need to be cognizant of the

individual identity of their partners. Identity, which in natural states is

inherently personal, becomes defined as a set of impersonal character-

istics in open access orders. The ability to form organizations that the

larger society supports is open to everyone who meets a set of minimal

and impersonal criteria (2009, p. 2).
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Therefore, in modern open access orders individuals are identified and grouped

according to their contribution rather than their privilege, race, or gender.

Our study provides a complement to the normative theory of public goods

provision (Lindahl 1919, Samuelson 1954 and Foley 1970). While this nor-

mative theory characterizes efficiency in public goods economies clearly and

rigorously, it leaves the question of how an economy may attain efficiency

unanswered. This paper contributes to the literature on the positive theory

of providing incentives associated with the free-rider problem (Clarke 1971,

Groves 1973, Green and Laffont 1979, Bergstrom, Blume and Varian 1986, Laf-

font 1987, etc.)

Our model is similar to the local public goods model.1 In the local public

goods model, there are n individuals and a large number of locations in which

they can choose to live. Our model differs from it by imposing the restriction

that the accommodation capacity of each location is fixed, and each individual

has to compete for a location.

The current article is related to Gunnthorsdottir, Vragov, Seifert and McCabe

(2010) (henceforth GVSM). In GVSM, every individual has the same endowment

and thus equal ability to make a contribution. Homogenous endowment is a

very restrictive and unrealistic assumption. We depart from their paper by

introducing unequal abilities to contribute. It turns out that this relaxation

increases the difficulty of finding the equilibria of the game dramatically.

The paper is organized as follows. Section 2 introduces the model. We then

finger out and characterize all the equilibria of the game in Section 3. Finally,

Section 4 discusses the the limits of our model and possible extensions.

2. The Model

The set of players is N ´ f1; 2; : : : ; ng. Each player i 2 N has an endowment

wi > 0. The distribution of endowments is common knowledge. Each player

i 2 N makes a contribution si 2 Œ0; wi � to a public account, and keeps the

remainder .wi �si / in her private account. The return from the private account

is set to 1, the return from the public account is the Marginal per Capita Return

(MRCP) m 2 .1='; 1/. After their investment decisions, all players are ranked

according to their public contributions and divided into G groups of equal

size ', so G D n='. Ties for group membership are broken at random. The

' players with the highest contributions are put into Group 1; then ' players

with the next highest contributions are put into Group 2, and so on. Payoffs

are computed after players have been grouped. Each player’s payoff consists

of the amount kept in her private account, plus the total public contribution

of all players in the group she has been assigned to multiplied by the MPCR m.

1See Scotchmer (2002) and Ray (2007, Example 3.3.2(1), p. 28).
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Given the other players’ contributions profile .s1; : : : ; si�1; siC1; : : : ; sn/ D s�i ,

let Ui .si ; s�i / be player i ’s expected payoff from contributing si . Let P.si ;s�i /.k/

be i ’s probability of entering group k when the contribution profile is .si ; s�i / D

s, where k D 1; : : : ; G; for simplicity we henceforth denote this probability by

Psi
.k/. Let Sk

�i be the total contribution in group k except for player i . There-

fore, player i ’s expected payoff Ui .si ; s�i / from a contribution combination

s D .si ; s�i / can be expressed as follows:

(1) Ui .si ; s�i / D .wi � si /C

GX
kD1

P.si ;s�i /.k/ �
h
m � .Sk

�i C si /
i

:

The model can now been transformed into a normal form game. The set of

players is N ; each player i ’s strategy is her contribution si . Her strategy space

is the interval Œ0; wi � � R; finally, player i ’s payoff function is defined by (1) for

all i 2 N . The Nash equilibrium is defined as follows:

Definition 1. A contribution profile s D .s1; : : : ; sn/ is a Nash equilibrium if and

only if Ui .s/ > Ui .s
0
i ; s�i / for all s0i ¤ si and all i 2 N .

For simplicity of expression, I now introduce two assumptions. The conse-

quences when these assumptions fail will be discussed in Appendix B.

Assumption A Each player’s endowment is either wi D H or wi D L < H .

It is common to divide people of a society into two parts in the literature.

For example, in Acemoglu and Robinson (2006) citizens consist of poor and

rich. In Esteban and Ray (2011) there are two ethnic or religious affiliations

(Hindu and Muslim in their model).2 Finally, in the core model of Besley and

Persson (2011) an incumbent group and an opposition group compete for po-

litical power and make decisions. The method developed in this paper can be

extended to deal with the general case where there are more than two endow-

ment levels with the expense of more complicated mathematical computation.

For what follows, we apply the following simplification without loss of gen-

erality: we normalize L D 1, and let �w D H � 1 > 0 be the gap between the

high endowment H and low endowment L D 1. We call a player with endow-

ment H a “High”, and a player with endowment 1 a “Low”. Let NH be the set

of Highs and NL the set of Lows. Their respective counts are nH ´ jNH j and

nL ´ jNLj. It follows that NH [ NL D N , or equivalently, nH C nL D n. By

the algorithm of integer division (Hardy and Wright, 2008), there exist some

nonnegative integers A, B , h and `, with h < ' and ` < ', such that the counts

of Highs and Lows can be expressed as:˚
nH D A' C h;

nL D B' C `:

2Esteban and Ray (2008) divide a society into either economic groups (poor and rich) or

ethnic groups.
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Assumption B The count of each type, High and Low, is more than, and not

a multiple of the group size '; that is,

� A > 1, B > 1, and AC B D G � 1;

� h > 1, ` > 1, and hC ` D '.

Roughly speaking, Assumption B just requires that the minority is not too

weak. Formally, the number of individuals with the same endowments is larger

than but not a multiple of the given group size. We relax this assumption in

Appendix B.

We need to define one more basic concept, which will be crucial when we

identify all the game’s equilibria.

Definition 2. Let Cr � N . We call Cr a class if each player i 2 Cr contributes

the same; that is, i; j 2 Cr if and only if si D sj . We call a player i 2 Cr a

Cr -player.

Given a contribution profile s, the players can be divided into R.s/ 6 n

classes; we henceforth omit the argument s. Let C be the family of all classes,

i.e., C D fC1; : : : ; CRg. Both C and fNH ; NLg partition N ; that is,
SR

rD1 Cr D

NH [ NL D N . In a class Cr 2 C , there are cr players; the contribution of

each player in Cr is sr ; that is, jCr j D cr , and si D sr for all i 2 Cr . We

index the classes such that srC1 < sr , where r C 1 6 R; hence, C1 is the class

consisting of the highest contributors, and CR is the class consisting of the

lowest contributors. For each class Cr , we can find nonnegative integers Dr

and zcr < ' such that the count of Cr -players can be expressed as

(2) cr D jCr j D Dr' C zcr :

We now move on to solve the model. In the next section, we find and char-

acterize all the Nash equilibria with positive individual contributions.

3. Equilibria

We begin with the following simple observation, which characterizes the most

inefficient equilibrium.

Lemma 3. Contributing nothing, i.e., si D 0 for all player i 2 N is a Nash

equilibrium. This is the only equilibrium satisfying jC j D 1.

Proof. Let sj D 0 for all players j ¤ i . Player i obtains .wi � si / C msi D

wi � .1 �m/si if she contributes si . Her best response is therefore si D 0.

