4. Mixed strategy and dominance

JiANFEI SHEN

School of Economics, The University of New South Wales, Sydney 2052, Australia

Exercise 1.

Nash Equilibrium

		Player 2	
		$\begin{gathered} E \\ {[z]} \end{gathered}$	$\begin{gathered} F \\ {[1-z]} \end{gathered}$
Player 1	$\begin{array}{r} A \\ {[x]} \end{array}$	5 4	54
	$\begin{array}{r} B \\ {[y]} \end{array}$	8 3	19
	$\begin{array}{r} C \\ {[1-x-y]} \end{array}$	3 6	72

As you can see from Matrix A-1, there is no pure Nash equilibrium. To find the mixed Nash equilibria, we suppose Player 1 plays

$$
\begin{cases}A & \text { with probability } x \\ B & \text { with probability } y \\ C & \text { with probability } 1-x-y\end{cases}
$$

that is, we suppose that Player 1's mixed strategy is

Similarly, we can assume that Player 2 takes the following mixed strategy [according to Matrix A-1]:

[^0]Step 1 If Player 2 plays a mixed strategy, then he must be indifferent between E or F; hence Player 2 must get the same payoffs from playing E and F. His payoff from playing E is
\qquad ;
his payoff from playing F is

These two payoffs are equal, so we know $x=1-5 y / 2$.
Step 2 According to the above equation, there are three cases:

- $x=0$. In this case, Player 1 does not play A.
- $x \in(0,1)$, which means that $y \in(0,2 / 5)$. In this case, Player 1 plays A and B randomly [he may or may not play C; we have no idea at this stage].
- $x=1$, which means that $y=0$. In this case, Player 1 plays A deterministically.

Step 3 If $x=1$, then A is Player 1's best response against to Player 2's mixed strategy ($z, 1-z$); thus,

$$
\left\{\begin{array}{l}
A \text { is better than } B \Rightarrow \\
A \text { is better than } C \Rightarrow
\end{array}\right.
$$

\qquad
i.e., $1 / 2 \leqslant z \leqslant 4 / 7$.

Step 4 Check by yourself that

$$
\left\{(A, z \cdot E+(1-z) \cdot F) \left\lvert\, \frac{1}{2} \leqslant z \leqslant \frac{4}{7}\right.\right\}
$$

is a set of Nash equilibria.
Step 5 If $x=0$, then $y=2 / 5$ and $1-x-y=1-0-2 / 5=3 / 5$; that is, Player 1 plays B with probability $2 / 5$, and plays C with probability $3 / 5$. In this case, Player 1 must get the same payoffs from playing B and C, i.e.,

$$
8 \cdot z+1 \cdot(1-z)=3 \cdot z+7 \cdot(1-z)
$$

which solves for $z=6 / 11$.
While getting

$$
8 \times \frac{6}{11}+1 \times\left(1-\frac{6}{11}\right)=\frac{53}{11}
$$

from playing B or C randomly, Player 1 can guarantee 5 if he plays A deterministically. Since $5>53 / 11$, we know that $x=0$ is impossible.

Step 6 We now check the last possibility: $0<x<1$. In this case, Player 1 gets the same payoffs from A and B [notice that in this case both x and y are greater than 0]. Hence,

$$
5 \cdot z+5 \cdot(1-z)=8 \cdot z+1 \cdot(1-z)
$$

which solves for $z=4 / 7$.
If Player 2 adopts the mixed strategy

$$
\left(\frac{4}{7} E+\frac{3}{7} F\right),
$$

Player 1's expected payoff from C is

$$
3 \times \frac{4}{7}+7 \times \frac{3}{7}=\frac{33}{7}<5
$$

which means that Player 1 will not use C, or equivalently,

$$
1-x-y=0
$$

Therefore, $x+y=1$. The proceeding equation with $x=1-\frac{5}{2} y$ yield

$$
x=1 \quad \text { and } \quad y=0
$$

A contradiction [remember that in this step we assume $0<x<1$ and $0<y<$ 1].

Step 7 From Step 1-Step 6, we conclude that the set of Nash equilibria in this game is

- Undominated Strategy

All Nash equilibria are undominated strategies.

Exercise 2. See the solution.

Exercise 3.

- The Game in Matrix C-1

Step 1 For Player $1, B$ is strictly dominated. We delete B and this produce the following Matrix C-3.

Player 2

Step 2 In the game Matrix C-3, we can find the pure Nash equilibria easily. Now let Player 1's mixed strategy be $x \cdot T+(1-x) \cdot C$, and Player 2's mixed strategy be $y \cdot L+(1-y) \cdot R$.

