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1. Pure Strategies

1.1. The Battle of the Sexes (BOS, for abbreviation)
1.1.1. The Payoff Matrix
We can use Figure 1.1 to represent the BOS game. The rows of the table rep-
resent the possible actions B [“boxing”] and O [“Opera”] for Husband, and the
columns represent the actions B and O of Wife.

In each cell, the upper left entry (the blue one) is the payoff to Husband,
while the lower right entry (the red one) is the payoff to Wife.
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Figure 1.1: The Battle of the Sexes

1.1.2. How to Find A Nash Equilibrium:

Definition 1.1 (Nash equilibrium). A pair of players’ actions that are best
responses to each other.

To find a Nash equilibrium of BOS, we need to identify each player’s best
response to each of the other’s actions. We could start by identifying Husband’s
best responses to each of Wife’s two possible actions. Then we could identify
Wife’s best responses to each of Husband’s two possible actions. If any two of
the actions we identify are best responses to each other then we will have found
an action pair that constitutes a Nash equilibrium.

Jianfei Shen: jianfei.shen@unsw.edu.au

March 9, 2010

http://jianfeishen.weebly.com


The trick then is to identify both players’ best response actions. The way
we will do this here is by drawing boxes on the payoffs corresponding to each
player’s best response to each of the actions of the other. If we follow this pro-
cedure for each player then any cell where both payoffs are boxed will identify
a Nash equilibrium.

Step 1 If Wife chooses B , then Husband’s best response is to choose B ; by

choosing B his payoff is 3 whereas he only gets 0 by choosing O . So in the
Matrix BOS-1 I have boxed Husband’s payoff 3.

Husband

Wife

B

B 3

O 0

BOS-1

Step 2 If Wife chooses O then Husband’s best response is O . So I have boxed

his payoff 1 in the Matrix BOS-2.

Husband

Wife

O

B 0

O 1

BOS-2

Step 3 If Husband chooses B then Wife’s best response is B . So I have boxed

her payoff 1 in BOS-3.

Step 4 If Husband chooses O then Wife’s best response is O . So I have boxed

her payoff 3 in BOS-4.

Step 5 In Matrix BOS-5, both players’ best response payoffs are boxed. Find

the cells with two boxes. The Nash equilibria in this game are

.B; B/ and .O; O/:
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BOS-3

Husband

Wife

B O

O
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BOS-4

1.2. Matching Pennies: There is no (pure) NE because there are
no action pairs where the actions are best responses to
each other

1.3. Find the (pure) Nash equilibria in the game of chicken and
stag hunt
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BOS-5
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Player 1

Player 2

H T

H 1
� 1

�1

1

T
�1

1
1

� 1

Matching Pennies

Player 1

Player 2

Swerve Straight

Swerve 0
0

�1
1

Straight 1
� 1

�2
� 2

The Game of Chicken

1.4. Rock, Paper, Scissors: There is no NE

2. Mixed Strategies

Example 2.1. If a player is choosing between two actions called left and
right, one possible mixed strategy would be to choose left with probability
1=4 and right with probability 3=4. This particular mixed strategy could
then be written in shorthand either as�

1

4
;

3

4

�
or

1

4
left C

3

4
right:

Hunter 1

Hunter 2

Stag Rabbit

Stag
2

2
0

1

Rabbit
1

0
1

1

Stag Hunt
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Child 1

Child 2

Rock Paper Scissors

Rock 0
0

�1

1
1

� 1

Paper 1
� 1

0
0

�1

1

Scissors
�1

1
1

� 1

0
0

Rock, Paper, Scissors

2.1. BOS
The intuitive argument goes like this: if either player chooses a mixed strategy
then they must be indifferent between playing either of their pure actions. If
not, then one pure action would be preferred and they would choose that rather
than randomising [maybe an example is needed here]. According to this logic
for a mixed strategy to be part of a Nash equilibrium for Husband, he must be
indifferent between choosing B or O . If this is the case his expected payoff
from choosing B must be the same as his expected payoff from choosing O .
Similarly, if Wife chooses a mixed strategy, her expected payoff from choosing
B must be the same as her expected payoff from B .

Husband

Wife

B Œx� O Œ1 � x�

B Œy�
3

1
0

0

O Œ1 � y�
0

0
1

3

BOS

Step 1

� Given Wife’s mixed strategy .x; 1 � x/, Husband gets

3 � x C 0 � .1 � x/ D 3 � x if he plays B

0 � x C 1 � .1 � x/ D 1 � x if he plays O .