To verify that si D 0 for all player i 2 N when jC j D 1, let s1 > 0. Consider

any player i 2 N . She gets .wi � s1/ C m's1 if she contributes s1, but if she
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deviates and contributes 0, she enters the last group G, and gets

wi Cm.' � 1/s1
D .wi �ms1/Cm's1

> .wi � s1/Cm's1

since m < 1. Hence, si D 0 for each player i 2 N in an equilibrium with only

one class. ut

The equilibrium with si D 0 for all i 2 N always exists as long as m, the

MPCR, is less than 1, but it is not a dominant strategy equilibrium. Since si D 0

for all i 2 N if jC j D 1 by Lemma 3, in any equilibrium with positive contri-

butions it must be that jC j > 2. Theorem 4 here below will show that there

are only two (pure strategy) Nash equilibria involving positive contributions: a

fully efficient equilibrium (FEE), and a near-efficient equilibrium (NEE). These

two equilibria can be characterised as follows:

FEE. There are two classes: C1 is identical to NH , C2 is identical to NL, and all

players contribute fully; that is,

� Classes: jC j D 2, where C1 D NH and C2 D NL.

� Strategies: si D

˚
H if i 2 C1

1 if i 2 C2:

NEE. There are three classes: C1 consists of Highs, C2 consists of Lows, and

C3 consists of the players who are not in C1 or C2. Both C1 and C2-players

contribute fully, but C3-players contribute nothing. The sum of C2 and C3-

players together is greater than and not a multiple of group size; the count

of C3-players is less than the group size; that is,

� Classes: jC j D 3, where

„
C1 � NH ; c1 > ' and zc1 > 0

C2 � NL; c2 C c3 > '; and zc2 C zc3 ¤ '

C3 D N X .C1 [ C2/ and c3 < ':

� Strategies: si D

„
H if i 2 C1

1 if i 2 C2

0 if i 2 C3:

In both equilibria with positive contributions, strategies only take one of

three forms: full contribution of the high endowment (H ), full contribution

of the low endowment (1) or zero contribution. Figure 1(a) and (b) illustrate

FEE and NEE, respectively, where the dark gray sections represent Highs, the

light gray sections Lows. The players’ strategies si are shown on top of the

horizontal bars. The segments in the bars represent groups. For illustration

purposes and without loss of generality, only four groups are shown.
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C1 C2

s1 D H s2 D 1

Group .AC 1/ Group G

(a) FEE

C1 C2 C3

s1 D H s2 D 1 s3 D 0

Group .D1 C 1/ Group G

(b) NEE

Figure 1. The two equilibrium configurations with positive contributions

(light gray sections are Lows, dark gray sections are Highs).

Theorem 4. If there is an equilibrium with positive contributions, then it is a

FEE or NEE.

The proof of Theorem 4 is presented in Appendix A. Here are some exam-

ples of the application of this theorem.

Example 5. Let n D 12, nH D nL D 6, ' D 4, L D 1 and H D 1:5. According to

Theorem 4, we only need to consider FEE and NEE:

There is no FEE since any player i 2 C2 has an incentive to reduce her

contribution: If i contributes 1, she enters the second group with probability

2=6, and the third group with probability 4=6, so the expected payoff is 0:5 �

.2=6 � 5C 4=6 � 4/ D 13=6, but if she contributes 0, she enters the third group

with certainty and obtains 1C 0:5 � 3 D 5=2 > 13=6.

Hence, if there exists an equilibrium with positive contributions, it must

be a NEE. As the following table shows, the unique equilibrium with positive

contributions is
�
h1:5; 1:5; 1:5; 1:5i ; h1:5; 1:5; 1; 1i ; h1; 1; 0; 0i

�
.

c1 c2 c3 NEE? Deviator
Deviation

.si ! s0
i
/

5 6 1 No i 2 C2 � NL 1! 0

5 5 2 No i 2 C3 \NH 0! 1C "

5 4 3 No i 2 C3 \NH 0! 1C "

6 5 1 No i 2 C2 � NL 1! 0

6 4 2 Yes ¿
6 3 3 No i 2 C3 \NL 0! 1

Example 6. In a game with parameters as in Example 5, now let nH D 7 instead

of previously 6. It can be verified that there is no FEE. By Theorem 4, it suffices

to show that there is no NEE either. There are eight cases to consider:
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c1 c2 c3 NEE? Deviator
Deviation

.si ! s0
i
/

5 5 2 No i 2 C3 \NH 0! 1C "

5 4 3 No i 2 C3 \NH 0! 1C "

6 5 1 No i 2 C2 � NL 1! 0

6 4 2 No i 2 C3 \NH 0! 1C "

6 3 3 No i 2 C3 \NH 0! 1C "

7 4 1 No i 2 C2 � NL 1! 0

7 3 2 No i 2 C1 D NH H ! 1C "

7 2 3 No i 2 C1 D NH H ! 1C "

Example 7. This example relies on some results in Appendix A. The general

method developed so far can be used to reprove Observation 2 in GVSM (2010).

GVSM’s parameter z corresponds to cR D jCRj, the number of players in the

last class. If H D L D 1 and if there exists an equilibrium with positive

contributions, it can be characterized as follows:

jC j D 2; s1
D 1; s2

D 0; and c2 < ':

By Lemma A.1(a) (in Appendix A), in any equilibrium with positive contribu-

tions c1 > 0, zc1 > ', and s1 D 1. Now consider the last class CR:

� If cR > ' and zcR > 0 in equilibrium, then sR D 1 by Claim 1 in Appen-

dix A. However, this means that jC j D 1 and zc1 D 0, a contradiction to

Lemma A.1(a).

� Assume zcR D 0 in equilibrium. Then s2 D 0 by Lemma A.1 (e). By the same

logic as in Lemma A.1 (c), there cannot exist a class Cr satisfying 0 < sr < 1;

hence, jC j D 2. According to Lemma A.1(a) zc1 > 0. If zc2 were zero, it would

contradict our initial assumption at the beginning of Section 3.1 that the

total number of players n D G'.

� Thus, it must be that cR < '. It follows that sR D 0 by Lemma A.1 (e). An

argument analogous to Lemma A.1 (c) shows that jC j D 2.

3.1. Existence of a fully efficient equilibrium (FEE)

A FEE exists if and only if

� Player i 2 C2 has no incentive to reduce her contribution from 1 to 0, and

� Player i 2 C1 has no incentive to reduce her contribution from H to 1C ", 1,

or 0, where " 2 RCC.

We first consider C2, then C1. We use U
wi
si

.Cr / to denote player i ’s expected

payoff when her endowment is wi 2 fH; 1g, she contributes si 2 Œ0; wi �, and is

in class Cr . We develop our analysis with the help of Figure 2.
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s1 D H s2 D 1

c1 D nH D A' C h c2 D nL D B' C `

h ` '

Group .AC 1/ Group G

Figure 2. The distribution of players in a FEE

Proposition 8. Let M D .1 �m/=m. A FEE exists if and only if

MnL

�w � `
6 h 6 min

�
Œ.' � 1/�w �MH�nH

�w � `
;

.` �M/nH

`

�
:(3)

The remainder of this subsection will be devoted to the proof of Proposi-

tion 8.

Incentives to Deviate for C2-Players in a FEE. Fix the contribution profile s�i D

.s1; : : : ; si�1; siC1; : : : ; sn/ satisfying sj D wj for all j 2 N X fig. For any player

i 2 C2 D NL, if she contributes 1, she enters the following groups with positive

probabilities: AC 1; AC 2; : : : ; G (see Figure 2). The probabilities are:

P1.k/ D

˚
`=nL if k D AC 1

'=nL if k D AC 2; : : : ; G:

Since
PG

kDAC1 P1.k/ D 1, we have
PG

kDAC2 P1.k/ D 1�P1.AC 1/ D 1� `=nL. For

ease of expression, let

SAC1
D hH C `I

that is, SAC1 is the sum of contributions in Group .A C 1/ from the full con-

tribution profile s D .si D 1; s�i /. By (1), player i ’s expected payoff from con-

tributing si D 1 is

U L
1 .C2/ D .wi � si /Cm

24P1.AC 1/SAC1
C

GX
kDAC2

P1.k/'

35
D .1 � 1/Cm

24P1.AC 1/SAC1
C

GX
kDAC2

P1.k/'

35
D m

"
`

nL

SAC1
C

�
1 �

`

nL

�
'

#

D m

�
' C

h`�w

nL

�
;

where the last equality holds since SAC1�' D .hH C `/�.hC `/ D h .H � 1/ D

h�w.
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If player i 2 C2 deviates and contributes si < 1, she enters group G, and her

payoff is

.1 � si /Cm
�
.' � 1/C si

�
D 1Cm.' � 1/ � .1 �m/si I

hence, the optimal deviation is si D 0 since 1 �m > 0 with payoff is U L
0 .C2/ D

1Cm.' � 1/.

