1. INTRODUCTION

Jianfei Shen

School of Economics, The University of New South Wales, Sydney 2052, Australia

You can download the notes from http://jianfeishen.weebly.com

1. Pure Strategies

1.1. The Battle of the Sexes (BOS, for abbreviation)
 1.1.1. The Payoff Matrix

We can use Figure 1.1 to represent the BOS game. The rows of the table represent the possible actions B ["boxing"] and O ["Opera"] for Husband, and the columns represent the actions B and O of Wife.

In each cell, the upper left entry (the blue one) is the payoff to Husband, while the lower right entry (the red one) is the payoff to Wife.

Figure 1.1: The Battle of the Sexes

1.1.2. How to Find A Nash Equilibrium:

Definition 1.1 (Nash equilibrium). A pair of players' actions that are best responses to each other.

To find a Nash equilibrium of BOS, we need to identify each player's best response to each of the other's actions. We could start by identifying Husband's best responses to each of Wife's two possible actions. Then we could identify Wife's best responses to each of Husband's two possible actions. If any two of the actions we identify are best responses to each other then we will have found an action pair that constitutes a Nash equilibrium.

[^0]The trick then is to identify both players' best response actions. The way we will do this here is by drawing boxes on the payoffs corresponding to each player's best response to each of the actions of the other. If we follow this procedure for each player then any cell where both payoffs are boxed will identify a Nash equilibrium.

Step 1 If Wife chooses B, then Husband's best response is to choose B; by choosing B his payoff is 3 whereas he only gets 0 by choosing O. So in the Matrix BOS-1 I have boxed Husband's payoff 3.

Step 2 If Wife chooses O then Husband's best response is O. So I have boxed his payoff 1 in the Matrix BOS-2.

Wife

BOS-2

Step 3 If Husband chooses B then Wife's best response is B. So I have boxed her payoff 1 in BOS-3.

Step 4 If Husband chooses O then Wife's best response is O. So I have boxed her payoff 3 in BOS-4.

Step 5 In Matrix BOS-5, both players' best response payoffs are boxed. Find the cells with two boxes. The Nash equilibria in this game are

$$
(B, B) \text { and }(O, O)
$$

1.2. Matching Pennies: There is no (pure) NE because there are no action pairs where the actions are best responses to each other
1.3. Find the (pure) Nash equilibria in the game of chicken and stag hunt

1.4. Rock, Paper, Scissors: There is no NE

2. Mixed Strategies

Example 2.1. If a player is choosing between two actions called left and right, one possible mixed strategy would be to choose left with probability $1 / 4$ and right with probability $3 / 4$. This particular mixed strategy could then be written in shorthand either as

$$
\left(\frac{1}{4}, \frac{3}{4}\right)
$$

or

$$
\frac{1}{4} l e f t+\frac{3}{4} r i g h t .
$$

Child 2

2.1. BOS

The intuitive argument goes like this: if either player chooses a mixed strategy then they must be indifferent between playing either of their pure actions. If not, then one pure action would be preferred and they would choose that rather than randomising [maybe an example is needed here]. According to this logic for a mixed strategy to be part of a Nash equilibrium for Husband, he must be indifferent between choosing B or O. If this is the case his expected payoff from choosing B must be the same as his expected payoff from choosing O. Similarly, if Wife chooses a mixed strategy, her expected payoff from choosing B must be the same as her expected payoff from B.

Step 1

- Given Wife's mixed strategy $(x, 1-x)$, Husband gets

$$
\begin{array}{ll}
3 \cdot x+0 \cdot(1-x)=3 \cdot x & \text { if he plays } B \\
0 \cdot x+1 \cdot(1-x)=1-x & \text { if he plays } O
\end{array}
$$

- Husband must be indifferent between B and O; hence

$$
3 \cdot x=1-x
$$

which solves for $x=\frac{1}{4}$.

- Therefore, Wife's mixed strategy is
$(x, 1-x)=\left(\frac{1}{4}, \frac{3}{4}\right):$ Wife plays B with probability $1 / 4$, and plays O with probability $3 / 4$.

Step 2

- Given Husband's mixed strategy ($y, 1-y$), Wife gets

$$
\begin{array}{ll}
1 \cdot y+0 \cdot(1-y)=1 \cdot y=y & \text { if she plays } B \\
0 \cdot y+3 \cdot(1-y)=3 \cdot(1-y) & \text { if she plays } O
\end{array}
$$

- Wife must be indifferent between B and O; hence

$$
y=3 \times(1-y)
$$

which solves for $y=\frac{3}{4}$.