Step 3 As usually, Player 1 is indifferent between T or C, so

$$
2=2 y+\frac{1}{2}(1-y) \Rightarrow y=1
$$

which means that if Player 2 plays L with certainty, then Player 1 is indifferent between T or C [you can see this from the Matrix C-3]. Hence, given Player 2's strategy L, Player 1's best response is

$$
x \cdot T+(1-x) C, \quad x \in[0,1]
$$

Step 4 We also need to check that given Player 1's mixed strategy $x \cdot T+(1-$ $x) C, x \in[0,1]$, Player 2's best response is L. This is true because

$$
2 x+3(1-x)=3-x \geqslant 2 x .
$$

Step 5 With the same logic, you can find the following set of Nash equilibria:

$$
\{(T, y \cdot L+(1-y) R) \mid y \in[0,1]\} .
$$

Step 1 Delete the strictly dominated strategy B, and we get Matrix C-4.

T Player 1 $[x]$ C $[1-x]$	Player 2	
	$\begin{gathered} L \\ {[y]} \end{gathered}$	$\begin{gathered} R \\ {[1-y]} \end{gathered}$
	22	22
	33	$\begin{array}{ll}\frac{1}{2} & \\ \end{array}$

Step 2 The pure Nash equilibria are (T, R) and (C, L).

Step 3 Consider the mixed strategies [sometimes I do not write the mixed strategies explicitly for simplicity. You can find them from the corresponding matrix]. There is a simple way to find the mixed Nash equilibria. For Player 2, he would like to play a mixed strategy $(y \cdot L+(1-y) \cdot R)$ if and only if $x=1$.

Step 4 For Player 1, he would like to play T with certainty if and only if

$$
2 \geqslant 3 y+\frac{1}{2}(1-y) \Rightarrow y \leqslant \frac{3}{5}
$$

Step 5 We need not to consider any of Player 1's mixed strategy since if $x<1$, Player 1's best response is L, and if Player 2's strategy is L, Player 1's best response is C.

Step 6 We thus know that the set of Nash equilibria is

$$
\left\{(T, y \cdot L+(1-y) \cdot R) \left\lvert\, y \in\left[0, \frac{3}{5}\right]\right.\right\} \text { and }\{(C, L)\}
$$

Exercise 4.

Step 1 If Player 1 uses the following mixed strategy

$$
x \cdot A+y \cdot B+(1-x-y) \cdot C
$$

where $x>0$, and $1-x-y>0$. We first suppose that $x \leqslant 1-x-y$, then we can rewrite his mixed strategy as [Consider the case of $x \geqslant 1-x-y$ by yourself]

$$
2 x \cdot\left(\frac{1}{2} A+\frac{1}{2} C\right)+y \cdot B+(1-2 x-y) \cdot C .
$$

For simplicity, we denote the above mixed strategy as $C M$.

Player 2

Player 1

Step 2 Because $\frac{1}{2} A+\frac{1}{2} C$ is dominated by B, we know immediately that $C M$ is dominated by

$$
(2 x+y) \cdot B+(1-2 x-y) \cdot C
$$

Step 3 Step 1 and Step 2 thus show that any of Player 1's mixed strategies putting positive probabilities on A ad C are dominated.

Step 4 There are two cases under which Player 1's mixed strategy

$$
x \cdot A+y \cdot B+(1-x-y) \cdot C
$$

cannot be rewritten as $C M$: $x=0$ or $1-x-y=0$. We are not interested in the former case [$x=0$] because it is not part of a Nash equilibrium [remember that $x \geqslant \frac{1}{3}$ in any Nash equilibria].

Step 5 Thus we need only consider the case of $1-x-y=0$, which means that Player 1's mixed strategies are

$$
x \cdot A+(1-x) \cdot B, \quad x \geqslant \frac{1}{3} .
$$

Step 6 Note that $1-x-y=0$ implies that

$$
y=1-x
$$

Combining this equation with the following equation

$$
y \leqslant 2-3 x
$$

we have

$$
1-x \leqslant 2-3 x
$$

which solves for

$$
x \leqslant \frac{1}{2}
$$

Step 7 We have proved through Step 1—Step 6 that for Player 1, if his strategy is undominated and is part of Nash equilibrium, then his strategy must be

$$
x \cdot A+(1-x) \cdot B, \quad \frac{1}{3} \leqslant x \leqslant \frac{1}{2} .
$$

Our final step is to show that the above strategies are really undominated.
Step 8 Suppose that there exist a strategy

$$
a \cdot A+b \cdot B+(1-a-b) \cdot C
$$

which dominates $x \cdot A+(1-x) \cdot B$, where a, b are probabilities satisfying $a+b \leqslant 1$. We need to solve the following system of inequalities:

$$
\left\{\begin{array}{l}
3 a+2 b \geqslant 2+x \\
3-3 a-b \geqslant 2-2 x \\
\text { At least one of the above two inequalities holds strictly } \\
a+b \leqslant 1 \\
0 \leqslant a \leqslant 1 \\
0 \leqslant b \leqslant 1
\end{array}\right.
$$

There is no solution for the above system of inequalities [see Figure 0.1]. This proves that

$$
x \cdot A+(1-x) \cdot B, \quad \frac{1}{3} \leqslant x \leqslant \frac{1}{2} .
$$

are undominated.

Figure 0.1: There is no solution $(x=0.4)$

[^0]: JIANFEI SHEN: jianfei.shen@unsw.edu.au