Hence, player i 2 C2 has no incentive to reduce her contribution from 1 to 0

if and only if U L
1 .C2/ > U L

0 .C2/; that is,

(4) h >
.1 �m/nL

m` ��w
D

MnL

` ��w
;

where M D .1 �m/=m. Because m 2
�
1='; 1

�
, we know that M 2 .0; ' � 1/.

Incentives to Deviate for C1-Players in a FEE. Since we now consider a player

i 2 C1 D NH , we rewrite the full contribution profile as s D .si D H; s�i /, where

sj D wj for any j 2 N X fig. If player i 2 C1 contributes si D H , she enters

Group 1; 2; : : : ; A; AC 1 with positive probabilities, which are

PH .k/ D

˚
'=nH if k D 1; : : : ; A

h=nH if k D AC 1:

Hence, i ’s expected payoff from contributing si D H is

U H
H .C1/ D .H �H/Cm

24 AX
kD1

PH .k/'H C PH .AC 1/SAC1

35
h1i
D m

"�
1 �

h

nH

�
'H C

h

nH

SAC1

#
h2i
D m

�
'H �

h`�w

nH

�
;

where h1i holds because
PA

kD1 PH .k/ D 1�PH .AC1/ D 1�h=nH , and h2i holds

because 'H � SAC1 D 'H � .hH C `/ D `H � ` D `�w.

If player i 2 C1 contributes si 2 .1; H/, she enters group .AC1/ with certainty

and obtains

U H
si

.C1/ D .H � si /Cm
�
.h � 1/ H C `C si

�
D H Cm

�
.h � 1/ H C `

�
� .1 �m/si :

(5)

From (5) we know that the optimal deviation is si D .1C "/! 1 if player i 2 C1

wants to contribute si 2 .1; H/. Thus,

lim
"!0

U H
1C".C1/ D lim

"!0

n
H Cm

�
.h � 1/ H C `

�
� .1 �m/ .1C "/

o
D H Cm.SAC1

�H/ � .1 �m/

D mSAC1
C .1 �m/�w:
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Hence, player i 2 C1 has no incentive to reduce her contribution from H to

1C " if and only if U H
H .C1/ > lim"!0 U H

1C".C1/; that is

(6) h 6 nH

�
1 �

M

`

�
:

Note that (6) is independent of H or �w: it is fully determined by the distribu-

tion of player types and the MPCR m.

Lemma 9 here below indicates that we do not need to consider whether

i 2 C1 has an incentive to contribute 1 if she has no incentive to contribute

1C ".

Lemma 9. If a player i 2 C1 has no incentive to reduce her contribution from

H to 1C ", she also has no incentive to reduce her contribution from H to 1.

Proof. If player i 2 C1 contributes 1, she enters Group AC 1; AC 2; : : : ; G with

positive probabilities. Therefore, her expected payoff is

U H
1 .C1/ D .H � 1/Cm

24P1.AC 1/
�
.h � 1/ H C `C 1

�
C

GX
kDAC2

P1.k/'

35
D �w Cm

24P1.AC 1/.SAC1
��w/C '

GX
kDAC2

P1.k/

35
6 �w Cm

h
P1.AC 1/.SAC1

��w/C .SAC1
��w/.1 � P1.AC 1//

i
D mSAC1

C .1 �m/�w

D lim
"!0

U H
1C".C1/;

where the inequality holds since

SAC1
��w D .hH C `/ � .H � 1/ D ŒhH C .' � h/� �H C 1

> .H C ' � 1/ �H C 1

D ':

Thus, U H
H .C1/ > U H

1 .C1/ when U H
H .C1/ > lim"!0 U H

1C".C1/. ut

Finally, if player i 2 C1 wants to contribute si < 1, she should contribute

si D 0, so that her payoff is U H
0 .C1/ D H C m.' � 1/. Hence, she has no

incentive to contribute 0 if and only if U H
H .C1/ > U H

0 .C1/; that is,

(7) h 6
Œ.' � 1/�w �MH�nH

�w � `
:

Combining (4), (6) and (7), one obtains Proposition 8.
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Comparative Statics of the FEE and Two Examples. It can be seen from (3) that

when m is large enough, the FEE is an equilibrium for all possible parame-

ters of the game. To illustrate, consider the extreme case: Let m ! 1, then

limm!1 M D limm!1.1 � m/=m D 0. Then the left-hand side (LHS) of (3) ap-

proaches 0, the right-hand side (RHS) of (3) becomes

min

�
.' � 1/nH

`
; nH

�
D nH ;

and 0 6 h 6 nH always holds. This result is intuitive: m ! 1 means that if

a player puts one dollar into the public account, her strategic risk becomes

negligible.

In a FEE, the gap between Highs and Lows, �w, cannot be very small. This

result might strike the reader as counterintuitive since it implies that equality

(in wi ) prevents a fully efficient solution. Consider once again the extreme

case. Fixed all other parameters and let �w ! 0, then

lim
�w!0

MnL

�w � `
D C1 > h

so that (3) is violated. This result corresponds to GVSM (2009): when all play-

ers have the same endowment, it is not an equilibrium that all contribute fully.

Although a large enough �w, or H , is a necessary condition for the existence

of a FEE, it is not sufficient. To see this, let H ! C1, so that �w ! C1, too;

then (3) becomes

(30) 0 6 h 6 min

�
.' � 1 �M/nH

`
;

.` �M/nH

`

�
D

.` �M/nH

`
:

We can see that there exist ` and M such that (30) fails. In particular, if M !

'�1, or equivalently m! 1=', then there is clearly no FEE no matter how high

H is and no matter what the distribution of types is, since ` 6 ' � 1.

Example 10. Let m D 0:5 [so M D .1 � m/=m D 1], ' D 4, n D 24, H D 3. We

refer to Figure 3. In the figure, each point nH on the horizontal axis determines

a particular ` according to the equation nL D n � nH D B' C `, and such an

` determines: (a) the h by the equation h D ' � `, (b) the (3)-LHS, and (c) the

(3)-RHS. Thus, if there is a h determined by a nH that lies between the two

curves, then there exists a FEE by Proposition 8.

Figure 3 indicates that there is a FEE if and only if nH D 18. Note that

nH D 4A C h yields h D ` D 2 [the red point in the figure]; furthermore,

nL D n � nH D 6, (3)-LHS D 1:5, and

(3)-RHS D min

�
.3 � 2 � 3/ � 18

2 � 2
;

.2 � 1/ � 18

2

�
D 9I

thus, 1:5 < h D 2 < 9; that is, (3) holds. We now show it is indeed an equilib-

rium:

In equilibrium, i 2 C2 gets 0:5 � .2=6 � 8C 4=6 � 4/ D 2:7. If she contributes

0, she gets 1C 0:5 � 3 D 2:5 < 2:7. Hence, i 2 C2 has no incentive to deviate.
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0 nH2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

(3)-LHS

(3)-RHS

h

Figure 3. An example of FEE

In equilibrium, i 2 C1 gets 0:5�.16=18�12C2=18�8/ D 5:8; If she contributes

1C ", she gets no more than 0:5 � 8C .1 � 0:5/ � 2 D 5, which is less than 5:8;

finally, if she contributes 0, she gets 3C 0:5 � 3 D 4:5 < 5:8. Hence, i 2 C1 also

has no incentive to deviate.