- Therefore, Husband's mixed strategy is

$$
(y, 1-y)=\left(\frac{3}{4}, \frac{1}{4}\right): \text { Husband plays } B \text { with probability } \frac{3}{4} \text {, and plays } O \text { with probability } \frac{1}{4}
$$

Step 3 In sum, the mixed NE in this game is

$$
\begin{aligned}
& \left(\frac{3}{4}, \frac{1}{4}\right), \\
& \text { Husband } \left.\frac{1}{4}, \frac{3}{4}\right) \\
& \text { Wife } .
\end{aligned}
$$

Sometimes, we write the mixed NE as

$$
\left(\frac{3}{4} B+\frac{1}{4} O, \frac{1}{4} B+\frac{3}{4} O\right) .
$$

2.2. Matching Pennies

Child 2

Step 1

- Given Player 2' mixed strategy $(x, 1-x)$, Player 1 gets
\qquad if he plays H
\qquad if he plays T
- Player 1 must be indifferent between H and T; hence
\qquad ,
which solves for $x=$ \qquad .
- Therefore, Player 2's mixed strategy is \qquad : he plays H with prob. \qquad , and plays T with prob. \qquad .

Step 2

- Given Player 1' mixed strategy $(y, 1-y)$, Player 2 gets
\qquad if he plays H
\qquad if he plays T
- Player 2 must be indifferent between H and T; hence
\qquad ,
which solves for $y=$ \qquad .
- Therefore, Player 1's mixed strategy is \qquad : he plays H with prob. \qquad , and plays T with prob. \qquad .

Step 3 In sum, the mixed NE in this game is

$$
\text { Player 1 } '=\text { Player } 2
$$

We can also express the mixed NE as \qquad

2.3. Rock, Paper, Scissors

Step 1

- Given Player 2's mixed strategy $(a, b, 1-a-b)$, Player 1 gets

$$
\begin{cases}{[0 \cdot a]+[(-1) \cdot b]+[1 \cdot(1-a-b)]=1-a-2 b} & \text { if he plays Rock } \\ {[1 \cdot a]+[0 \cdot b]+[(-1) \cdot(1-a-b)]=2 a+b-1} & \text { if he plays Paper } \\ {[(-1) \cdot a]+[1 \cdot b]+[0 \cdot(1-a-b)]=-a+b} & \text { if he plays Scissors. }\end{cases}
$$

Child 2

Child 1

	Rock [a]		Paper [b]	Scissors [1-a-b]
$\underset{[c]}{\operatorname{Rock}}$	0	0	-1 1	$\begin{array}{ll} 1 & \\ & -1 \end{array}$
Paper [d]	1	- 1	0 0	-1
$\begin{gathered} \text { Scissors } \\ {[1-c-d]} \end{gathered}$	-1	1	1 -1	0 0

Rock, Paper, Scissors

- Player 1 should be indifferent among Rock, Paper, and Scissors; therefore,
$\begin{cases}1-a-2 b=2 a+b-1, & \text { Player } 1 \text { is indifferent between Rock and Paper } \\ 1-a-2 b=-a+b, & \text { Player } 1 \text { is indifferent between Rock and Scissors }\end{cases}$
Subtract the second equation from the first equation, we get

$$
0=3 a-1,
$$

which solves for $a=\frac{1}{3}$. Input $a=\frac{1}{3}$ into the second equation, ${ }^{1}$ and we get

$$
b=\frac{1}{3}
$$

hence,

$$
1-a-b=1-\frac{1}{3}-\frac{1}{3}=\frac{1}{3}
$$

- Therefore, Player 2's mixed strategy is

$$
(a, b, 1-a-b)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

Step 2

- Given Player 1's mixed strategy $(c, d, 1-c-d)$, Player 1 gets

	if he plays Rock
	if he plays Paper
if he plays Scissors	

[^1]- Player 1 should be indifferent among Rock, Paper, and Scissors; therefore,

Solve this problem, and we get

$$
(c, d, 1-c-d)=
$$

\qquad .

Step 3 In sum, the mixed NE in this game is

[^0]: JIANFEI SHEN: jianfei.shen@unsw.edu.au

[^1]: ${ }^{1}$ Actually, we can get $b=\frac{1}{3}$ from the second equation immediately; however, here I provide a general way so that you can solve such kind of problems.