� Husband must be indifferent between B and O ; hence

3 � x D 1 � x;

which solves for x D 1
4
.
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� Therefore, Wife’s mixed strategy is

.x; 1 � x/ D

�
1

4
;

3

4

�
: Wife plays B with probability 1=4, and plays O with probability 3=4.

Step 2

� Given Husband’s mixed strategy .y; 1 � y/, Wife gets

1 � y C 0 � .1 � y/ D 1 � y D y if she plays B

0 � y C 3 � .1 � y/ D 3 � .1 � y/ if she plays O .

� Wife must be indifferent between B and O ; hence

y D 3 � .1 � y/

which solves for y D 3
4
.

� Therefore, Husband’s mixed strategy is

�
y; 1 � y

�
D

�
3

4
;

1

4

�
: Husband plays B with probability

3

4
, and plays O with probability

1

4
.

Step 3 In sum, the mixed NE in this game is

�
3

4
;

1

4

�
;

Husband

�
1

4
;

3

4

�
Wife :

Sometimes, we write the mixed NE as�
3

4
B C

1

4
O;

1

4
B C

3

4
O

�
:

2.2. Matching Pennies

Child 1

Child 2

H Œx� T Œ1 � x�

H Œy�
1

� 1
�1

1

T Œ1 � y�
�1

1
1

� 1

Matching Pennies
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Step 1

� Given Player 2’ mixed strategy .x; 1 � x/, Player 1 gets

if he plays H

if he plays T

� Player 1 must be indifferent between H and T ; hence

;

which solves for x D .

� Therefore, Player 2’s mixed strategy is : he plays H with
prob. , and plays T with prob. .

Step 2

� Given Player 1’ mixed strategy .y; 1 � y/, Player 2 gets

if he plays H

if he plays T

� Player 2 must be indifferent between H and T ; hence

;

which solves for y D .

� Therefore, Player 1’s mixed strategy is : he plays H with
prob. , and plays T with prob. .

Step 3 In sum, the mixed NE in this game is

;
Player 1 Player 2

We can also express the mixed NE as

2.3. Rock, Paper, Scissors

Step 1

� Given Player 2’s mixed strategy .a; b; 1 � a � b/, Player 1 gets8̂̂<̂
:̂

Œ0 � a�C
�
.�1/ � b

�
C
�
1 � .1 � a � b/

�
D 1 � a � 2b if he plays Rock

Œ1 � a�C Œ0 � b�C
�
.�1/ � .1 � a � b/

�
D 2aC b � 1 if he plays Paper�

.�1/ � a
�
C Œ1 � b�C

�
0 � .1 � a � b/

�
D �aC b if he plays Scissors.

7



Child 1

Child 2

Rock Œa� Paper Œb� Scissors Œ1 � a � b�

Rock
Œc�

0
0

�1
1

1
� 1

Paper
Œd �

1
� 1

0
0

�1
1

Scissors
Œ1 � c � d�

�1
1

1
� 1

0
0

Rock, Paper, Scissors

� Player 1 should be indifferent among Rock, Paper, and Scissors; therefore,8<:1 � a � 2b D 2aC b � 1; Player 1 is indifferent between Rock and Paper

1 � a � 2b D �aC b; Player 1 is indifferent between Rock and Scissors

Subtract the second equation from the first equation, we get

0 D 3a � 1;

which solves for a D 1
3
. Input a D 1

3
into the second equation,1 and we

get

b D
1

3
I

hence,

1 � a � b D 1 �
1

3
�

1

3
D

1

3
:

� Therefore, Player 2’s mixed strategy is

.a; b; 1 � a � b/ D

�
1

3
;

1

3
;

1

3

�
:

Step 2

� Given Player 1’s mixed strategy .c; d; 1 � c � d/, Player 1 gets

if he plays Rock

if he plays Paper

if he plays Scissors

1Actually, we can get b D 1
3

from the second equation immediately; however, here I provide a
general way so that you can solve such kind of problems.
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� Player 1 should be indifferent among Rock, Paper, and Scissors; therefore,

Solve this problem, and we get

.c; d; 1 � c � d/ D :

Step 3 In sum, the mixed NE in this game is

:
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