Example 11. In a game with parameters as in Example 5, now let H be unspec-

ified. We want to find an H such that there exists a FEE. According to (3), H

has to satisfy h D 2 > 6=.2.H � 1//, which solves for H > 2:5. Because (3)-RHS

holds when H > 2:5, this concludes the calculation.

3.2. Existence of a near-efficient equilibrium (NEE)

The NEE exists if and only if

� player i 2 C3 \NL has no incentive to increase her contribution from 0 to 1.

� player i 2 C3 \ NH has no incentive to increase her contribution from 0 to

1C " or H .

� player i 2 C2 \NL has no incentive to reduce her contribution from 1 to 0.

� player i 2 C1 \ NH has no incentive to reduce her contribution from H to

1C " or 0.

Since Example 5 already showed that this equilibrium is possible in some

cases, there is no existence problem. We provide here a general overview of

the conditions under which it exists.

Let cH
3 be the count of Highs in C3, and cL

3 be the count of Lows in C3.

Then c3 D cH
3 C cL

3 < ' and cH
3 ¤ h, otherwise zc1 D 0, which contradicts
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s1 D H s2 D 1 s3 D 0

c1 D nH � cH
3 c2 D nL � cL

3 c3

h � cH
3 `C cH

3 ' � c3 cH
3 cL

3

Group .AC 1/

Figure 4. The distribution of players in a NEE

Lemma A.1(a). We have

(8) c1 D nH � cH
3 D

˚
A' C h � cH

3 if cH
3 < h

.A � 1/' C hC .' � cH
3 / if cH

3 > h;

and

(9) c2 D nL � cL
3 D

˚
B' C ` � cL

3 if cL
3 6 `

.B � 1/' C `C .n � cL
3 / if cL

3 > `:

It is obviously impossible that cH
3 > h and cL

3 > ` hold simultaneously since

h C ` D '. It also can be seen from (8) and (9) that there are three situations

to consider: (1) cH
3 < h and cL

3 6 `, (2) cH
3 < h and cL

3 > `, and (3) cH
3 > h and

cL
3 6 `. In this paper we only analyze the simplest case, in category (1):

cH
3 < h; cL

3 < `; and cH
3 C cL

3 < ':

The other cases can be analyzed in the same manner. We develop our analysis

with the help of Figure 4, which illustrates the distribution of players in a NEE.

Incentives to Deviate for C3-Players in a NEE. Firstly, for player i 2 C3\NL, her

payoff from contributing 0 is

(10) U L
0 .C3/ D 1Cm.' � c3/:

If she contributes 1, then there are c2 C 1 players contributing 1 and player i

enters Group AC 1; : : : ; G with positive probabilities, which are

P1.k/ D

„
.`C cH

3 /=.c2 C 1/ if k D AC 1

'=.c2 C 1/ if k D AC 2; : : : ; G � 1

.' � c3 C 1/=.c2 C 1/ if k D G:
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Let S D .h�cH
3 /HC.`CcH

3 /. Thus, player i ’s expected payoff from contributing

1 is

U L
1 .C3/ D m

24P1.AC 1/S C

G�1X
kDAC2

P1.k/' C P1.G/.' � c3 C 1/

35
D

m

c2 C 1

h
.`C cH

3 /S C .nL � ' � `/' C .' � c3 C 1/2
i

;

(11)

where the last equality holds because

G�1X
kDAC1

P1.k/ D 1 �
`C cH

3

c2 C 1
�

' � c3 C 1

c2 C 1
D

.c2 C cL
3 / � ' � `

c2 C 1
D

nL � ' � `

c2 C 1
:

Hence, player i 2 C3 \ NL has no incentive to deviate from contributing 0 to

contributing 1 if and only if U L
0 .C3/ > U L

1 .C3/.

Secondly, for i 2 C3 \NH , her payoff from contributing si D H is

(12) U H
0 .C3/ D H Cm.' � c3/:

If player i contributes 1C ", she enters group .AC 1/ and obtains

lim
"!0

U H
1C".C3/ D lim

"!0

�
H � 1 � "Cm

h
.h � cH

3 /H C .`C cH
3 � 1/C 1C "

i�
D �w CmS:

(13)

If player i contributes H , then there are c1 C 1 players contributing H ; player

i enters Group 1; : : : ; AC 1 with positive probabilities, which are

PH .k/ D

˚
'=.c1 C 1/ if k D 1; : : : ; A

.h � cH
3 C 1/=.c1 C 1/ if k D AC 1:

Thus, player i ’s expected payoff is

U H
H .C3/ D m

24 AX
kD1

PH .k/'H C PH .AC 1/..h � cH
3 C 1/H C `C cH

3 � 1/

35
D m

24 1 �
h � cH

3 C 1

c1 C 1

!
'H C

h � cH
3 C 1

c1 C 1
.S C�w/

35
D

�
m

c1 C 1

�h
.nH � h/ 'H C .h � cH

3 C 1/ .S C�w/
i

:

(14)

Hence, player i 2 C3 has no incentive to deviate if and only if the following

conditions are satisfied:

(IC3)

„
(10) > (11) W i 2 C3 \NL has no incentive to deviate from 0 to 1

(12) > (13) W i 2 C3 \NH has no incentive to deviate from 0 to 1C "

(12) > (14) W i 2 C3 \NH has no incentive to deviate from 0 to H:
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Incentives to Deviate for C2-Players in a NEE. Recall that C2 consists of Lows.

If i 2 C2 � NL contributes 1, she gets

U L
1 .C2/ D

m

c2

h
.`C cH

3 /S C .c2 � ` � cH
3 � ' C c3/' C .' � c3/2

i
I(15)

if she contributes 0, she gets

U L
0 .C2/ D 1Cm.' � c3 � 1/:(16)

Thus, i 2 C2 \NL has no incentive to deviate if and only if

(IC2) (15) > (16) W i 2 C2 � NL has no incentive to deviate from 1 to 0:

Incentives to Deviate for C1-Players in a NEE. C1 consists of Highs. For i 2 C1 �

NH , if she contributes H , her expected payoff is

(17) U H
H .C1/ D m

24 1 �
h � cH

3

c1

!
'H C

h � cH
3

c1

S

35 :

If she contributes 1C ", she obtains

lim
"!0

U H
1C".C1/ D lim

"!0

�
H � 1 � "Cm

h
.h � cH

3 � 1/H C `C cH
3 C 1C "

i�
D mS C .1 �m/�w:

(18)

A similar argument as in Lemma 9 shows that we need not consider whether

i 2 C1 \ NH has any incentive to contribute 1 if she has no incentive to con-

tribute 1C". We can therefore immediately consider the last possible deviation.

If player i contributes 0, she obtains

U H
0 .C1/ D H Cm.' � c3 � 1/:(19)

Thus, i 2 C1 � NH has no incentive to deviate if and only if

(IC1)

˚
(17) > (18)W i has no incentive to deviate from H to 1C "

(17) > (19)W i has no incentive to deviate from H to 0:

Proposition 12 summarize this section’s findings:

Proposition 12. The NEE exists if and only if (IC3), (IC2), and (IC1) are all satis-

fied.

3.3. Coexistence of NEE and FEE

By Theorem 4 we know that if there are equilibria with positive contributions,

it is a FEE or NEE. Can these two equilibria ever coexist? We will now show

with an example that this is possible. Example 5 demonstrated that this game

has a NEE. Example 11 showed that the game has a FEE if and only if H > 2:5.
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We now show that if H D 2:5 there exists, in addition to the FEE, the following

NEE: �
hH; H; H; H i ; hH; H; 1; 1i ; h1; 1; 1; 0i

�
:

� For player i 2 C3 � NL, her equilibrium payoff is U L
0 .C3/ D 1C 3=2 D 5=2; if

she contributes 1, the expected payoff is U L
1 .C3/ D 1=2 � .2S=6C 4=6 � 4/ D

5=2 D U L
0 .C3/.

