9. Repeated games

JiANFEI SHEN

School of Economics, The University of New South Wales, Sydney 2052, Australia

Exercise 1 (Prisoners’ Dilemma).
Player 2

Prisoners' Dilemma

Step 1 In an isolated interaction, (B, R) is the strictly dominant strategy equilibrium.

Step 2 To find the minimum discount factor δ, we use the grim trigger strategies [notice that $\min \max u_{i}\left(s_{1}, s_{2}\right)=1, \forall i=1,2$]:

- Cooperate in the first period and to continue to do so in every subsequent period as long as both players have previously cooperate,
- while playing B and R in all other circumstances.

Step 3 Given the grim trigger strategies, if Player 1 cooperates, his flow of payoffs is

Time	1	2	3	\cdots
Payoff	3	3	3	\cdots

but if he deviates at time 1, his flow of payoffs is
[By the one-shot deviation principle, we need only to consider such a deviation.]

[^0]| Time | 1 | 2 | 3 | 4 | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Payoff | | | | | \cdots |

Step 4 Hence, the condition is

$$
3+3 \cdot \delta+3 \cdot \delta^{2}+\cdots \geqslant
$$

\qquad
that is,

$$
\frac{3}{1-\delta} \geqslant 5+\frac{\delta}{1-\delta}
$$

which solves for

$$
\delta \geqslant \frac{1}{2}
$$

Theorem 0.1. If $\delta \in(0,1)$, then

$$
a+a \cdot \delta+a \cdot \delta^{2}+a \cdot \delta^{3}+\cdots=\frac{a}{1-\delta}
$$

Proof. Let

$$
X=a+a \cdot \delta+a \cdot \delta^{2}+a \cdot \delta^{3}+\cdots
$$

then

$$
X \cdot \delta=a \cdot \delta+a \cdot \delta^{2}+a \cdot \delta^{3}+\cdots
$$

Thus,

$$
\begin{aligned}
X-X \cdot \delta & =(1-\delta) \cdot X \\
& =a
\end{aligned}
$$

as $a \cdot \delta^{\infty} \rightarrow 0$ since $\delta<1$. The above equation solves for

$$
X=\frac{a}{1-\delta}
$$

Exercise 2 (Repeated Twice).
Step 1 There are two pure strategy Nash equilibria of the one-shot game:

$$
(B, R) \quad \text { and } \quad(C, D)
$$

Step 2 Any SPNE involves playing either of these two pure strategy Nash equilibria in the second period.

Step 3 With Step 1 and 2, you now should know whether (T, L) is possible in the first stage. [Hint: Consider Player 2's strategy: play L in the first stage; play D in the second stage if Player 1 played T in the first stage, otherwise play R. Does Player 1 have incentive to cooperate at the first stage?]

Exercise 3 (Repeated Three Times). Hint: Use the Nash equilibrium at the second and third stage.

[^0]: JIANFEI SHEN: jianfei.shen@unsw.edu.au