� For every player i 2 C2 � NL, her equilibrium payoff is U L
1 .C2/ D 1=2�.2=5�

7C 3=5 � 3/ D 2:3; if she contributes 0, the payoff is U L
0 .C2/ D 1C 1=2 � 2 D

2 < U L
1 .C2/.

� Finally, for player i 2 C1 D NH , she gets U H
H .C1/ D 1=2�.4=6�4HC2S=6/ D

4:5 in equilibrium; if she contributes 1C ", the payoff is lim"!0 U H
1C".C1/ D

S=2C.H � 1/ =2 D 4:25 < U H
H .C1/; if she contributes 0, the payoff is U H

0 .C1/ D

H C 2=2 D 3:5 < U H
H .C1/.

Note however that the unique equilibrium with positive contributions is the

FEE if H > 2:5: Since it is required that c1 > 4 and zc1 > 0 in any equilibrium with

positive contributions, cH
3 can only take two possible values: either cH

3 D 1 or

cH
3 D 0. However, cH

3 D 1 is impossible. This is because if a High has no

incentives to contribute 0 in the FEE, she also has no incentive to contribute 0

when there is at least one Low in Group G contributing 0. Hence, we only need

to consider the case of cH
3 D 0. By (10),

(100) U L
0 .C3/ D 1C

4 � c3

2
D

6 � c3

2
:

By (11),

U L
1 .C3/ D

4H C 4C .5 � c3/2

14 � 2c3

;(110)

where c3 D 1; 2; 3. Then

(110) � (100) D
3c3 C 4H � 13

14 � 2c3

>
3 .c3 � 1/

14 � 2c3

> 0;

for any c3 D 1; 2; 3, which means that U L
0 .C3/ < U L

1 .C3/; that is, any C3-player

will deviate no matter how many players contribute 0 in Group G. We thus

proved that no player will contribute 0 if H > 2:5, in other words, the FEE is

the unique equilibrium with positive contributions if H > 2:5.

4. Discussion and Extensions

There are a number of questions regarding our stylized model. In this section

we outline some of these questions to expand its realism and relevance.
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Voluntary Participation. In this paper we assume that all individuals partic-

ipate the competition voluntarily, so there are no individual rationality con-

straints. However, as Dixit and Olson (2000) show, participation decision may

destroy efficiency. In next study, it would be important to check whether our

main results are immune to individuals’ participation consideration.

Coalition Formation. In our model, every individual makes her contribution

decision non-cooperatively. However, coalitions may arise. Ray and Vohra

(2001) (also see Ray 2007, Section 6.2) consider a model of public goods pro-

vision when all agents can write binding agreements. They find that coali-

tion formation is a potential source of inefficiency.3 It is interesting to check

whether our results are robust with respect to coalition formation when the

coalition structure4 is given.

Externalities among Groups. In our model there is no influence among groups

once all individuals are grouped. Nevertheless, this is probably a restrictive re-

quirement. As Esteban and Ray (2001) and Grossman and Helpman (2001)

show, externalities among groups could be significant. Therefore, it is inter-

esting to see how the inter-group actions affect our results.

Measurement and Enforcement Problem. A presumption of our model is that

every individual’s contribution can be identified precisely. This is a demand-

ing requirement under some environments, especially when the number of

interacting individuals is large. More importantly, while our mechanism is

third-party-enforceable, it is unclear whether it is self-enforceable.5

Group Size and the Degree of Cooperation. The Olson paradox (Olson, 1965)

says that smaller groups are more successful than larger groups in obtaining

an optimal supply of collective actions. Esteban and Ray (2001) overturn the

Olson paradox by considering a model with the following features: explicit

intergroup interaction, collective prizes with a mix of public and private char-

acteristics, and nonlinear lobbying costs. However, our model predicts that the

degree of cooperation not only depends on the group size, but also the distri-

bution of endownments in society (see Proposition 8). Because we assume only

two endowment levels in the current paper, it is important to deplore further

that how the distribution of endowments and group size influence collective

actions.

3See Chatterjee, Dutta, Ray and Sengupta (1993), Ray and Vohra (1997), Ray and Vohra (1999),

Maskin (2003), Hyndman and Ray (2007) and Ray (2007) for coalition formation.
4Given the set of players N , a coalition structure is just a partition of N . Hence, the G groups

in our model is a potential coalition structure.
5See Barzel (2002) for a detailed discussion regarding the enforcement problem.
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Incomplete Information. We assume complete information in our model. Po-

tentially, the following two informational issues will affect our outcomes. (1)

An individual may be uncertain about the others’ endowments. (2) Individuals

may uncertain about the number of potential participants. The next step is to

relax the complete information assumption.

Appendix A. Proof of Theorem 4

The proof of Theorem 4 relies upon the five auxiliary results summarized in

the following lemma:

Lemma A.1. If an equilibrium with positive contributions exists, it has the fol-

lowing properties:

1. The count of C1-players is larger than and not a multiple of group size ',

and each C1-player contributes fully. Formally, c1 > ', zc1 > 0, and si D wi if

i 2 C1.

2. C1 consists of Highs only; that is, C1 � NH .

3. There is no class Cr satisfying 1 < sr < H .

4. If the equilibrium consists of only two classes, it is a FEE.

5. If the count of CR-players is less than or a multiple of the group size, then

each CR-player contributes nothing. Formally, if cR < ' or zcR D 0, then

sR D 0.

Proof. We prove this lemma step by step.

(1). If zc1 D 0, then c1 D jC1j D D1 � ' by (2). Consider any player i 2 C1. If

si D s1, she is always grouped with .' � 1/ players contributing s1 and gets�
wi � s1 Cm's1

�
; if she contributes s0i D s1 � " > s2 where " 2 R, she is in

Group D1 but is still grouped with .' � 1/ players contributing s1, and gets

.wi � s1
C "/Cm

h
.' � 1/s1

C s1
� "

i
D .wi � s1/Cm's1

C .1 �m/"

> wi � s1
Cm's1

since m < 1. Thus i has an incentive to deviate. It follows that zc1 > 0 as

claimed.

To see that c1 > ', note that if c1 < ', player i 2 C1 is in the first group

where the total contribution except for player i is S1
�i . If she reduces her

contribution from s1 to s1 � " > s2, she remains in the first group, but her

payoff increases from wi � s1 Cm.S1
�i C si / to

wi � s1
Cm.S1

�i C si /C .1 �m/":

Thus i has an incentive to deviate. This proves that c1 > '.
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To verify that each C1-player contributes fully, note that we now have c1 D

D1�'Czc1, where D1 > 1 and zc1 > 0; hence, every C1-player has a strictly positive

probability of entering Group .D1 C 1/; that is, Ps1.D1 C 1/ D zc1=c1 > 0. Given

a contribution profile s satisfying si D s1 < wi for some i 2 C1, let S D 's1 be

the total contribution in Group 1; : : : ; D1, and let S 0 6 zc1s1 C .' � zc1/s2 be the

total contribution in Group .D1 C 1/.6 Then S > S 0 since s1 > s2. Hence, if a

C1-player contributes si D s1 < wi , her payoff is

.wi � si /Cm

24 D1X
kD1

Ps1.k/S C Ps1.D1 C 1/S 0

35
D .wi � s1/Cm

h�
1 � Ps1.D1 C 1/

�
S C Ps1.D1 C 1/S 0

i
< .wi � s1/CmS:

However, if she increases her contribution from s1 to s1 C " < wi , she enters

the first group with certainty and obtains:

.wi � s1
� "/Cm .S C "/ D .wi � s1/CmS � .1 �m/":

This deviation is profitable as long as " is small enough. We thus proved that

s1 D wi if player i is in the first class.

(2). We first show that there is at least one High in C1. Suppose this is not true;

that is, suppose that C1 � NL. Then s1 D 1 since each C1-player contributes

fully. We can show that in such a situation any C2-player has an incentive to

deviate. There are three cases to consider:

Case i: zc1 C c2 6 '. See Figure A.1(i). Since we assume that C1 � NL, there are

more than nH > ' players outside of C1, so that jC j > 3 and s2 > 0. In such

a case, each C2-player can reduce her contribution from s2 to s2� " > s3 and

remain in Group .D1 C 1/. By the same reasoning as in Lemma A.1(a), this

is a profitable deviation.

Case ii: zc1 C c2 > ' and zc1 C zc2 D '. See Figure A.1(ii). Consider any player

i 2 C2. If si D s2 < 1, her payoff is

.wi � s2/Cm

�
Ps2.D1 C 1/

h
zc1 C .' � zc1/s2

i
C
�
1 � Ps2.D1 C 1/

�
's2

�
< .wi � s2/Cm

h
zc1 C .' � zc1/s2

i
because zc1 C .' � zc1/s2 > 's2. However, if she contributes s2 C " < s1, she

enters Group .D1 C 1/ with certainty and obtains

.wi � s2
� "/Cm

h
zc1 C .' � zc1/s2

C "
i

D .wi � s2/Cm
h
zc1 C .' � zc1/s2

i
� .1 �m/";

6We use a weak inequality here because it is not clear at this stage if there are players from

classes after C2 in group .D1 C 1/.
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C1 C2

Group 1 Group 2 Group 3(i)

C1 C2

iGroup .D1 C 1/

By contributing s2 C "

(ii)

C1 C2

(iii)

Figure A.1. There is at least one High in C1

which is greater than her original payoff when " is small enough. Thus,

player i 2 C2 has an incentive to increase her contribution.

Case iii: zc1 C c2 > ' and zc1 C zc2 ¤ '. See Figure A.1(iii). This cannot be an

equilibrium since any player i 2 C2 will increase her contribution for the

same reason as in the former case.

Hence, there is at least one High i in C1. Together with Lemma A.1(a) this

implies that si D H . We thus conclude that s1 D H and C1 � NH .

(3). Suppose there exists a Class Cr satisfying 1 < sr < H . Since sr < H D s1,

Class C1 is ranked above Class Cr ; since sr > 1, there is at least one class after

Cr and Cr � NH . A similar argument as in Lemma A.1(b) shows that (1) C1 is

the immediate predecessor class of Cr , and (2) any Cr -player has an incentive

to deviate. This proves the nonexistence of a Class Cr where 1 < sr < H .

(4). Let C D fC1; C2g. Then s2 6 1 because of the existence of Lows, and

NL � C2 since C1 � NH by Lemma A.1(a). Hence, c2 > nL > ', zc1 C c2 > ' and

zc1 C zc2 D ', which is exactly Case ii) in Lemma A.1 (b); therefore, s2 D 1 and

NH � C1. This conclusion together with the fact that C1 � NH implies that

C1 D NH , and consequently C2 D NL.

(5). Let cR < ' and sR > 0. Then Class CR is in Group G, and each CR-player

gets .wi � sR/CmSG , where SG is the total contribution in Group G. If i 2 CR

reduces her contribution from sR to 0, her payoff becomes wi Cm.SG � sR/ >

.wi � sR/CmSG . Therefore, sR D 0 in equilibrium when cR < '.

Let zcR D 0 and sR > 0. Consider any CR-player. If she reduces her contri-

bution from sR to 0, she enters the Group G, but is still grouped with .' � 1/

players contributing sR, so that her payoff increases by deviating this way. ut

We are now ready to prove Theorem 4.
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Proof of Theorem 4. It follows from Lemma 3 that jC j > 2 in any equilibrium

with positive contributions. Since jC j 6 n in any equilibrium, we can charac-

terise the last class CR, which can only take one of the following three forms:

1. cR D DR � ' C zcR, where DR > 1, and zcR > 0;

2. cR < '; or

3. cR D DR � ', where DR > 1.

Also note that sR 6 1 in any equilibrium because of the existence of Lows. The

proof will be given by the following four claims:

Claim 1. If (1) holds, then the equilibrium candidate is a FEE.

Let cR D DR � ' C zcR > ' with zcR > 0, and suppose that sR < 1. Since

zcR > 0 and n D G', we have cR ¤ n. So there exists at least one class CR�1

before CR satisfying sR�1 > sR. In this case, each CR-player has an incentive

to increase her contribution so that she can be grouped with the CR�1-players

with certainty. In equilibrium it must be that each CR-player cannot increase

her contribution further, i.e., sR D 1 and CR\NH D ¿. Therefore, C1 is the im-

mediate predecessor class of CR by Lemma A.1 (c), i.e., jC j D 2. Lemma A.1 (d)

implies that this is a FEE.

Claim 2. If (2) holds, then the equilibrium candidate is a NEE.

Suppose that cR < ' in equilibrium. In this case jC j > 3 since jC j D 2 implies

that cR D nL > ' by Lemma A.1 (d). Also note that sR D 0 by Lemma A.1 (e).

Consider Class CR�1. There are three cases to consider:

Case i: cR�1 C cR 6 '. See Figure A.2(i). This is impossible since CR�1 is in the

last group and any CR�1-player has an incentive to reduce her contribution

for the same reason as in Lemma A.1 (e).

Case ii: cR�1 C cR > ' and zcR�1 C zcR D '. See Figure A.2(ii). With the follow-

ing two steps we show that in this case sR�1 D 1:

Assume first that sR�1 > 1. Then Lows cannot be in CR�1 or the classes, if

any, before CR�1 since s1 > � � � > sR�1 > 1, which means that nL 6 cR < '.

This contradicts Assumption B that nL > '.

Next assume that sR�1 < 1 and consider any player i 2 CR�1. If player i

contributes si D sR�1 < 1, her expected payoff is

wi � sR�1
Cm

n�
1 � PsR�1.G/

�
'sR�1

C PsR�1.G/zcR�1sR�1
o

< wi � sR�1
Cm'sR�1

since zcR�1 < '. But if she increases her contribution from sR�1 to sR�1C" <

minf1; sR�2g, she enters the first group in class CR�1, and gets

.wi � sR�1
� "/Cm.'sR�1

C "/ D .wi � sR�1/Cm'sR�1
� .1 �m/";
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CRCR�1CR�2

sR D 0

Group G(i)

CRCR�1CR�2

sR D 0sR�1 D 1

(ii)

CRCR�1CR�2

sR D 0sR�1 D 1

(iii)

Figure A.2. The last class CR

which is greater than her original payoff as long as " is small enough.

The above two steps proved that sR�1 D 1 when cR�1 C cR > ' and zcR�1 C

zcR D '. It follows from Lemma A.1 (c) that C1 is the immediate predecessor

class of CR�1; that is, jC j D 3. The fact that
S3

rD1 Cr D N implies:

n D c1 C c2 C c3

D .D1 CD2 CD3/ ' C
�
zc1 C zc2 C zc3

�
h1i
D .D1 CD2 CD3/ ' C

�
zc1 C '

�
D .D1 CD2 CD3 C 1/ ' C zc1;

where h1i holds because zc2 C zc3 D '. The above equation implies that n is

not a multiple of the group size ' because 0 < zc1 < ' from Lemma A.1(a).

This contradicts the assumption at the beginning of Section 3.1 that n D G',

where G 2 N.

Case iii: cR�1 C cR > ' and zcR�1 C zcR ¤ '. See Figure A.2(iii). In this case,

sR�1 D 1 and CR�1 � NL, otherwise any CR�1-player will increase her con-

tribution so that she can be grouped with CR�2-players and avoid entering

the last group. Lemma A.1 (c) implies that C1 is the immediate predecessor

class of CR�1, i.e., jC j D 3. We know the composition of the first two classes

in terms of their members’ endowments but we do not know for sure the

composition of the third class, that we cannot exclude the possibility that

NH \ C3 ¤ ¿ or that NL \ C3 ¤ ¿, so that C1 � NH and C3 � NH [NL.

Claim 3. If (3) holds, then there is an equilibrium candidate, called E 0, which is

not an equilibrium.

Suppose that cR D DR � '. We first verify that jC j ¤ 2: if jC j D 2, then c1 D

n � c2 D .G �D2/ ', which implies that zc1 D 0, and contradicts Lemma A.1(a).
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C3C2C1

Figure A.3. zcR D 0

We next show that jC j D 3 if cR D DR � '. Note that jC j > 3 and sR D 0

[Lemma A.1 (e)] imply zcR�1 > 0 and cR�1 > ', else any CR�1-player has an

incentive to reduce her contribution, which further implies that sR�1 D 1 and

CR�1 � NL since each CR�1-player wants to be grouped with CR�3-players.

Once again, Lemma A.1 (c) implies that C1 is the immediate predecessor class

of CR�1; thus, the equilibrium structure is as in Figure A.3.

We will prove in Claim 4 that E 0 is not an equilibrium, but for now, we

content ourselves with proving that C3 � NL: Suppose there exists a player

i such that i 2 C3 \ NH . It follows that her payoff is H . But if she deviates

and contributes 1C ", she enters group .D1 C 1/, and since there exists at least

one player contributing H in Group .D1 C 1/ by Lemma A.1(a), player i can

guarantee

.H � 1 � "/CmŒH C .' � 2/C .1C "/� > H C .m' � 1/ � .1 �m/" > H;

when " < .m'�1/=.1�m/, where the first strict inequality holds because H > 1,

and the second one can hold because m' > 1. This proves that C3 � NL.

Because
S3

rD1 Cr D NH [ NL D N , C2 � NL, and C3 � NL, we thus have

C1 D NH and C2 [ C3 D NL.7

Claim 4. E 0 is not an equilibrium.

E 0 is an equilibrium if and only if:

� Player i 2 C3 � NL has no incentive to increase her contribution from 0 to

1;

� Player i 2 C2 � NL has no incentive to reduce her contribution from 1 to 0;

� Player i 2 C1 D NH has no incentive to reduce her contribution from H to

1C ", 1, or 0, where "! 0.

Here below we examine the incentives of all players starting with the last class,

and will show that there exists no equilibrium satisfying all these constraints.

Recall from Claim 3 that if E 0 is an equilibrium, we must have (i) c3 D D3 �',

and (ii) c2 C c3 D nL since C2 [ C3 D NL. Let b D .B �D3/ '. This allows us to

write c2 as follows:

c2 D nL � c3 D .B' C `/ �D3 � ' D b C `:

7More precisely, i 2 NH ) i … NL ) i … C2 [C3 ) i 2 C1, so that NH � C1. Combining

this conclusion with the fact that C1 � NH in Lemma A.1 (b) results in C1 D NH .
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Incentives to Deviate for C3-Players in E 0. Consider any player i 2 C3 � NL.

Her payoff from contributing 0 is U L
0 .C3/ D 1. If i wants to deviate, she should

contribute si D 1; then there would be .c2 C 1/ players contributing 1, and i

would enter Group AC 1; : : : ; ACD2C 2 with positive probabilities, which are:

P1.k/ D

„
`=.c2 C 1/ if k D AC 1;

'=.c2 C 1/ if k D AC 2; : : : ; ACD2 C 1;

1=.c2 C 1/ if k D ACD2 C 2:

Because
PACD3C2

kDAC1
P1.k/ D 1, we have

ACD3C1X
kDAC2

P1.k/ D 1 � P1.AC 1/ � P1.ACD3 C 2/ D
c2 � `

c2 C 1
D

b

b C `C 1
:

Recall that SAC1 D hHC`, so that player i ’s expected payoff from contributing

1 is

U L
1 .C3/ D m

24P1.AC 1/SAC1
C

ACD3C1X
kDAC2

P1.k/' C P1.ACD3 C 2/

35
D m

�
`

c2 C 1
SAC1

C
c2 � `

c2 C 1
' C

1

c2 C 1

�
D

�
m

b C `C 1

�
.`SAC1

C b' C 1/:

Therefore, player i 2 C3 has no incentive to deviate if and only if U L
0 .C3/ >

U L
1 .C3/; that is

(A.1) b 6
`C 1 �m`SAC1 �m

m' � 1
:

The above equation shows that there cannot be too many players in Class C2

(recall that c2 D b C `), else some players in class C3 will have an incentive to

try to go to C2.

Incentives to Deviate for C2-Players in E 0. Consider any player i 2 C2 � NL. If i

contributes 1, she enters Group AC1; : : : ; ACD2C1 with positive probabilities,

which are:

P1.k/ D

˚
`=c2 if k D AC 1

'=c2 if k D AC 2; : : : ; ACD2 C 1:

Her expected payoff is

U L
1 .C2/ D m

�
`

c2

SAC1
C

c2 � `

c2

'

�
D

�
m

b C `

�
.`SAC1

C b'/:

If i 2 C2 wants to deviate, she will contribute "! 0 in order to stay in Group

.ACD2 C 1/, and her expected payoff is

lim
"!0

U L
" .C2/ D lim

"!0

�
1Cm.' � 1/ � .1 �m/"

�
D 1Cm.' � 1/:
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Therefore, i 2 C2 has no incentive to deviate if and only if

U L
1 .C2/ > lim

"!0
U L

" .C2/;

that is,

(A.2) b 6
m`SAC1 �

�
1Cm' �m

�
`

1 �m
:

The reason why b cannot be very large is as follows: Consider i 2 C2. If b

is large, her probability of entering Group .A C 1/ is small, and her expected

payoff from contributing 1 is small, so that her incentive to deviate is large.

Note that by Claim 3, we also require b > ', otherwise i 2 C2 will reduce her

contribution. Combining this requirement, (A.1), and (A.2), we observe that m

has to satisfy the following conditions:

(A.3)
' C `

`SAC1 � `' C ' C `
6 m 6

' C `C 1

`SAC1 C '2 C 1
:

The intuition behind (A.3) is as follows: m is the return from the group

investment, so it cannot be very small because if it is very small C2-players

will have no incentive to contribute. At the same time, m cannot be very large

because this would give C3-players an incentive to contribute. These two con-

straints determine the bounds of m in (A.3).

For ease of expression, define

' C `

`SAC1 � `' C ' C `
D m; and

' C `C 1

`SAC1 C '2 C 1
D m:

It follows from (A.3) that m 6 m; thus given all other parameters, SAC1 must

satisfy

SAC1 >
�`2 � `' C `2' � '2 C 2`'2 C '3

`
:

Substituting the above inequality to m, we obtain

(A.4) m 6
1C `C '

1 � `2 � `' C `2' C 2`'2 C '3
:

Incentives to Deviate for C1-Players in E 0. Note that C1 D NH in E 0. We have

shown in Section 3.1 that a C1-player has no incentive to reduce her contribu-

tion from H to 1C " if and only if

(6) h 6 nH

�
1 �

M

`

�
:

It can be seen that if (6) holds, then 1 �M=` > 0, which means that

(A.5) m >
1

`C 1
:

E 0 is not an equilibrium because (A.4) and (A.5) are incompatible: If E 0 is an

equilibrium, m must satisfy 1= .`C 1/ < m 6 m, so we must have 1= .`C 1/ < m;
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however,

m �
1

`C 1
6

�`
�
' � 2

�
�
�
'2 � '

�
.1C `/

�
1C `.' � 1/C '2 � '

� < 0:

A contradiction.

Conclusion: Equilibrium candidate E 0 is not an equilibrium. ut

Appendix B. The Results when Assumption B Fails

In this appendix, we discuss briefly the consequences when Assumption B fails.

Lemma B.1. If there exists an equilibrium when 0 < nH < ', then jC j D 2,

C1 � NL, C2 � NH [NL, c2 < ', s1 D 1, and s2 D 0.

Proof. By Lemma A.1 (a) and (b), zc1 > 0 and c1 > ' in equilibrium, so s1 D 1

and C1 \NH D ¿. A similar argument as in Lemma A.1 (c) shows that there is

no class Cr satisfying 0 < sr < s1 D 1, so we conclude immediately that jC j D 2

and s2 D 0. Since jC j D 2, we conclude that NH � C2; since s2 D 0, we conclude

that c2 < ', otherwise some player i 2 C2 will increase her contribution. ut

Lemma B.2. There is no equilibrium with positive contributions when nH D '.

Proof. A similar argument as in Lemma B.1 shows that jC j D 2, s1 D 1, s2 D 0,

and NH � C1. Since zc1 > 0, there are some low types contribute nothing, which

means that there are more than ' players in class C2. Therefore, there does

not exist an equilibrium with positive contributions in this case. ut

The cases that 0 < nL < ' and nL D ' are easy to analyze, and I omit the

proofs.

Lemma B.3. If there is an equilibrium when nH D A' and A 2 f2; 3; : : : ; G � 2g,

then jC j D 3, C1 ¨ NH , C2 � NL, C3 � NL [NH , zc1 > 0, c2 C c3 > ', zc2 C zc3 > 0,

c3 < ', s1 D H , s2 D 1, and s3 D 0.

Proof. This case is not very special. By Lemma A.1 (a), zc1 > 0 and c1 > ', so

some players from NH are not in C1 and s2 D 1. Because s2 D 1, we know

C2 [ NH D ¿ and si D 0 for all i 2 NH X C1, which implies i 2 C3 for all

i 2 NH X C1 and s3 D 0. We have shown in Claim 4 that zc3 D 0 is impossible,

so c3 < '. ut

References

[1] Acemoglu, Daron and James A. Robinson (2006) Economic Origins of Dictatorship and

Democracy, Cambridge, Massachusetts: Cambridge University Press. [1, 4]

[2] Arrow, Kenneth J. (1974) The Limits of Organization, The Fels Lectures on Public Policy

Analysis, New York: Norton. [1]



28

[3] Barzel, Yoram (2002) A Theory of the State: Economic Rights, Legal Rights, and the Scope

of the State, Political Economy of Institutions and Decisions, Cambridge, Massachusetts:

Cambridge University Press. [18]

[4] Bergstrom, Theodore, Lawrence Blume, and Hal Varian (1986) “On the Private Provi-

sion of Public Goods,” Journal of Public Economics, 29 (1), pp. 25–49. [3]

[5] Besley, Timothy and Torsten Persson (2011) Pillars of Prosperity: The Political Econom-

ics of Development Clusters, The Yrjö Jahnsson Lectures, Princeton, New Jersey: Princeton

University Press. [1, 4]

[6] Chatterjee, Kalyan, Bhaskar Dutta, Debraj Ray, and Kunal Sengupta (1993) “A

Noncooperative Theory of Coalitional Bargaining,” Review of Economic Studies, 60 (2), pp.

463–477. [18]

[7] Clarke, Edward H (1971) “Multipart Pricing of Public Goods,” Public Choice, 11 (1), pp.

17–33. [3]

[8] Coleman, James S. (1974) Power and the Structure of Society, New York: W. W. Norton. [1]

[9] Dixit, Avinash and Mancur Olson (2000) “Does Voluntary Participation Undermine the

Coase Theorem?” Journal of Public Economics, 76 (3), pp. 309–335. [18]

[10] Esteban, Joan and Debraj Ray (2001) “Collective Action and The Group Size Paradox,”

American Political Science Review, 95 (3), pp. 663–672. [18]

[11] (2008) “On the Salience of Ethnic Conflict,” American Economic Review, 98 (5), pp.

2185–2202. [4]

[12] (2011) “A Model of Ethnic Conflict,” Journal of the European Economic Association,

9 (3), pp. 496–521. [4]

[13] Foley, Duncan K. (1970) “Lindahl’s Solution and the Core of an Economy with Public

Goods,” Econometrica, 38 (1), pp. 66–72. [3]

[14] Green, Jerry R. and Jean-Jacques Laffont (1979) Incentives in Public Decision-Marking,

Amsterdam: North-Holland. [3]

[15] Grossman, Gene M. and Elhanan Helpman (2001) Special Interest Politics, Cambridge,

Massachusetts: MIT Press. [18]

[16] Groves, Theodore (1973) “Incentives in Terms,” Econometrica, 41 (4), pp. 617–663. [3]

[17] Gunnthorsdottir, Anna, Roumen Vragov, Stefan Seifert, and Kevin McCabe (2010)

“Near-Efficient Equilibrium in Contribution-Based Competitive Grouping,” Journal of Pub-

lic Economics, 94 (11-12), pp. 987–994. [3]

[18] Hardy, G. H. and E. M. Wright (2008) An Introduction to the Theory of Numbers, New

York: Oxford University Press, 6th edition. [4]

[19] Hyndman, Kyle and Debraj Ray (2007) “Coalition Formation with Binding Agreements,”

Review of Economic Studies, 74 (4), pp. 1125–1147. [18]

[20] Laffont, Jean-Jacques (1987) “Incentives and the Allocation of Public Goods,” in Alan J.

Auerbach and Martin Feldstein eds. Handbook of Public Economics, 2, Amsterdam: North-

Holland, Chap. 10, pp. 537–569. [3]

[21] Lindahl, Erik (1919) “Just Taxation—A Positive Solution,” in Richard A. Musgrave and

Alan T. Peacock eds. Classics in the Theory of Public Finance [1967, Reprinted], New York:

St. Martin’s Press, pp. 168–176. [3]



29

[22] Maskin, Eric S. (2003) “Bargaining, Coalition and Externalities,” Presidential Address to

the Econometric Society. [18]

[23] North, Douglass C., John Joseph Wallis, and Barry R. Weingast (2009) Violence and

Social Orders: A Conceptual Framework for Interpreting Recorded Human History, Cam-

bridge, Massachusetts: Cambridge University Press. [1, 2]

[24] Olson, Mancur (1965) The Logic of Collective Action: Public Goods and the Theory of

Groups, 124 of Harvard Economic Studies, Cambridge, Massachusetts: Harvard University

Press. [1, 2, 18]

[25] (1982) The Rise and Decline of Nations: Economic Growth, Stagflation, and Social

Rigidities, New Haven and London: Yale University Press. [2]

[26] Ray, Debraj (2007) A Game-Theoretic Perspective on Coalition Formation, The Lipsey Lec-

tures, Oxford: Oxford University Press. [3, 18]

[27] Ray, Debraj and Rajiv Vohra (1997) “Equilibrium Binding Agreements,” Journal of Eco-

nomic Theory, 73 (1), pp. 30–78. [18]

[28] (1999) “A Theory of Endogenous Coalition Structures,” Games and Economic Behav-

ior, 26 (2), pp. 286–336. [18]

[29] (2001) “Coalitional Power and Public Goods,” Journal of Political Economy, 109 (6),

pp. 1355–1384. [18]

[30] Roberts, Donald John (2004) The Modern Firm: Organizational Design for Performance

and Growth, New York: Oxford University Press. [2]

[31] Samuelson, Paul A. (1954) “The Pure Theory of Public Expenditure,” Review of Economics

and Statistics, 36 (4), pp. 387–389. [3]

[32] Scotchmer, Suzanne (2002) “Local Public Goods and Clubs,” in Alan J. Auerbach and

Martin Feldstein eds. Handbook of Public Economics, Volume 4: North-Holland, Chap. 29,

pp. 1997–2042. [3]


